An Expert Approach to an Assessment of the Needs of Land Consolidation within the Scope of Improving Water Resource Management
Abstract
:1. Introduction
2. Methods
- Water resources and retention (A–C);
- Technical systems and measures for water management (D–G);
- Aspects of spatial planning in the framework of land consolidation (H–J).
2.1. Water Resources and Retention
- Curve number (CN);
- Climatic water balance (CWB);
- Mean slope (S).
- A.❶: >81—very small retention;
- A.❷: 51–80—median potential retention;
- A.❸: up to 50—high potential retention.
- B.❶: CWB ≤ −150 mm—very strong risk of drought;
- B.❷: −150 mm < CWB ≤ 0 mm—strong risk of drought;
- B.❸: 0 mm < CWB ≤ 150 mm—medium or small risk of drought;
- B.❹: CWB ≥ 150 mm—a lack of risk of drought.
- C.❶: >25%—precipitous terrains, steep, and very steep;
- C.❷: 17%–25%—heavily sloped terrains;
- C.❸: 10%–17%—moderately sloped terrains;
- C.❹: 0%–10%—level and slightly sloped terrains.
2.2. Technical Systems and Measures for Water Management
- D. Melioration facilities;
- E. Maintenance status of meliorative systems;
- F. Channel retention/meandering;
- G. Valley water retention.
- D.❶: None;
- D.❷: Irrigation only;
- D.❸: Drainage only;
- D.❹: Irrigation–drainage.
- E.❶: Poor;
- E.❷: Acceptable;
- E.❸: Good.
- F.❶: None—straight channel with a regular shape;
- F.❷: Insignificant—single shoreline widenings;
- F.❸: Moderate—river forms bends;
- F.❹: Significant—river channel in the form of meanders.
- G.❶: Narrow floodplains;
- G.❷: Wide floodplains;
- G.❸: Unrestricted (no embankment).
2.3. Aspects of Spatial Planning in the Framework of Land Consolidation
- H. Type of land-cover by build-up;
- I. Buffer zones;
- J. Layout of land plots.
- H.❶: Industrial (commercial)—highest risk of flash floods, where impervious surfaces such as streets and roads, built-up area, or urban district cover more than 10% of the total area;
- H.❷: Continuous—high risk of flash floods, where impervious surfaces occur between 5% and 10%;
- H.❸: Discontinuous/favourable type—where impervious surfaces are divided by pervious vegetated areas, and impervious surfaces make up <5% of the total area.
- I.❶: Lack of buffer zones;
- I.❷: Insignificant—single, short sections that do not connect with one another or there is no linear tree canopy;
- I.❸: Satisfactory rate—buffer zones on parts of the watercourses and sparse linear woodlands that are unevenly distributed throughout the area;
- I.❹: Large numbers—well-developed buffer zones on most lengths of watercourses (also on first-order watercourses) and linear tree planting along roads and field edges. Even distribution throughout the area.
- J.❶: Many plots—small and irregular, ≥8 plots per ha;
- J.❷: Few plots and with regular shapes–3–7 plots per ha;
- J.❸: Average number of plots—<3 plots per ha.
2.4. Needs Matrix for Land Consolidation Activities with Reference to Water Management Needs
- A particular site is assigned to the ‘Consequences’ criterion when at least 70% of the analysed indicators take the grade appropriate for a given ‘Consequences’ class;
- A selection of the likelihood of a given situation is made based on the rating of a given parameter: if >50% of the parameters have a higher rating (❸ or ❹), then a higher likelihood is allocated for that column;
- Frequency classes are a one-dimensional likelihood of occurrence of each complex parameter, according to the classification shown in the middle part of Figure 1. A frequency value of ‘1′ is associated with a very low chance of the occurrence of complex parameters, while a value of ‘5′ denotes a very high chance of occurrence;
- The ‘Consequences’ classes describe different categories of impact, and they are ranked from insignificant impact (‘1′) to disastrous impact (‘5′);
- The matrix feature colours representing five needs scale that show whether the group parameters for a particular site are favourable for water retention. The most favourable option is when the frequency class is ‘5’ and the consequence class is ‘1′. The worst situation is when the parameter values resulted in critical or disastrous consequences;
- In the matrix, letters ‘A’ to ‘J’ describe the parameters defined earlier. Symbols ❶–❹ indicate the value scale of the parameter.
3. Results and Discussion
3.1. Characteristics of Sites Selected for Analysis
3.2. An Assessment of Needs for Retention Measures in the Framework of Land Consolidation
4. Conclusions—Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorig, A.; Ewald, W.G.; Rodig, C.; Bertling, H.; Dielmann, R.; Ebert-Hatzfeld, T.; Franz, K.H.; Gottwald, M.; Hunke-Klein, M.; Kaiser, C.; et al. Strategische Lösungsansätze und Best-Practice-Beispiele zum Thema Hochwasservorsorge. Bund-Länder-Arbeitsgemeinschaft Nachhaltige Landentwicklung (Strategic Solution Approaches and Best Practice Examples on the Subject of Flood Prevention). 2014. Available online: https://www.landentwicklung.de/fileadmin/php_includes/landentwicklung/pdf_doc/Heft22.pdf (accessed on 6 December 2022).
- Rodrigues, C.; Fidélis, T. Distinctive features of spatial planning nearby estuaries—An exploratory analysis of water-related rules in municipal master plans in Portugal. Estuar. Coast. Shelf Sci. 2021, 255, 107352. [Google Scholar] [CrossRef]
- Hartvigsen, M. Land reform and land fragmentation in Central and Eastern Europe. Land Use Policy 2014, 36, 330–341. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Kruseman, G.; Qu, F. Do fragmented landholdings have higher production costs? Evidence from rice farmers in Northeastern Jiangxi province, PR China. China Econ. Rev. 2008, 19, 347–358. [Google Scholar] [CrossRef]
- Kocur-Bera, K. Determinants of agricultural land price in Poland—A case study covering a part of the Euroregion Baltic. Cah. Agric. 2016, 25, 25004. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xie, H.; Yao, G. Impact of land fragmentation on marginal productivity of agricultural labor and non-agricultural labor supply: A case study of Jiangsu, China. Habitat Int. 2018, 83, 65–72. [Google Scholar] [CrossRef]
- Doehring, K.; Young, R.G.; Robb, C. Demonstrating efficacy of rural land management actions to improve water quality—How can we quantify what actions have been done? J. Environ. Manag. 2020, 270, 110475. [Google Scholar] [CrossRef]
- Di Falco, S.; Penov, I.; Aleksiev, A.; van Rensburg, T.M. Agrobiodiversity, farm profits and land fragmentation: Evidence from Bulgaria. Land Use Policy 2010, 27, 763–771. [Google Scholar] [CrossRef]
- Ntihinyurwa, P.D.; de Vries, W.T.; Chigbu, U.E.; Dukwiyimpuhwe, P.A. The positive impacts of farm land fragmentation in Rwanda. Land Use Policy 2019, 81, 565–581. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field sizes and the future of farmland biodiversity in European landscapes. Conserv. Lett. 2020, 13, e12752. [Google Scholar] [CrossRef]
- Wojewodzic, T.; Janus, J.; Dacko, M.; Pijanowski, J.M.; Taszakowski, J. Measuring the Effectiveness of Land Consolidation: An Economic Approach Based on Selected Case Studies from Poland. Land Use Policy 2021, 100, 104888. [Google Scholar] [CrossRef]
- Pijanowski, J.M.; Bogdał, A.; Książek, L.; Wojewodzic, T.; Kowalik, T.; Wałęga, A.; Zarzycki, J.; Zadrożny, P.; Nicia, P.; Strużyński, A.; et al. Środowiskowe i Społeczne Efekty Scaleń Gruntów (Environmental and Social Effects of Land Consolidation); Pijanowski, J.M., Ed.; Uniwersytet Rolniczy w Krakowie: Kraków, Poland, 2021; p. 243. ISBN 978-83-66602-22-9. [Google Scholar] [CrossRef]
- Kowalewski, Z. (Ed.) Metody Retencjonowania Wody na Obszarach Rolniczych i Warunki Ich Stosowania (Methods of Water Retention in Rural Areas and Their Conditions of Use); ITP Falenty: Falenty, Poland, 2014; p. 162. ISBN 978-83-62416-82-0. [Google Scholar]
- Podhrázská, J.; Kučera, J.; Karásek, P.; Szturc, J.; Konečná, J. The Effect of Land Management on the Retention Capacity of Agricultural Land in the Conditions of Climate Change—Case Study. J. Ecol. Eng. 2021, 22, 258–266. [Google Scholar] [CrossRef]
- Przybyła, C.; Sojka, M.; Mrozik, K.; Wróżyński, R.; Pyszny, K. Metodyczne i Praktyczne Aspekty Planowania Małej Retencji (Methodical and Practical Aspects of Small Retention Planning); Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2015; p. 204. ISBN 978-83-7986-057-9. [Google Scholar] [CrossRef]
- Glatthard, T.; Amélioration Foncière. Dictionnaire Historique de la Suisse (Land Improvement. Historical Dictionary of Switzerland). 2016. DHS, Version du 29.11.2016, Traduit de L’allemand, Consulté le 12.06.2021. Available online: https://hls-dhs-dss.ch/fr/articles/007847/2016-11-29/ (accessed on 23 January 2021).
- Thiemann, K.-H. Fließgewässerrenaturierung in der Flurbereinigung—Anforderungen, planerische Grundlagen und Umsetzung (Watercourse renaturation in land consolidation-requirements, planning principles and implementation). Z. Für Geodäsie Geoinf. Und Landmanagement ZFV 2020, 2, 100–110. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L. Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River. Land Use Policy 2020, 97, 104773. [Google Scholar] [CrossRef]
- Phan, T.D.; Bertone, E.; Stewart, R.A. Critical review of system dynamics modelling applications for water resources planning and management. Clean. Environ. Syst. 2021, 2, 100031. [Google Scholar] [CrossRef]
- Rajda, W. Woda w zagospodarowaniu przestrzennym obszarów wiejskich (Water in spatial development in rural areas). Postępy Nauk. Rol. 2005, 3, 33–42. [Google Scholar]
- Mrozik, K.; Przybyła, C. Mała Retencja w Planowaniu Przestrzennym (Small Retention in Spatial Planning); Prodruk: Poznań, Poland, 2013; p. 216. ISBN 978-83-64246-06-7. [Google Scholar]
- Brown, G.; Raymond, C.M. Methods for identifying land use conflict potential using participatory mapping. Landsc. Urban Plan. 2014, 122, 196–208. [Google Scholar] [CrossRef]
- Teague, A.; Sermet, Y.; Demir, I.; Muste, M. A collaborative serious game for water resources planning and hazard mitigation. Int. J. Disaster Risk Reduct. 2021, 53, 101977. [Google Scholar] [CrossRef]
- Peterseil, J.; Wrbka, T.; Plutzar, C.; Schmitzberger, I.; Kiss, A.; Szerencsits, E.; Reiter, K.; Schneider, W.; Suppan, F.; Beissmann, H. Evaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approach. Land Use Policy 2004, 21, 307–320. [Google Scholar] [CrossRef]
- Wojkowski, J.; Młyński, D.; Lepeška, T.; Wałęga, A.; Radecki-Pawlik, A. Link between hydric potential and predictability of maximum flow for selected catchments in Western Carpathians. Sci. Total Environ. 2019, 683, 293–307. [Google Scholar] [CrossRef]
- Lojă, C.I.; Niţă, M.R.; Vânău, G.O.; Onose, D.A.; Gavrilidis, A.A. Using multi-criteria analysis for the identification of spatial land-use conflicts in the Bucharest Metropolitan Area. Ecol. Indic. 2014, 42, 112–121. [Google Scholar] [CrossRef]
- USDA. Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook—Part 630 Hydrology; United States Department of Agriculture USDA: Washington, DC, USA, 2004. [Google Scholar]
- Michel, C.; Vazken, A.; Perrin, C. Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure. J. Water Resour. Res. 2005, 41, 1–6. [Google Scholar] [CrossRef]
- Wałęga, A.; Cupak, A.; Amatya, D.M.; Drożdżal, E. Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in upper Vistula Basin, Poland and lowland catchment in South Carolina, USA. Acta Sci. Pol. Form. Circumiectus 2017, 16, 187–207. [Google Scholar] [CrossRef]
- Epps, T.H.; Hitchcock, D.R.; Jayakaran, A.D.; Loflin, D.R.; Williams, T.M.; Amatya, D.M. Curve Number derivation for watersheds draining two headwater streams in lower coastal plain South Carolina, USA. J. Am. Water Resour. Assoc. 2013, 49, 1284–1295. [Google Scholar] [CrossRef]
- Erhardt, T.M.; Czado, C. Standardized drought indices: A novel univariate and multivariate approach. J. Roy. Stat. Soc. Series C (Appl. Stat.) 2018, 67, 643–664. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Hussain, I.; Grzegorczyk, M.A.; Ni, G.; Faisal, M.; Qamar, S.; Shoukry, A.M.; Sharkawy, M.A.W.; Gani, S.; Al-Deek, F.F. Bayesian network based procedure for regional drought monitoring: The Seasonally Combinative Regional Drought Indicator. J. Environ. Manag. 2020, 276, 111276. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- KZGW. Projekt Planu Przeciwdziałania Skutkom Suszy w Polsce. Projekt: Opracowanie Planów Przeciwdziałania Skutkom Suszy na Obszarach Dorzeczy (Plan to Counteract the Effects of Drought in Poland), Project no: POIS.02.01.00-00-0015/16, Warszawa. 2020. Available online: http://wide-vision.pl/wp-content/uploads/2020/10/Projekt-PPSS_10-2020.pdf (accessed on 25 April 2021).
- Iliopoulou, T.; Aguilar, C.; Arheimer, B.; Bermúdez, M.; Bezak, N.; Ficchì, A.; Koutsoyiannis, D.; Parajka, J.; Polo, M.J.; Thirel, G.; et al. A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers. Hydrol. Earth Syst. Sci. 2019, 23, 73–91. [Google Scholar] [CrossRef] [Green Version]
- Harasimowicz, S. Organizacja Terytorium Gospodarstwa Rolnego (Organization of the Territory of the Farm); Akademia Rolnicza im. H. Kołłątaja w Krakowie: Kraków, Poland, 2002; ISBN 83-86524-71-5. [Google Scholar]
- Strużyński, A.; Książek, L.; Bartnik, W.; Radecki-Pawlik, A.; Plesiński, K.; Florek, J.; Wyrębek, M.; Strutyński, M. Wetlands in river valleys as an effect of fluvial processes and anthropopression. In Wetlands and Water Framework Directive, GeoPlanet: Earth and Planetary Science; Ignar, S., Grygoruk, M., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 69–90. [Google Scholar] [CrossRef]
- Żelazo, J.; Popek, Z. Podstawy Renaturyzacji Rzek (Basics of River Restoration); Publisher SGGW: Warszawa, Poland, 2014; p. 308. ISBN 978-83-7583-573-1. [Google Scholar]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the Southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.Y.; bin Abdul Hamid, A.R. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban Plan. 2014, 125, 271–289. [Google Scholar] [CrossRef]
- Kibii, J.K.; Kipkorir, E.C.; Kosgei, J.R. Application of Soil and Water Assessment Tool (SWAT) to Evaluate the Impact of Land Use and Climate Variability on the Kaptagat Catchment River Discharge. Sustainability 2021, 13, 1802. [Google Scholar] [CrossRef]
- Schueler, T.; Brown, K. Manual 4: Urban Stream Repair Practices; Urban Subwatershed Restoration Manual Series; Office of Water Management U.S. Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- Marshall, E.J.P.; Moonen, A.C. Field margins in northern Europe: Their functions and interactions with agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.M.; Muller, E.; Décamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Processes 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Ghavasieh, A.R.; Poulard, C.; Paquier, A. Effect of roughened strips on flood propagation: Assessment on representative virtual cases and validation. J. Hydrol. 2006, 318, 121–0137. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf. Processes Landf. 2016, 41, 997–1008. [Google Scholar] [CrossRef]
- Stańczuk-Gałwiaczek, M. Planowanie małej retencji wodnej w procesie scalenia gruntów na obszarach wiejskich (Planning of small water retention in the process of land consolidation in rural areas). Woda-Sr. Obsz. Wiej. 2016, 16, 55–69. [Google Scholar]
- Koreleski, K. Wpływ czynników terenowych na natężenie erozji wodnej na przykładzie wsi górskiej (The influence of field factors on the intensity of water erosion exemplified by a mountain village). Infrastruct. Ekol. Rulal Areas 2008, 3, 5–12. [Google Scholar]
- Józefaciuk, C.z.; Józefaciuk, A. Specyfika urządzania wsi o gruntach zagrożonych erozją (The specificity of arranging villages with land threatened by erosion). Zesz. Probl. Postępów Nauk. Rol. 1992, 401, 219–229. [Google Scholar]
- Auerswald, K. Landnuzung und Hochwasser (Land use and floods). In Rundgespräche der Kommission für Ökologie, Bd. 24; Verlag Dr. Friedrich Pfeil: München, Germany, 2002; pp. 67–76. ISBN 3-89937-002-3. ISSN 0938-5851. [Google Scholar]
- Mark, O.; Paludan, B. Climate change and urban water systems. In Handbook of Engineering Hydrology; Eslamian, S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 87–111. [Google Scholar]
- GUS. Ochrona Środowiska 2020 (Environmental Protection 2020); Główny Urząd Statystyczny GUS: Warszawa, Poland, 2020. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html (accessed on 30 November 2020).
- Praskievicz, S.; Luo, C. Assessment of flow-ecology relationships for environmental flow standards: A synthesis focused on the southeast USA. Hydrol. Sci. J. 2020, 65, 571–582. [Google Scholar] [CrossRef]
- Skalski, T.; Kędzior, R.; Radecki-Pawlik, A. Riparian ground beetles in gravel bed rivers: Validation of Invertebrate Bankfull Assessment method. Sci. Total Environ. 2019, 707, 135572. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Gong, Y.; Li, J.; Wang, J.; Chen, G.; Li, M.H. Evaluating the road-bioretention strip system from a hydraulic perspective—Case studies. Water 2018, 10, 1778. [Google Scholar] [CrossRef] [Green Version]
- Zevenbergen, C.; Cashman, A.; Evelpidou, N.; Pasche, E.; Garvin, S.; Ashley, R. Urban Flood Management; CRC Press: London, UK, 2010; p. 340. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Pilarska, A.; Kamiński, D. The Analysis of Long-Term Trends in the Meteorological and Hydrological Drought Occurrences Using Non-Parametric Methods—Case Study of the Catchment of the Upper Noteć River (Central Poland). Atmosphere 2021, 12, 1098. [Google Scholar] [CrossRef]
- Bokwa, A.; Klimek, M.; Krzaklewski, P.; Kukułka, W. Drought Trends in the Polish Carpathian Mts. in the Years 1991–2020. Atmosphere 2021, 12, 1259. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A. Summer Drought in 2019 on Polish Territory—A Case Study. Atmosphere 2021, 12, 1475. [Google Scholar] [CrossRef]
- Czarnecka, A.; Krupowicz, W. Partycypacja społeczna w scaleniach gruntów oparta na idei crowdsourcingu—doświadczenia z wykorzystania aplikacji na urządzenia mobilne LC-CApp (Public participation in land consolidation process based on the idea of crowdsourcing-experience from the use of LC-CApp for mobile devices). Przegląd Geod. 2022, 94, 9–15. [Google Scholar] [CrossRef]
Parameter | Ranges Adopted for Testing |
---|---|
A. Curve number (CN) | ❶ >81 ❷ 51–80 ❸ <50 |
B. Climatic Water Balance (CWB) | ❶ <−150 mm ❷ −150–0 mm ❸ 0–150 mm ❹ >150 mm |
C. Mean slope (S) | ❶ >25% ❷ 17–25% ❸ 10–17% ❹ 0–10% |
D. Melioration facilities | ❶ none ❷ irrigation only ❸ drainage only ❹ irrigation−drainage |
E. Maintenance status of meliorative systems | ❶ poor ❷ acceptable ❸ good |
F. Channel retention/meandering | ❶ none ❷ low ❸ average ❹ high |
G. Valley water retention | ❶ narrow floodplains ❷ wide floodplains ❸ unrestricted (no embankment) |
H. Type of land-cover by build-up | ❶ industrial (commercial) ❷ continuous ❸ discontinuous |
I. Buffer zones | ❶ none ❷ insignificant ❸ satisfactory rate ❹ large numbers |
J. Layout of land plots | ❶ many, small, and irregular ❷ few and with regular shapes ❸ average number of plots |
Specification | Mokrzeszów | Strzelce Wielkie |
---|---|---|
Land consolidation area (ha) | 1716.00 | 1708.00 |
Number of farmlands | 80.00 | 262.00 |
Number of participants | 517.00 | 818.00 |
Number of land plots | 1532.00 | 2698.00 |
Average number of plots per farmland | 7.00 | 6.55 |
Average plot size of the farmland (ha) | 1.38 | 0.45 |
Parameter | Value | Parameter Classification |
---|---|---|
A. Curve number (CN) | 82 | ❶ |
B. Climatic water balance (CWB) | −35 mm | ❷ |
C. Mean slope (S) | 7.48% | ❹ |
D. Melioration facilities | irrigation–drainage | ❹ |
E. Meliorative systems’ maintenance status | acceptable | ❷ |
F. Channel retention/meandering | low | ❷ |
G. Valley water retention | unrestricted | ❸ |
H. Type of land-cover by build-up | 8.09% sealed | ❷ |
I. Buffer zones | insignificant | ❷ |
J. Layout of land plots | 0.89 plot per ha | ❷ |
Parameter | Value | Parameter Classification |
---|---|---|
A. Curve number (CN) | 66.1 | ❷ |
B. Climatic water balance (CWB) | +55 mm | ❸ |
C. Mean slope (S) | 6.97% | ❹ |
D. Melioration facilities | irrigation–drainage | ❹ |
E. Meliorative systems’ maintenance status | poor | ❶ |
F. Channel retention/meandering | high | ❹ |
G. Valley water retention | wide | ❷ |
H. Type of land-cover by build-up | 2.6% sealed | ❸ |
I. Buffer zones | Large number | ❹ |
J. Layout of land plots | 1.57 plots per ha | ❷ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pijanowski, J.M.; Wałęga, A.; Książek, L.; Strużyński, A.; Goleniowski, K.; Zarzycki, J.; Kowalik, T.; Bogdał, A.; Wyrębek, M.; Szeremeta, K. An Expert Approach to an Assessment of the Needs of Land Consolidation within the Scope of Improving Water Resource Management. Sustainability 2022, 14, 16651. https://doi.org/10.3390/su142416651
Pijanowski JM, Wałęga A, Książek L, Strużyński A, Goleniowski K, Zarzycki J, Kowalik T, Bogdał A, Wyrębek M, Szeremeta K. An Expert Approach to an Assessment of the Needs of Land Consolidation within the Scope of Improving Water Resource Management. Sustainability. 2022; 14(24):16651. https://doi.org/10.3390/su142416651
Chicago/Turabian StylePijanowski, Jacek M., Andrzej Wałęga, Leszek Książek, Andrzej Strużyński, Krzysztof Goleniowski, Jan Zarzycki, Tomasz Kowalik, Andrzej Bogdał, Maciej Wyrębek, and Karol Szeremeta. 2022. "An Expert Approach to an Assessment of the Needs of Land Consolidation within the Scope of Improving Water Resource Management" Sustainability 14, no. 24: 16651. https://doi.org/10.3390/su142416651
APA StylePijanowski, J. M., Wałęga, A., Książek, L., Strużyński, A., Goleniowski, K., Zarzycki, J., Kowalik, T., Bogdał, A., Wyrębek, M., & Szeremeta, K. (2022). An Expert Approach to an Assessment of the Needs of Land Consolidation within the Scope of Improving Water Resource Management. Sustainability, 14(24), 16651. https://doi.org/10.3390/su142416651