Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment
2.1.1. Goal and Scope
2.1.2. System Description and Boundaries
2.1.3. Life Cycle Inventory
2.1.4. Co-Production Allocation
2.1.5. Impact Assessment
2.2. Circularity Indicators and Assessment Frameworks
- The Ellen Macarthur Foundation Material Circularity Indicator (MCI) [17];
- The World Business Council for Sustainable Development % circularity indicator [18];
- The Circular Materials Guidelines (CMG) feedstock content requirements [20];
- The Cradle to Cradle Certified™ Product Standard Material Reutilization Score (MRS) [22].
3. Results
3.1. Environmental Impacts Quantified Using LCA
3.2. Circularity Indicators and Assessment Frameworks
4. Discussion
4.1. Approaches to Choosing More Sustainable Fibres
4.1.1. Option 1—ISO-Compliant Life Cycle Interpretation
4.1.2. Option 2—Select Raw Materials Based on Circular Product Life Cycle Criteria
5. Conclusions
- LCA and circularity indicators are applied in parallel to help frame the interpretation phase of an ISO-compliant LCA;
- The interpretation phase of an ISO-compliant LCA study carefully considers the impact of system boundaries on life cycle impacts;
- Where possible, actual rather than potential rates (such as recycling and composting) be used to parameterise circularity indicators.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niinimäki, K.; Peters, G.; Dahlbo, H.; Perry, P.; Rissanen, T.; Gwilt, A. The Environmental Price of Fast Fashion. Nat. Rev. Earth Environ. 2020, 1, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Textile Exchange Preferred Fiber & Materials Market Report 2020. Available online: https://textileexchange.org/wp-content/uploads/2020/06/Textile-Exchange_Preferred-Fiber-Material-Market-Report_2020.pdf (accessed on 22 November 2021).
- CO How to Choose the Most Eco-Friendly Fabric for Your Garment. Available online: https://www.commonobjective.co/article/how-to-choose-the-most-eco-friendly-fabric-for-your-garment (accessed on 25 November 2020).
- SAC Higg Materials Sustainability Index. Available online: https://msi.higg.org/page/msi-home (accessed on 22 March 2019).
- CFDA Materials Index. Available online: https://cfda.com/resources/materials (accessed on 26 November 2020).
- Wiedemann, S.; Biggs, L.; Nebel, B.; Bauch, K.; Laitala, K.; Klepp, I.; Swan, P.; Watson, K. Environmental Impacts Associated with the Production, Use, and End-of-Life of a Woollen Garment. Int. J. Life Cycle Assess. 2020, 25, 1486–1499. [Google Scholar] [CrossRef]
- Cotton Inc. Life Cycle Assessment of Cotton Fiber & Fabric: Full Report; Cotton Incorporated: Australia, 2012; Available online: https://web.archive.org/web/20150723085839/http://cottontoday.cottoninc.com/wp-content/uploads/2014/07/LCA_Full_Report.pdf (accessed on 1 April 2021).
- Shen, L.; Worrell, E.; Patel, M.K. Open-Loop Recycling: A LCA Case Study of PET Bottle-to-Fibre Recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation (ISO): Geneva, Switzerland, 2006.
- EC. Commission Recommendation of 16.12.2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations—Annex I. Product Environmental Footprint Method; European Commission (EC): Brussels, Belgium, 2021.
- Quantis. Draft Product Environmental Footprint Category Rules (PEFCR)—Apparel and Footwear. Version 1.2, 7 July 2021; Quantis: Zürick, Switzerland, 2021. [Google Scholar]
- Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards Sustainable Development through the Circular Economy—A Review and Critical Assessment on Current Circularity Metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- EC. Closing the Loop—An. EU Action Plan. for the Circular Economy; European Commission (EC): Brussels, Belgium, 2015. [Google Scholar]
- EMF. A New Textiles Economy: Redesigning Fashion’s Future; Ellen MacArthur Foundation (EMF): Cowes, UK, 2017; Available online: https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future (accessed on 25 September 2020).
- WRAP. Benefits of Reuse Case Study: Clothing; WRAP: Banbury, UK, 2011. [Google Scholar]
- Beton, A.; Dias, D.; Farrant, L.; Gibon, T.; le Guern, Y.; Desaxce, M.; Perwueltz, A.; Boufateh, I.; Wolf, O.; Kougoulis, J. Environmental Improvement Potential of Textiles (IMPRO-Textiles); European Union: Brussels, Belgium, 2014. Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/environmental-improvement-potential-textiles-impro-textiles (accessed on 12 March 2020).
- EMF. Granta Circularity Indicators—An. Approach to Measuring Circularity; Ellen MacArthur Foundation (EMF): Cowes, UK; Cambridge, UK, 2019; Available online: http://www.ellenmacarthurfoundation.org/circularity-indicators/ (accessed on 27 October 2020).
- WBCSD. Circular Transition Indicators V1.0: Metrics for Business, by Business; World Business Council for Sustainable Development (WBCSD): Geneva, Switzerland, 2020; Available online: https://www.wbcsd.org/Programs/Circular-Economy/Factor-10/Metrics-Measurement/Resources/Circular-Transition-Indicators-V1.0-Metrics-for-business-by-business (accessed on 5 November 2020).
- PACE. The Circularity Gap Report; PACE (Platform for Accelerating the Circular Economy): The Hague, The Netherlands, 2020. [Google Scholar]
- Fashion Positive. Circular Materials Guidelines 1.0; Fashion Positive, 2020. Available online: https://fashionpositive.org/wp-content/uploads/2020/10/Circular-Materials-Guidelines-v1.0-Final-08202020.pdf (accessed on 2 October 2022).
- Accelerating Circularity. Research and Mapping Report, Fall 2020; Accelerating Circularity: New York, NY, USA, 2020; Available online: https://www.acceleratingcircularity.org/s/CircularSupplyChainPotential-US-EastCoast-OCT2020.pdf (accessed on 14 October 2020).
- Cradle to Cradle. Cradle to Cradle CertifiedTM Product Standard, Version 3.1; Cradle to Cradle Products Innovation Institute: San Francisco, CA, USA, 2020. [Google Scholar]
- EC. The European Green Deal, COM(2019) 640 Final; European Commission (EC): Brussels, Belgium, 2019; ISBN 9788578110796.
- Bakker, C.A.; Wever, R.; Teoh, C.; De Clercq, S. Designing Cradle-to-Cradle Products: A Reality Check. Int. J. Sustain. Eng. 2010, 3, 2–8. [Google Scholar] [CrossRef]
- Bjørn, A.; Hauschild, M.Z. Cradle to Cradle and LCA. In Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 605–631. ISBN 9783319564753. [Google Scholar]
- Holmberg, J. Backcasting: A Natural Step in Operationalising Sustainable Development. Greener Manag. Int. 1998, 23, 31–51. [Google Scholar]
- ISO 14040: 2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organisation for Standardisation (ISO): Geneva, Switzerland, 2006.
- Van Uytvanck, P.P.; Haire, G.; Marshall, P.J.; Dennis, J.S. Impact on the Polyester Value Chain of Using p-Xylene Derived from Biomass. ACS Sustain. Chem. Eng. 2017, 5, 4119–4126. [Google Scholar] [CrossRef]
- Van Uytvanck, P.P.; Hallmark, B.; Haire, G.; Marshall, P.J.; Dennis, J.S. Impact of Biomass on Industry: Using Ethylene Derived from Bioethanol within the Polyester Value Chain. ACS Sustain. Chem. Eng. 2014, 2, 1098–1105. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Alternative Fuels Data Center: Maps and Data—Global Ethanol Production; U.S. Department of Energy: Washington, DC, USA, 2020. Available online: https://afdc.energy.gov/data/10331#:~:text=The%20United%20States%20is%20the,while%20Brazil%20primarily%20uses%20sugarcane (accessed on 10 August 2020).
- Prentice, C.; Ananthalakshmi, A. Long, Strange Trip: How U.S. Ethanol Reaches China Tariff-Free; Reuters: Toronto, ON, Canada, 2019; Available online: https://www.reuters.com/article/us-usa-trade-ethanol-insight/long-strange-trip-how-u-s-ethanol-reaches-china-tariff-free-idUSKCN1PW0BR (accessed on 16 June 2020).
- Morschbacker, A. Bio-Ethanol Based Ethylene. Polym. Rev. 2009, 49, 79–84. [Google Scholar] [CrossRef]
- Jou, R.M.; MacArio, K.D.; Carvalho, C.; Dias, R.S.; Brum, M.C.; Cunha, F.R.; Ferreira, C.G.; Chanca, I.S. Biogenic Fraction in the Synthesis of Polyethylene Terephthalate. Int. J. Mass Spectrom. 2015, 388, 65–68. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part. I): Overview and Methodology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 21. [Google Scholar]
- van der Velden, N.M.; Patel, M.K.; Vogtländer, J.G. LCA Benchmarking Study on Textiles Made of Cotton, Polyester, Nylon, Acryl, or Elastane. Int. J. Life Cycle Assess. 2014, 19, 331–356. [Google Scholar] [CrossRef]
- L’Abbate, P.; Dassisti, M.; Cappelletti, G.M.; Nicoletti, G.M.; Russo, C.; Ioppolo, G. Environmental Analysis of Polyester Fabric for Ticking. J. Clean Prod. 2018, 172, 735–742. [Google Scholar] [CrossRef]
- Dahlbo, H.; Aalto, K.; Eskelinen, H.; Salmenperä, H. Increasing Textile Circulation—Consequences and Requirements. Sustain. Prod. Consum. 2017, 9, 44–57. [Google Scholar] [CrossRef]
- Wang, M.; Lee, H.; Molburg, J. Allocation of Energy Use in Petroleum Refineries to Petroleum Products. Int. J. Life Cycle Assess. 2004, 9, 34–44. [Google Scholar] [CrossRef]
- Zhang, Y. Life Cycle Environmental Impacts of Biofuels: The Role of Co-Products. Ph.D. Thesis, University of California, Davis, CA, USA, 2018. [Google Scholar]
- U.S. Grains Council. A Guide to Distiller’s Dried Grains with Solubles (DDGS); U.S. Grains Council: Washington, DC, USA, 2012. Available online: https://grains.org/wp-content/uploads/2018/01/Complete-2012-DDGS-Handbook.pdf (accessed on 16 June 2020).
- Wang, M.; Huo, H.; Arora, S. Methods of Dealing with Co-Products of Biofuels in Life-Cycle Analysis and Consequent Results within the U.S. Context. Energy Policy 2011, 39, 5726–5736. [Google Scholar] [CrossRef]
- Pré-Consultants. SimaPro 9.1 Software; Pré-Consultants: Amersfoort, The Netherlands, 2020. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, III to the Fith Assessment Report of the Intergovenment Panel on Climate Change; IPCC: Geneva, Switzerland, 2015. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 16 December 2019).
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [Green Version]
- EC EF 2.0 Reference Package (Pilot Phase). Available online: https://eplca.jrc.ec.europa.eu/LCDN/EF_archive.xhtml (accessed on 11 August 2022).
- Bos, U.; Horn, R.; Beck, T.; Lindner, J.; Fischer, M. LANCA® Characterization Factors for Life Cycle Impact Assessment: Version 2.0; Fraunhofer Verlag: Stuttgart, Germany, 2016; ISBN 978-3-8396-0953-8. [Google Scholar]
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Herndon, S.C.; Jacob, D.J.; Karion, A.; et al. Assessment of Methane Emissions from the U.S. Oil and Gas Supply Chain. Science 2018, 361, 186–188. [Google Scholar] [CrossRef]
- Vaughn, T.L.; Bell, C.S.; Pickering, C.K.; Schwietzke, S.; Heath, G.A.; Pétron, G.; Zimmerle, D.J.; Schnell, R.C.; Nummedal, D. Temporal Variability Largely Explains Top-down/Bottom-up Difference in Methane Emission Estimates from a Natural Gas Production Region. Proc. Natl. Acad. Sci. USA 2018, 115, 11712–11717. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.T.; Torresa, V.M.; Thomas, J.; Sullivan, D.W.; Harrison, M.; Hendler, A.; Herndon, S.C.; Kolb, C.E.; Fraser, M.P.; Hill, A.D.; et al. Measurements of Methane Emissions at Natural Gas Production Sites in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 17768–17773. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.R.; Heath, G.A.; Kort, E.A.; O’Sullivan, F.; Pétron, G.; Jordaan, S.M.; Tans, P.; Wilcox, J.; Gopstein, A.M.; Arent, D.; et al. Methane Leaks from North American Natural Gas Systems. Science 2014, 343, 733–735. [Google Scholar] [CrossRef] [Green Version]
- IEA. Methane Tracker Database. Available online: https://www.iea.org/data-and-statistics/data-product/methane-tracker-database-2022 (accessed on 28 July 2022).
- Enerdata World Energy & Climate Statistics—Yearbook 2022. Available online: https://yearbook.enerdata.net/ (accessed on 28 July 2022).
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method, EUR 29682 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 9789276006541.
- Ingwersen, W. Emergy as a Life Cycle Impact Assessment Indicator: A Gold Mining Case Study. J. Ind. Ecol. 2011, 15, 550–567. [Google Scholar] [CrossRef]
- Dukes, J.S. Burning Buried Sunshine: Human Consumption of Ancient Solar Energy. Clim. Chang. 2003, 61, 31–44. [Google Scholar] [CrossRef]
- Berner, R.A. The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature 2003, 426, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life Cycle Impact Assessment of Bio-Based Plastics from Sugarcane Ethanol. J. Clean Prod. 2015, 90, 114–127. [Google Scholar] [CrossRef]
- Horowitz, N.; Frago, J.; Mu, D. Life Cycle Assessment of Bottled Water: A Case Study of Green2O Products. Waste Manag. 2018, 76, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Bisinella, V.; Albizzati, P.; Astrup, T.; Damgaard, A. (Eds.) Life Cycle Assessment of Grocery Carrier Bags; Miljoeprojekter, No. 1985; Danish Environmental Protection Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Watson, K.; Wiedemann, S. Review of Methodological Choices in LCA-Based Textile and Apparel Rating Tools: Key Issues and Recommendations Relating to Assessment of Fabrics Made from Natural Fibre Types. Sustainability 2019, 11, 3846. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Gosnell, H.; Gill, N.; Voyer, M. Transformational Adaptation on the Farm: Processes of Change and Persistence in Transitions to ‘Climate-Smart’ Regenerative Agriculture. Global Environmental. Chang. 2019, 59, 101965. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, S.H. Poly (Ethylene Terephthalate) Recycling for High Value Added Textiles. Fash. Text. 2014, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.; Fishwick, M.; Joyce, J.; Van Santen, A. A Carbon Footprint for UK Clothing and Opportunities for Savings; Environmental Resources Management Limited (ERM): London, UK, 2012; Available online: http://www.wrap.org.uk/sites/files/wrap/Appendix%20IV%20-%20Carbon%20footprint%20report.pdf (accessed on 27 April 2020).
- Höfer, R. Sugar- and Starch-Based Biorefineries. In Industrial Biorefineries and White Biotechnology; Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 157–235. [Google Scholar]
- Mohanty, S.K.; Swain, M.R. Bioethanol Production from Corn and Wheat: Food, Fuel, and Future. In Bioethanol Production from Food Crops; Ray, R.C., Ramachandran, S., Eds.; Academic Press: London, UK, 2019; pp. 45–59. ISBN 9780128137666. [Google Scholar]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M. The WULCA Consensus Characterization Model for Water Scarcity Footprints: Assessing Impacts of Water Consumption Based on Available Water Remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef] [Green Version]
- Peano, L.; Kounina, A.; Magaud, V.; Chalumeau, S.; Zgola, M.; Boucher, J. Quantis Plastic Leak Project—Methodological Guidelines; Quantis International. 2020. Available online: https://quantis.com/report/the-plastic-leak-project-guidelines (accessed on 16 September 2021).
- Akanuma, Y.; Selke, S.; Auras, R. A Preliminary LCA Case Study: Comparison of Different Pathways to Produce Purified Terephthalic Acid Suitable for Synthesis of 100 % Bio-Based PET. Int. J. Life Cycle Assess. 2014, 19, 1238–1246. [Google Scholar] [CrossRef]
- Akanuma, Y. LCA Comparison of 100 % Bio-Based PET Synthesized from Different PTA Pathways. Masters Thesis, Michigan State University, East Lansing, MI, USA, 2013. [Google Scholar]
- Benavides, P.; Dunn, J.; Han, J.; Biddy, M.; Markham, J. Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustain. Chem. Eng. 2018, 6, 9725–9733. [Google Scholar] [CrossRef]
- Flugge, M.; Lewandrowski, J.; Rosenfeld, J.; Boland, C.; Hendrickson, T.; Jaglo, K.; Kolansky, S.; Moffroid, K.; Riley-Gilbert, M.; Pape, D. A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol; Report Prepared by ICF under USDA Contract No. AG-3142-D-16-0243; U.S. Department of Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- EIA. Ethanol Producers Benefiting from Higher Margins for Distillers Grains. Available online: https://www.eia.gov/todayinenergy/detail.php?id=15271 (accessed on 16 May 2020).
- Wang, M.; Han, J.; Dunn, J.B.; Cai, H.; Elgowainy, A. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Ethanol from Corn, Sugarcane and Cellulosic Biomass for US Use. Environ. Res. Lett. 2012, 7, 045905. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, L.; Liu, X.; Du, C.; Ding, D.; Jia, J. Carbon Footprint of Textile throughout Its Life Cycle: A Case Study of Chinese Cotton Shirts. J. Clean. Prod. 2015, 108, 464–475. [Google Scholar] [CrossRef]
- Laitala, K.; Vereide, K. Washing Machines’ Program Selections and Energy Use. Project Note 2-2010; National Institute for Consumer Research: Oslo, Norway, 2010. [Google Scholar]
- Laitala, K.; Klepp, I.G.; Henry, B. Use Phase of Apparel: A Literature Review for Life Cycle Assessment with Focus on Wool; Consumption Research Norway (SIFO): Oslo, Norway, 2018; Available online: https://www.researchgate.net/publication/323551373_Use_phase_of_apparel_A_literature_review_for_Life_Cycle_Assessment_with_focus_on_wool (accessed on 1 April 2019).
- Energy Saving Trust at Home with Water: The Biggest Ever Review of Domestic Water Use in Great Britain; Energy Saving Trust: London, UK, 2013.
- Troynikov, O.; Watson, C.A.; Jadhav, A.; Nawaz, N.; Kettlewell, R. Towards Sustainable and Safe Apparel Cleaning Methods: A Review. J. Environ. Manag. 2016, 182, 252–264. [Google Scholar] [CrossRef]
- Schmitz, A.; Stamminger, R. Usage Behaviour and Related Energy Consumption of European Consumers for Washing and Drying. Energy Effic. 2014, 7, 937–954. [Google Scholar] [CrossRef]
- Yun, C.; Patwary, S.; LeHew, M.L.A.; Kim, J. Sustainable Care of Textile Products and Its Environmental Impact: Tumble-Drying and Ironing Processes. Fibers Polym. 2017, 18, 590–596. [Google Scholar] [CrossRef]
- Gooijer, H.; Stamminger, R. Water and Energy Consumption in Domestic Laundering Worldwide—A Review. Tenside Surfactants Deterg. 2016, 53, 402–409. [Google Scholar] [CrossRef]
- Laitala, K.; Klepp, I.; Henry, B. Does Use Matter? Comparison of Environmental Impacts of Clothing Based on Fiber Type. Sustainability 2018, 10, 2524. [Google Scholar] [CrossRef] [Green Version]
- Boulay, A.-M.; Benini, L.; Sala, S. Marginal and Non-Marginal Approaches in Characterization: How Context and Scale Affect the Selection of an Adequate Characterization Model. The AWARE Model Example. Int. J. Life Cycle Assess. 2019, 25, 2380–2392. [Google Scholar] [CrossRef]
- Wiedemann, S.; Biggs, L.; Clarke, S.; Russel, S. Reducing the Environmental Impacts of Garments through Industrially Scalable Closed-Loop Recycling: Life Cycle Assessment of a Recycled Wool Blend Sweater. Sustainability 2022, 14, 1081. [Google Scholar] [CrossRef]
- Agarwal, S. Biodegradable Polymers: Present Opportunities and Challenges in Providing a Microplastic-Free Environment. Macromol. Chem. Phys. 2020, 221. [Google Scholar] [CrossRef] [Green Version]
- Astrup, T.F.; Tonini, D.; Turconi, R.; Boldrin, A. Life Cycle Assessment of Thermal Waste-to-Energy Technologies: Review and Recommendations. Waste Manag. 2015, 37, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Long, Y.; Zhou, H.; Meng, A.; Tan, Z.; Zhang, Y. Prediction of Higher Heating Values of Combustible Solid Wastes by Pseudo-Components and Thermal Mass Coefficients. Thermochim. Acta 2017, 658, 93–100. [Google Scholar] [CrossRef]
Requirement No. | Requirement Name and Description | PET-f | PET-b |
---|---|---|---|
1A | Recycled and/or Reclaimed Content fibre content—This requirement is centred around incorporating recycled content in fibres. | Fail | Fail |
1B—for products made partially from virgin cellulose and virgin protein-based materials | Renewable Sources—when non-recycled/reclaimed feedstock is from virgin natural sources | NA | NA |
Renewable Sources—when non-recycled/reclaimed feedstock is from virgin natural sources | NA | NA | |
1C | Recycled and Reclaimed Content—This requirement is centred around incorporating recycled or by-product fibres/yarns into fabric. | Fail | Fail |
2 | Fibre Recyclability Potential | Best | Best |
data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiedemann, S.G.; Nguyen, Q.V.; Clarke, S.J. Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres. Sustainability 2022, 14, 16683. https://doi.org/10.3390/su142416683
Wiedemann SG, Nguyen QV, Clarke SJ. Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres. Sustainability. 2022; 14(24):16683. https://doi.org/10.3390/su142416683
Chicago/Turabian StyleWiedemann, Stephen G., Quan V. Nguyen, and Simon J. Clarke. 2022. "Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres" Sustainability 14, no. 24: 16683. https://doi.org/10.3390/su142416683
APA StyleWiedemann, S. G., Nguyen, Q. V., & Clarke, S. J. (2022). Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres. Sustainability, 14(24), 16683. https://doi.org/10.3390/su142416683