Hydrogeotechnical Predictive Approach for Rockfall Mountain Hazard Using Elastic Modulus and Peak Shear Stress at Soil–Rock Interface in Dry and Wet Phases at KKH Pakistan
Abstract
:1. Introduction
- Collection of rock-block samples and soil matrix from a rockfall hazard area of the Tatta Pani site, KKH, and the determination of field dry density (γd)F by a large-diameter core cutter inserted in the matrix of a steep cut slope face.
- Laboratory evaluation of the elastic modulus (ES) and peak shear stress (PS) of the soil matrix at the in situ density condition and variable moisture contents ranging from dry to wet phases, and correlation of the moisture content of the soil matrix to the Es and Ps in laboratory for a specific range of grain sizes and constant roughness of rock, i.e., 0.5 mm for the performance of quick direct shear tests.
- Validation of critical values of laboratory-based moisture contents, i.e., (MC)LC by performing moisture-induced real-scale forced rockfall triggering in the field by the inundation of matrix soil and determining the field critical moisture content (MC)FC.
- Statistical analysis of the dataset.
2. Materials and Methods
3. Results
4. Conclusions
- Quick direct shear laboratory data showed a 3-fold collapse in peak shear stress (PS) at the soil–soil interface and a 9.3-fold drop at the soil–rock interface by varying the moisture content from 1% to a critical laboratory moisture content (MC)LC of 21%. Similarly, there was a 5.7-fold drop in the elastic modulus (ES) at the soil–soil interface and a 10-fold decrease at the soil–rock interface for the variation of moisture content from 1 % to 21% for the low-cohesive-soil matrix with a permeability range of 3 × 10−4 to 5.6 × 10−4 m/s. Hence, the (MC)LC of 21% depicted the substantial loss of PS and Es at the soil–rock interface.
- Hydrogeotechnical relations, i.e., moisture content (MC) versus the peak shear stress (PS) and elastic modulus (ES), at the soil–rock interface are developed for the prediction of rock by using MC as the critical factor, which causes the collapse of PS and ES in the saturated phase of soil at the soil–rock interface.
- A proposed laboratory approach for the collapse of PS and ES is validated by an innovative field inundation of the soil–rock interface to cause moisture-induced real-scale rockfall triggering at field dry density (γd)f and a critical field moisture content (MC)FC of the matrix ranging from 1.78 g/cm3 to 1.92 g/cm3 and 1.3% to 25.4%.
- Variation in (MC)FC was within 20% of (MC)LC, which depicts a good confidence level for using proposed correlations in matching the lithology of block-in-matrix soil. It was also observed that the ES and PS values of the soil–rock interface are substantially lower as compared with the soil–soil interface.
- The outcome of hydrogeotechnical studies for 32 rockfall cases also revealed that the triggering of rockfall may start at rainfall ranges from 97–107 mm, falling in the intense rainfalls of the monsoon and torrential period of the Tatta Pani site, KKH.
Author Contributions
Funding
Conflicts of Interest
References
- Kalender, A.; Sonmez, H.; Medley, E.; Tunusluoglu, C.; Kasapoglu, K.E. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Eng. Geol. 2014, 183, 65–79. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.H.; Hu, Y.Z. Use of X-ray computed tomography to investigate the effect of rock blocks on meso-structural changes in soil-rock mixture under triaxial deformation. Constr. Build Mater. 2018, 164, 386–399. [Google Scholar] [CrossRef]
- Castelli, F.; Lentini, V.; Venti, A.D. Evaluation of Unsaturated Soil Properties for a Debris- Flow Simulation. Geosciences 2021, 11, 64. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, T.; Wu, W.; Zheng, H. Modelling the stability of a soil-rock- mixture slope based on the digital image technology and strength reduction numerical manifold method. Eng. Anal. Bound. Elem. 2021, 126, 45–54. [Google Scholar] [CrossRef]
- Melillo, M.; Gariano, S.L.; Peruccacci, S.; Sarro, R.; Mateos, R.M.; Brunetti, M.T. Rainfall and rockfalls in the Canary Islands: Assessing a seasonal link. Nat. Hazards Earth Syst. Sci. 2020, 20, 2307–2317. [Google Scholar] [CrossRef]
- Medley, E.; Lindquist, E.S. The engineering significance of the scale-independence of some Franciscan Melanges in California, USA. In Proceedings of the 35th US Rock Mechanics Symposium (USRMS), Reno, NV, USA, 5–7 June 1995. [Google Scholar]
- Wang, Y.; Li, X.; Wu, Y.F.; Lin, C.; Zhang, B. Experimental study on meso-damage cracking characteristics of RSA by CT test. Environ. Earth Sci. 2015, 73, 5545–5558. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Hu, R.L.; Li, S.D.; Wang, J.Y. Experimental study of the ultrasonic and mechanical properties of SRM under compressive loading. Environ. Earth Sci. 2015, 74, 5023–5037. [Google Scholar] [CrossRef]
- Jiang, H.; Zou, Q.; Zhou, B.; Hu, Z.; Li, C.; Yao, S.; Yao, H. Susceptibility Assessment of Debris Flows Coupled with Ecohydrological Activation in the Eastern Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 1444. [Google Scholar] [CrossRef]
- Emeka, O.J.; Nahazanan, H.; Kalantar, B.; Khuz e aimah, Z.; Sani, O.S. Evaluation of the effect of hydroseeded vegetation for slope reinforcement. Land 2021, 10, 995. [Google Scholar] [CrossRef]
- Xia, C.; Haoyong, T. A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior. Water 2022, 14, 1369. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook: A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008; p. 29. [Google Scholar]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide susceptibility mapping of karakorum highway combined with the application of SBAS- InSAR technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, U.; Blum, P.; Da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Dias, H.; Gramani, M.; Grohmann, C.; Bateira, C.; Vieira, B.C. Statistical-based Shallow Landslide Susceptibility Assessment for a Tropical Environment: A Case Study in the Southeastern Brazilian Coast. Nat. Hazards 2021, 108, 205–223. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zheng, B.; Ma, C.F. An experimental investigation of the flow–stress coupling characteristics of soil–rock mixture under compression. Transp. Porous Media 2016, 112, 429–450. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Zhuo, L.; Mao, J.; Zhu, S.; Han, D. Accounting for satellite rainfall uncertainty in rainfall-triggered landslide forecasting. Geomorphology 2022, 398, 108051. [Google Scholar] [CrossRef]
- Emberson, R.; Kirschbaum, D.B.; Amatya, P.; Tanyas, H.; Marc, O. Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories. Nat. Hazards Earth Syst. Sci. 2022, 22, 1129–1149. [Google Scholar] [CrossRef]
- Sun, T.; Sun, D.Y.; Wang, X.K.; Ma, Q.; Gourbesville, P.; Nohara, D. Numerical analysis of landslide-generated debris flow on July 3, 2021 in Izu Mountain area, Shizuoka County, Japan. J. Mt. Sci. 2022, 19, 1738–1747. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Emadi-Tafti, M.; Ataie-Ashtiani, B. A modeling platform for landslide stability: A hydrological approach. Water 2019, 11, 2146. [Google Scholar] [CrossRef] [Green Version]
- Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. Rainfall thresholds for the possible landslide occurrence in Sicily (southern Italy) based on the automatic reconstruction of rainfall events. Landslides 2016, 13, 165–172. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat. Geosci. 2016, 9, 395–400. [Google Scholar] [CrossRef]
- Contino, A.; Bova, P.; Esposito, G.; Giuffré, I.; Monteleone, S. Historical analysis of rainfall-triggered rockfalls: The case study of the disaster of the ancient hydrothermal Sclafani Spa (Madonie Mts, northern-central Sicily, Italy) in 1851. Nat. Hazards Earth Syst. Sci. 2017, 17, 2229–2243. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.A.; Yang, Y.T.; Zheng, H. Hydro-mechanical simulation of the semi-saturated porous soil-rock mixtures using the numerical manifold method. Comput. Methods Appl. Mech. 2020, 370, 113238. [Google Scholar] [CrossRef]
- Guo, J.; Yi, S.; Yin, Y.; Cui, Y.; Qin, M.; Li, T.; Wang, C. The effect of topography on landslide kinematics: A case study of the Jichang town landslide in Guizhou, China. Landslides 2020, 17, 959–973. [Google Scholar] [CrossRef]
- He, K.; Ma, G.; Hu, X.; Liu, B.; Han, M. The July 2, 2017, Lantian landslide in Leibo, China: Mechanisms and mitigation measures. Geomech. Eng. 2022, 28, 283–298. [Google Scholar]
- Li, J.; Liu, Z.; Wang, R.; Zhang, X.; Liu, X.; Yao, Z. Analysis of Debris Flow Triggering Conditions for Different Rainfall Patterns Based on Satellite Rainfall Products in Hengduan Mountain Region, China. Remote Sens. 2022, 14, 2731. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, H.; Yang, D.; Liu, Z.; Ma, S.; Pei, Y.; Zhang, J.; Tang, B. Deformation responses of landslides to seasonal rainfall based on InSAR and wavelet analysis. Landslides 2022, 19, 199–210. [Google Scholar] [CrossRef]
- Shakoor, A.; Cook, B.D. The effect of stone content, size, and shape on the engineering properties of a compacted silty clay. Bull. Assoc. Eng. Geol. 1990, 27, 245–253. [Google Scholar] [CrossRef]
- Proctor, R. Fundamental principles of soil compaction. Eng. News-Rec. 1933, 111. [Google Scholar]
- Sun, J.; Huang, Y. Modeling the Simultaneous Effects of Particle Size and Porosity in Simulating Geo-Materials. Materials 2022, 15, 1576. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, X.; Dong, X. Characteristics and formation mechanism of a catastrophic rainfall–induced rock avalanche–mud flow in Sichuan, China, 2010. Landslides 2011, 9, 143–154. [Google Scholar] [CrossRef]
- Greenwood, J.R. SLIP4EX–A program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Geotech. Geol. Eng. 2006, 24, 449. [Google Scholar] [CrossRef]
- Leyva, S.; Cruz-Pérez, N.; Rodríguez-Martín, J.; Miklin, L.; Santamarta, J.C. Rockfall and Rainfall Correlation in the Anaga Nature Reserve in Tenerife (Canary Islands, Spain). Rock Mech. Rock Eng. 2022, 55, 2173–2181. [Google Scholar] [CrossRef]
- Budetta, P. Rockfall-induced impact force causing a debris flow on a volcanoclastic soil slope: A case study in southern Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 1995–2006. [Google Scholar] [CrossRef]
- Cagnoli, B.; Romano, G.P. Effect of grain size on mobility of dry granular flows of angular rock fragments: An experimental determination. J. Volcanol. Geotherm. Res. 2010, 193, 18–24. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, K.; Yang, K.; Zhou, Z.H.; Tang, Y.J.; Tian, L.; Xu, Z.M. The grain size distribution and composition of the Touzhai rock avalanche deposit in Yunnan, China. Eng. Geol. 2018, 234, 97–111. [Google Scholar] [CrossRef]
- Takahashi, T. Debris Flow Mechanics, Prediction and Countermeasures; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Hu, K.; Cui, P.; Li, P. Debris flow dynamic models and numerical computation. Chin. J. Nat. 2014, 36, 313–318. [Google Scholar]
- Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 1997, 25, 85–138. [Google Scholar] [CrossRef]
- Blatz, J.; Graham, J. A system for controlled suction in triaxial tests. Géotechnique 2000, 50, 465–469. [Google Scholar] [CrossRef]
- Armanini, A.; Capart, H.; Fraccarollo, L.; Larcher, M. Rheological stratification in experimental free-surface flows of granular liquid mixtures. J. Fluid Mech. 2005, 532, 269–319. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, Y.; Islam, M.R. Effects of water content and interface roughness on the shear strength of silt–cement mortar interface. Soils Found. 2021, 61, 1615–1629. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Islam, M.R.; Zhang, D. Experimental Study of the Shear Behaviors of the Cement Mortar–Concrete Interface. J. Mater. Civ. Eng. 2022, 34, 4022287. [Google Scholar] [CrossRef]
- Ushiro, T.; Shinohara, S.; Tanida, K.; Yagi, N. A Study on the Motion of Rockfalls on Slopes. In Proceedings of the 5th Symposium on Impact Problems in Civil Engineering, Tokyo, Japan, June 2000; pp. 91–96. [Google Scholar]
- Huang, R.Q.; Liu, W.; Zhou, J.P.; Pei, X. Rolling tests on movement characteristics of rock blocks. Chin. J. Geotech. Eng. 2007, 29, 1296–1302. [Google Scholar]
- Hu, J.; Li, S.; Li, L.; Shi, S.; Zhou, Z.; Liu, H.; He, P. Field, experimental, and numerical investigation of a rockfall above a tunnel portal in southwestern China. Bull. Eng. Geol. Environ. 2017, 77, 1365–1382. [Google Scholar] [CrossRef]
- Herrera, C.; Custodio, E. Groundwater low in a relatively old oceanic volcanic island: The Betancuria area, Fuerteventura Island, Canary Islands, Spain. Sci. Total Environ. 2014, 496, 531–550. [Google Scholar] [CrossRef]
- Rodríguez-Losada, J.A.; Hernández-Gutiérrez, L.E.; Olalla, C.; Perucho, A.; Serrano, A.; Ef-Darwich, A. Geomechanical parameters of intact rocks and rock masses from the Canary Islands: Implications on their lank stability. J. Volcanol. Geotherm. Res. 2009, 182, 67–75. [Google Scholar] [CrossRef]
- Kanwal, S.; Atif, S.; Shafiq, M. GIS based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geomat. Nat. Hazards Risk 2016, 5705, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, Egypt. J. Remote Sens. Space Sci. 2018, 22, 11–24. [Google Scholar]
- Ali, S.; Biermanns, P.; Haider, R.; Reicherter, K. Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat. Hazards Earth Syst. Sci. 2019, 19, 999–1022. [Google Scholar] [CrossRef] [Green Version]
- Tankiewicz, M.; Strózyk, J.; Zieba, Z. Undrained Shear Strength cu and Undrained Elastic Modulus Eu of Anthropogenic Soils from Laboratory Tests. IOP Conf. Ser. Earth Environ. Sci. 2021, 906, 12118. [Google Scholar] [CrossRef]
- Crosta, G.B.; Agliardi, F. A methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Asch, T.; Buma, J.; Beek, L. A View on Some Hydrological Triggering Systems in Landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Liu, B.; Li, S.; Zhang, L. Experimental and Discrete Element Numerical Analysis of Side Slope Instability Induced by Fissure Water Underlying Impervious Bed. Sci. China Technol. Sci. 2005, 48, 65–80. [Google Scholar]
- Wienhofer, J.; Lindenmaier, F.; Zehe, E. Challenges in Understanding the Hydrologic Controls on the Mobility of Slow-Moving Landslides. Vadose Zone J. 2011, 10, 496–511. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, E.; Rashid, I.; Ahmed, F.; Farooq, K.; Tufail, A.; Ebid, A.M. Hydrogeotechnical Predictive Approach for Rockfall Mountain Hazard Using Elastic Modulus and Peak Shear Stress at Soil–Rock Interface in Dry and Wet Phases at KKH Pakistan. Sustainability 2022, 14, 16740. https://doi.org/10.3390/su142416740
Mehmood E, Rashid I, Ahmed F, Farooq K, Tufail A, Ebid AM. Hydrogeotechnical Predictive Approach for Rockfall Mountain Hazard Using Elastic Modulus and Peak Shear Stress at Soil–Rock Interface in Dry and Wet Phases at KKH Pakistan. Sustainability. 2022; 14(24):16740. https://doi.org/10.3390/su142416740
Chicago/Turabian StyleMehmood, Ehtesham, Imtiaz Rashid, Farooq Ahmed, Khalid Farooq, Akbar Tufail, and Ahmed M. Ebid. 2022. "Hydrogeotechnical Predictive Approach for Rockfall Mountain Hazard Using Elastic Modulus and Peak Shear Stress at Soil–Rock Interface in Dry and Wet Phases at KKH Pakistan" Sustainability 14, no. 24: 16740. https://doi.org/10.3390/su142416740
APA StyleMehmood, E., Rashid, I., Ahmed, F., Farooq, K., Tufail, A., & Ebid, A. M. (2022). Hydrogeotechnical Predictive Approach for Rockfall Mountain Hazard Using Elastic Modulus and Peak Shear Stress at Soil–Rock Interface in Dry and Wet Phases at KKH Pakistan. Sustainability, 14(24), 16740. https://doi.org/10.3390/su142416740