Ecological-Health Risks of Potentially Toxic Metals in Mangrove Sediments near Estuaries after Years of Piggery Farming Bans in Peninsular Malaysia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Site Descriptions
2.2. Metal Analysis
2.2.1. Acid Digestions
2.2.2. Quality Control for Heavy Metal Analysis
2.3. Data Treatment
2.3.1. Sediment Quality Guidelines (SQGs)
2.3.2. Determination of Bioavailable and Non-Bioavailable Fractions
2.3.3. Individual Contamination Factors (ICF)
2.3.4. Risk Assessment Code (RAC)
2.3.5. Ecological Risk Index (ER)
2.3.6. Potential Ecological Risk Index (PERI)
3. Human Health Risk Assessment
Statistical Analysis
4. Results
4.1. Zn
4.2. Cu
4.3. Pb
4.4. Potential Ecological Risk Index
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suit-B, Y.; Hassan, L.; Krauss, S.E.; Ooi, P.T.; Ramanoon, S.Z.; Yasmin, A.R.; Epstein, J.H. Mental Model of Malaysian Pig Farmers in Implementing Disease Prevention and Control Practices. Front. Vet. Sci. 2021, 8, 1337. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. 1998 Ban on Pig Farming in Bukit Pelanduk Still in Force. The Star. 2014. Available online: https://www.thestar.com.my/news/nation/2014/07/03/1998-ban-on-pig-farming-in-bukit-pelanduk-still-in-force/ (accessed on 20 December 2021).
- Mohd Nor, M.N.; Gan, C.H.; Ong, B.L. Nipah Virus Infection of Pigs in Peninsular Malaysia. Rev. Sci. Tech. Int. Off. Epizoot. 2000, 19, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.O. Bukit Pelandok Revisited. Available online: https://www.theborneopost.com/2018/05/27/bukit-pelandok-revisited/ (accessed on 27 November 2021).
- Ismail, A.; Ramli, R. Trace Metals in Sediments and Molluscs from an Estuary Receiving Pig Farms Effluent. Environ. Technol. 1997, 18, 509–515. [Google Scholar] [CrossRef]
- Yap, C.K.; Ismail, A.; Ching, H.L.; Tan, S. Interpretation of Copper and Zinc Contamination in the Aquatic Environment of Peninsular Malaysia with Special Reference to a Polluted River, Sepang River. Wetl. Sci. 2007, 5, 311–321. [Google Scholar]
- Astatkie, H.; Ambelu, A.; Mengistie, E. Contamination of Stream Sediment with Heavy Metals in the Awetu Watershed of Southwestern Ethiopia. Front. Earth Sci. 2021, 9, 609. [Google Scholar] [CrossRef]
- Chapman, P.M.; Allard, P.J.; Vigers, G.A. Development of Sediment Quality Values for Hong Kong Special Administrative Region: A Possible Model for Other Jurisdictions. Mar. Pollut. Bull. 1999, 38, 161–169. [Google Scholar] [CrossRef]
- Lafabrie, C.; Pergent, G.; Kantin, R.; Pergent-Martini, C.; Gonzalez, J.-L. Trace Metals Assessment in Water, Sediment, Mussel and Seagrass Species--Validation of the Use of Posidonia Oceanica as a Metal Biomonitor. Chemosphere 2007, 68, 2033–2039. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xu, Y.; Cheng, Y.; Zhao, Y.; Pan, Y.; Fu, G.; Dai, Y. Occurrence and Risk Assessment of Heavy Metals in Sediments of the Xiangjiang River, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 2711–2723. [Google Scholar] [CrossRef]
- Algül, F.; Beyhan, M. Concentrations and Sources of Heavy Metals in Shallow Sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef]
- Förstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment; Springer Study Edition; Springer: Berlin/Heidelberg, Germany, 1981; ISBN 978-3-642-69385-4. [Google Scholar]
- Pachana, K.; Wattanakornsiri, A.; Nanuam, J. Heavy Metal Transport and Fate in the Environmental Compartments. Naresuan Univ. Sci. J. 2010, 7, 1–11. [Google Scholar]
- Hill, N.A.; Simpson, S.L.; Johnston, E.L. Beyond the Bed: Effects of Metal Contamination on Recruitment to Bedded Sediments and Overlying Substrata. Environ. Pollut. Barking Essex 2013, 173, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Şen, B. Assessment of Nutrient and Heavy Metal Contamination in Surface Water and Sediments of the Upper Tigris River, Turkey. Catena 2012, 92, 1–10. [Google Scholar] [CrossRef]
- Adams, W.J.; Kimerle, R.A.; Barnett, J.W. Sediment Quality and Aquatic Life Assessment. Environ. Sci. Technol. 1992, 26, 1864–1875. [Google Scholar] [CrossRef]
- Yan, N.; Liu, W.; Xie, H.; Gao, L.; Han, Y.; Wang, M.; Li, H. Distribution and Assessment of Heavy Metals in the Surface Sediment of Yellow River, China. J. Environ. Sci. 2016, 39, 45–51. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, G.; Koller, C.; Blomberg, S. Accumulation and Partitioning of Heavy Metals in Mangroves: A Synthesis of Field-Based Studies. Chemosphere 2007, 69, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-W.; Yu, K.-F.; Zhang, G.; Wang, W.-X. Accumulation and Partitioning of Seven Trace Metals in Mangroves and Sediment Cores from Three Estuarine Wetlands of Hainan Island, China. J. Hazard. Mater. 2011, 190, 631–638. [Google Scholar] [CrossRef]
- Bodin, N.; N’Gom-Kâ, R.; Kâ, S.; Thiaw, O.T.; Tito de Morais, L.; Le Loc’h, F.; Rozuel-Chartier, E.; Auger, D.; Chiffoleau, J.-F. Assessment of Trace Metal Contamination in Mangrove Ecosystems from Senegal, West Africa. Chemosphere 2013, 90, 150–157. [Google Scholar] [CrossRef]
- Aljahdali, M.O.; Alhassan, A.B. Ecological Risk Assessment of Heavy Metal Contamination in Mangrove Habitats, Using Biochemical Markers and Pollution Indices: A Case Study of Avicennia Marina L. in the Rabigh Lagoon, Red Sea. Saudi J. Biol. Sci. 2020, 27, 1174–1184. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Bianchi, T.S. Estuaries: Where the River Meets the Sea | Learn Science at Scitable. Nat. Educ. Knowl. 2013, 4, 12. [Google Scholar]
- Bate, G.C.; Whitfield, A.K.; Adams, J.B.; Huizinga, P.; Wooldridge, T.H. The Importance of the River-Estuary Interface (REI) Zone in Estuaries. Water SA 2002, 28, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Noe, G.B.; Bourg, N.A.; Krauss, K.W.; Duberstein, J.A.; Hupp, C.R. Watershed and Estuarine Controls Both Influence Plant Community and Tree Growth Changes in Tidal Freshwater Forested Wetlands along Two U.S. Mid-Atlantic Rivers. Forests 2021, 12, 1182. [Google Scholar] [CrossRef]
- Alkarkhi, A.F.M.; Ismail, N.; Ahmed, A.; Easa, A. mat Analysis of Heavy Metal Concentrations in Sediments of Selected Estuaries of Malaysia--a Statistical Assessment. Environ. Monit. Assess. 2009, 153, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.L.; Caravanos, J.; Blaise, M.J.; Jaeger, R.J. Distribution of Lead in Urban Roadway Grit and Its Association with Elevated Steel Structures. Chemosphere 2006, 65, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Recommendations for Sieving Soil and Dust Samples at Lead Sites for Assessment of Incidental Ingestion; OLEM Directive 9200.1-128; United States Environmental Protection Agency: Washington, DC, USA, 2016; p. 20460.
- Badri, M.A.; Aston, S.R. Observations on Heavy Metal Geochemical Associations in Polluted and Non-Polluted Estuarine Sediments. Environ. Pollut. Ser. B Chem. Phys. 1983, 6, 181–193. [Google Scholar] [CrossRef]
- Yap, C.K.; Arifin, N.; Tan, S.G. Relationships of Copper Concentrations between the Different Soft Tissues of Telescopium Telescopium and the Surface Sediments Collected from Tropical Intertidal Areas. Int. J. Chem. 2013, 5, 8–19. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Awofolu, R. Levels of Cd, Hg and Zn in Some Surface Waters from the Eastern Cape Province, South Africa. Water SA 2003, 29, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Ikem, A.; Egiebor, N.O.; Nyavor, K. Trace Elements in Water, Fish and Sediment from Tuskegee Lake, Southeastern Usa. Water Air Soil Pollut. 2003, 149, 51–75. [Google Scholar] [CrossRef]
- Yao, Z.G.; Bao, Z.Y.; Gao, P.; Zhang, J.L.; Guo, Y.P.; Hu, Z.J.; Li, B.L. Speciation of Trace Elements in Sediments from Dongting Lake, Central China. In Water Pollution VIII: Modelling, Monitoring and Management; WIT Press: Bologna, Italy, 2006; Volume 1, pp. 119–128. [Google Scholar]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk Assessment of Sedimentary Metals in the Yangtze Estuary: New Evidence of the Relationships between Two Typical Index Methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanetta, M.L.; Oro, A.A. Heavy Metal Speciation in the Sediments of Northern Adriatic Sea, A New Approach for Environmental Toxicity Determination. In Heavy Metals in the Environment; Lakkas, T.D., Ed.; CEP Consultants: Edinburgh, UK, 1985; Volume 2. [Google Scholar]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Yap, C.K.; Noorhaidah, A. Gill and Digestive Caecum of Telescopium Telescopium as Biomonitors of Pb Bioavailability and Contamination by Pb in the Tropical Intertidal Area. Sains Malays. 2011, 40, 1075–1085. [Google Scholar]
- Yap, C.K.; Noorhaidah, A.; Tan, S.G. Zn Concentrations in the Different Soft Tissues of Telescopium Telescopium and Their Relationships with Zn Speciation by Sequential Extraction in Surface Sediments: A Statistical Multiple Linear Stepwise Regression Analysis. In Gastropods: Diversity, Habitat, and Genetics; Branchi, A.M., Fields, J.N., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2011; pp. 127–148. ISBN 978-1-61324-695-5. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Cheng, W.H.; Yap, C.K. Potential Human Health Risks from Toxic Metals via Mangrove Snail Consumption and Their Ecological Risk Assessments in the Habitat Sediment from Peninsular Malaysia. Chemosphere 2015, 135, 156–165. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, M.; Li, X.; Luo, X.; Pan, R.; Ouyang, T. Spatial Distribution, Pollution, and Health Risk Assessment of Heavy Metal in Agricultural Surface Soil for the Guangzhou-Foshan Urban Zone, South China. PLoS ONE 2020, 15, e0239563. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and Human Health Hazards of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Road Dust of Isfahan Metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef]
- Zhao, W.; Gu, C.; Ying, H.; Feng, X.; Zhu, M.; Wang, M.; Tan, W.; Wang, X. Fraction Distribution of Heavy Metals and Its Relationship with Iron in Polluted Farmland Soils around Distinct Mining Areas. Appl. Geochem. 2021, 130, 104969. [Google Scholar] [CrossRef]
- US EPA. Baseline Human Health Risk Assessment Vasquez Boulevard and I-70 Superfund Site Denver, CO; US Environmental Protection Agency: Denver, FL, USA, 2001.
- US EPA. Exposure Factors Handbook; National Center for Environmental Assessment, US EPA Office of Research and Development: Washington, DC, USA, 1997; ISBN EPA/600/P-95/002F.
- US EPA. Human Health Evaluation Manual. In Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, U.S. Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1, ISBN EPA/540/1-89/002. [Google Scholar]
- US EPA. Superfund Public Health Evaluation Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 1986; pp. 1–86.
- Chabukdhara, M.; Nema, A.K. Heavy Metals Assessment in Urban Soil around Industrial Clusters in Ghaziabad, India: Probabilistic Health Risk Approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of Heavy Metal Pollution and Human Health Risk in Urban Soils of Steel Industrial City (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and Health Risk of Arsenic, Mercury and Other Metals in Urban Street Dusts from a Mega-City, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and Risk Assessment of Street Dust in Luanda, Angola: A Tropical Urban Environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Kelepertzis, E. Investigating the Sources and Potential Health Risks of Environmental Contaminants in the Soils and Drinking Waters from the Rural Clusters in Thiva Area (Greece). Ecotoxicol. Environ. Saf. 2014, 100, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Black, W.C.; Babin, B.J. Multivariate Data Analysis: A Global Perspective; Pearson Education: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-515309-3. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 2nd ed.; Routledge: New York, NY, USA, 2010; ISBN 978-0-203-80553-4. [Google Scholar]
- Ismail, A.; Safahieh, A. Copper and Zinc in Intertidal Surface Sediment and Telescopium Telescopium from Lukut River, Malaysia. Coast Mar. Sci. 2005, 29, 111–115. [Google Scholar]
- Saed, K.; Ismail, A.; Omar, H.; Kusnan, M. Accumulation of Heavy Metals (Zn, Cu, Pb, Cd) in Flat-Tree Oysters Isognomon Alatus Exposed to Pig Farm Effluent. Toxicol. Environ. Chem. 2002, 82, 45–58. [Google Scholar] [CrossRef]
- Yap, C.K.; Chew, W.; Al-Mutairi, K.A.; Al-Shami, S.A.; Nulit, R.; Ibrahim, M.H.; Wong, K.W.; Bakhtiari, A.R.; Sharifinia, M.; Cheng, W.H.; et al. Invasive Weed Asystasia Gangetica as a Potential Biomonitor and a Phytoremediator of Potentially Toxic Metals: A Case Study in Peninsular Malaysia. Int. J. Environ. Res. Public. Health 2021, 18, 4682. [Google Scholar] [CrossRef] [PubMed]
- Saed, K.; Ismail, A.; Omar, H.; Kusnan, M. Heavy Metal Depuration in Flat Tree Oysters Isognomon Alatus under Field and Laboratory Conditions. Toxicol. Environ. Chem. 2004, 86, 171–179. [Google Scholar] [CrossRef]
- Hossain, M.; Othman, S.; Bujang, J.S.; Lim, M.T. Distribution of Copper in the Sepang Mangrove Reserve Forest Environment, Malaysia. J. Trop. For. Sci. 2001, 13, 130–139. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Geochemical Evolution of the Continental Crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01—Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 1–64. ISBN 978-0-08-043751-4. [Google Scholar]
- Saleem, M.; Iqbal, J.; Shah, M.H. Geochemical Speciation, Anthropogenic Contamination, Risk Assessment and Source Identification of Selected Metals in Freshwater Sediments—A Case Study from Mangla Lake, Pakistan. Environ. Nanotechnol. Monit. Manag. 2015, 4, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Schintu, M.; Marras, B.; Bettoschi, A.; Marrucci, A.; Sarkar, S.; Chowdhury, R.; Jonathan, M.P.; Biswas, J. Geochemical Fractionation and Risk Assessment of Trace Elements in Sediments from Tide-Dominated Hooghly (Ganges) River Estuary, India. Chem. Geol. 2020, 532, 119373. [Google Scholar] [CrossRef]
- Chua, K.B. Nipah Virus Outbreak in Malaysia. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2003, 26, 265–275. [Google Scholar] [CrossRef]
- Zhu, J.; Li, R.; Zhang, Z.; Mao, H.; Fan, Z. Heavy Metal Contents in Pig Manure and Feeds under Intensive Farming and Potential Hazard on Farmlands in Shaanxi Province, China. Trans. Chin. Soc. Agric. Mach. 2013, 44, 98–104. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Zhou, Z. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China. Int. J. Environ. Res. Public Health 2017, 14, 1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C.; Rufete, B. Salinity, Organic Content, Micronutrients and Heavy Metals in Pig Slurries from South-Eastern Spain. Waste Manag. 2008, 28, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Marszałek, M.; Kowalski, Z.; Makara, A. The Possibility of Contamination of Water-Soil Environment as a Result of the Use of Pig Slurry. Ecol. Chem. Eng. S 2019, 26, 313–330. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.; Kyvsgaard, N.C.; Battisti, A.; Baptiste, K.E. Environmental and Public Health Related Risk of Veterinary Zinc in Pig Production—Using Denmark as an Example. Environ. Int. 2018, 114, 181–190. [Google Scholar] [CrossRef]
- Benedet, L.; Comin, J.; Pescador, R.; Oliveira, P.; Filho, P.; De Conti, L.; Couto, R.; Lovato, P.; Cesco, S.; Mimmo, T.; et al. Physiological Changes in Maize Grown in Soil with Copper and Zinc Accumulation Resulting from the Addition of Pig Slurry and Deep Litter over 10 Years. Water. Air. Soil Pollut. 2016, 227, 401. [Google Scholar] [CrossRef]
- Bo, L.; Li, Y.; Luo, J.; Zhang, Y.; Jing, Y.; Liu, Z. Characteristics of Heavy Metals Pollution in Pig Manures and Environmental Risks Evaluation in Intensive Pig Farming Areas in China. Nongye Jixie XuebaoTransactions Chin. Soc. Agric. Mach. 2018, 49, 258–267. [Google Scholar] [CrossRef]
- Bonneau, M.; Béline, F.; Dourmad, J.-Y.; Hassouna, M.; Jondreville, C.; Loyon, L.; Morvan, T.; Paillat, J.; Ramonet, Y.; Robin, P. Elements of Waste from Pigs: Knowledge and Control. Prod. Anim. 2008, 21, 325–343. [Google Scholar]
- Ya, N.A.; Singh, H.R.; Ramli, N.H.; Makhtar, N.I.; Mohd Rashid, H.N.; Dzakaria, N.; Samat, A. Fish Diversity in Sepang Besar Estuary—A Preliminary Analysis. Int. J. Adv. Agric. Environ. Eng. 2015, 1, 229–233. [Google Scholar] [CrossRef]
- Hu, M.; Wang, C.; Liu, Y.; Zhang, X.; Jian, S. Fish Species Composition, Distribution and Community Structure in the Lower Reaches of Ganjiang River, Jiangxi, China. Sci. Rep. 2019, 9, 10100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DoE Malaysia. Malaysia Environmental Quality Report 2010; Publication Section, Strategic Communications Division, Department of Environment, Ministry of Natural Resources and Environment Malaysia: Putrajaya, Malaysia, 2010.
- Wei, J.; Duan, M.; Li, Y.; Nwankwegu, A.S.; Ji, Y.; Zhang, J. Concentration and Pollution Assessment of Heavy Metals within Surface Sediments of the Raohe Basin, China. Sci. Rep. 2019, 9, 13100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.S.; Ahmed, M.K.; Liyana, E.; Hossain, M.S.; Jolly, Y.N.; Kabir, M.J.; Akter, S.; Rahman, M.S. A Case Study on Metal Contamination in Water and Sediment near a Coal Thermal Power Plant on the Eastern Coast of Bangladesh. Environments 2021, 8, 108. [Google Scholar] [CrossRef]
- Dendievel, A.-M.; Mourier, B.; Dabrin, A.; Delile, H.; Coynel, A.; Gosset, A.; Liber, Y.; Berger, J.-F.; Bedell, J.-P. Metal Pollution Trajectories and Mixture Risk Assessed by Combining Dated Cores and Subsurface Sediments along a Major European River (Rhône River, France). Environ. Int. 2020, 144, 106032. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.N.; Langner, H.W. Can a River Heal Itself? Natural Attenuation of Metal Contamination in River Sediment. Environ. Sci. Technol. 2012, 46, 2616–2623. [Google Scholar] [CrossRef]
- Edwards, L.; Crabb, H. Water Quality and Management in the Australian Pig Industry. Anim. Prod. Sci. 2021, 61, 637. [Google Scholar] [CrossRef]
- Hu, Z.; Chu, Y.; Ma, Y. Design of a Combined Constructed Wetland System and Its Application on Swine Wastewater Treatment. J. Environ. Eng. 2020, 146, 04019093. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; XiaoCheng, W.; Yu, S. Removing Cu and Zn from pig manure via the leaching method with EDTA, saponin, and their mixture. J. Agro-Environ. Sci. 2019, 38, 220–228. [Google Scholar]
- Kwan, C.; Chong, V.; Sasekumar, A.; Leong, L.F. Resource Valuation of Kuala Selangor Mangrove Forest in Book Titled Ecology of Klang Strait; University Malaya: Kuala Lumpur, Malaysia, 2005; ISBN 983-100-304-7. [Google Scholar]
- Getzner, M.; Islam, M.S. Ecosystem Services of Mangrove Forests: Results of a Meta-Analysis of Economic Values. Int. J. Environ. Res. Public Health 2020, 17, 5830. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yap, C.K.; Al-Mutairi, K.A. Ecological-Health Risks of Potentially Toxic Metals in Mangrove Sediments near Estuaries after Years of Piggery Farming Bans in Peninsular Malaysia. Sustainability 2022, 14, 1525. https://doi.org/10.3390/su14031525
Yap CK, Al-Mutairi KA. Ecological-Health Risks of Potentially Toxic Metals in Mangrove Sediments near Estuaries after Years of Piggery Farming Bans in Peninsular Malaysia. Sustainability. 2022; 14(3):1525. https://doi.org/10.3390/su14031525
Chicago/Turabian StyleYap, Chee Kong, and Khalid Awadh Al-Mutairi. 2022. "Ecological-Health Risks of Potentially Toxic Metals in Mangrove Sediments near Estuaries after Years of Piggery Farming Bans in Peninsular Malaysia" Sustainability 14, no. 3: 1525. https://doi.org/10.3390/su14031525
APA StyleYap, C. K., & Al-Mutairi, K. A. (2022). Ecological-Health Risks of Potentially Toxic Metals in Mangrove Sediments near Estuaries after Years of Piggery Farming Bans in Peninsular Malaysia. Sustainability, 14(3), 1525. https://doi.org/10.3390/su14031525