Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena
Abstract
:1. Introduction
2. Known Solutions to the ADE and to the FADE
3. New Solution to the ADE and to the FADE
3.1. ADE Approximate Similarity Solution
3.2. FADE Approximate Similarity Solution
3.3. Skewness Parameter
4. Application of the New Solution to Experimental Data
Scale Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. R-FADE Spike Solution
Appendix B. Python 3 Script
References
- Lee, J.; Rolle, M.; Kitanidis, P.K. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations. J. Contam. Hydrol. 2018, 212, 41–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walowski, G. Experimental assessment of porous material anisotropy and its effect on gas permeability. Civ. Eng. J. 2018, 4, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T.; Alves, W.J. Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation; Technical Report; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 1982.
- Ogata, A.; Banks, R.B. A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media; U.S. Geological Sruvey: Washington, DC, USA, 1961.
- Zhang, Y.; Meerschaert, M.; Neupauer, R. Backward fractional advection dispersion model for contaminant source prediction. Water Resour Res 2016, 52, 2462–2473. [Google Scholar] [CrossRef] [Green Version]
- Fick, A. On liquid diffusion. J. Membr. Sci. 1995, 100, 33–38. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Benson, D.A.; Rawls, W. Simulating scale-dependent solute transport in soils with the fractional advective–dispersive equation. Soil Sci. Soc. Am. J. 2000, 64, 1234–1243. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, G.; Zhan, H. A finite element solution for the fractional advection–dispersion equation. Adv Water Resour 2008, 31, 1578–1589. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.V.; Turner, I.; Zhuang, P. Time fractional advection-dispersion equation. J. Appl. Math. Comput. 2003, 13, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Liu, F. The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 2005, 18, 339–350. [Google Scholar] [CrossRef]
- Shen, S.; Liu, F.; Anh, V.; Turner, I. The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J. Appl. Math. 2008, 73, 850–872. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy Motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdan, The Netherlands, 1974; Volume 111. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: Hoboken, NJ, USA, 1993. [Google Scholar]
- Das, S. Functional Fractional Calculus; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Moradi, G.; Mehdinejadiani, B. An experimental study on scale dependency of fractional dispersion coefficient. Arab. J. Geosci. 2020, 13, 409. [Google Scholar] [CrossRef]
- Berkowitz, B.; Klafter, J.; Metzler, R.; Scher, H. Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. Water Resour. Res. 2002, 38, 9-1–9-12. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. Phys. 2004, 37, R161. [Google Scholar] [CrossRef]
- Berkowitz, B.; Scher, H. On Characterization of Anomalous Dispersion in Porous and Fractured Media. Water Resour. Res. 1995, 31, 1461–1466. [Google Scholar] [CrossRef]
- Edery, Y.; Guadagnini, A.; Scher, H.; Berkowitz, B. Origins of anomalous transport in heterogeneous media: Structural and dynamic controls. Water Resour. Res. 2014, 50, 1490–1505. [Google Scholar] [CrossRef]
- Goeppert, N.; Goldscheider, N.; Berkowitz, B. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer. Water Res. 2020, 178, 115755. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Barkai, E. Fractional Advection-Diffusion-Asymmetry Equation. Phys. Rev. Lett. 2020, 125, 240606. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Q.; Zhan, H.; Chen, J.; Xiong, Y.; Feng, S. Modeling contaminant transport in homogeneous porous media with fractional advection-dispersion equation. Sci. China Ser. D (Earth Sci.) 2005, 48, 295–302. [Google Scholar]
- Zhou, L.; Selim, H. Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Am. J. 2003, 67, 1079–1084. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Schumer, R.; Benson, D.; Meerschaert, M.; Wheatcraft, S. Eulerian derivation of the fractional advection-dispersion equation. J. Contam. Hydrol 2001, 48, 69–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Benson, D.; Reeves, D. Time and space nonlocality underlying fractional-derivative models: Distinction and literature review of filed applications. Adv. Water Resour. 2009, 32, 561–581. [Google Scholar] [CrossRef]
- Mehdinejadiani, B.; Naseri, A.; Jafari, H.; Ghanbarzadeh, A.; Baleanu, D. A mathematical model for simulation of a water table profile between two parallel subsurface drains using fractional derivatives. Comput. Math. Appl. 2013, 66, 785–794. [Google Scholar] [CrossRef]
- Lu, S.; Molz, F.J.; Fix, G.J. Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Q.; Zhan, H. Evidence of one-dimensional scaledependent fractional advection-dispersion. J. Contam. Hydrol. 2006, 85, 53–71. [Google Scholar] [CrossRef]
- Schneider, W.R. Stable distributions: Fox function representation and generalization. In Stochastic Processes in Classical and Quantum Systems, Proceedings of the 1st Ascona-Como International Conference, Ascona, Switzerland, 24–29 June 1985; Albeverio, S., Casati, G., Merlini, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 497–511. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications, 1st ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Rathie, P.; Ozelim, L.S.; Otiniano, C. Exact distribution of the product and the quotient of two stable Lévy random variables. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 204–218. [Google Scholar] [CrossRef]
- Rathie, P.; Ozelim, L.D.S. Exact and approximate expressions for the reliability of stable Lévy random variables with applications to stock market modelling. J. Comput. Appl. Math. 2017, 321, 314–322. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, Version 11.3; Wolfram Research, Inc.: Champaign, IL, USA, 2018; Available online: https://www.wolfram.com/mathematica/ (accessed on 21 March 2022).
- Benson, D.A.; Schumer, R.; Meerschaert, M.M.; Wheatcraft, S.W. Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests. Transp. Porous Media 2001, 42, 211–240. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Benson, D.A.; Scheffler, H.P.; Becker-Kern, P. Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 2002, 66, 060102. [Google Scholar] [CrossRef] [Green Version]
- Cortis, A.; Gallo, C.; Scher, H.; Berkowitz, B. Numerical simulation of non-Fickian transport in geological formations with multiple-scale heterogeneities. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Deng, Z.Q.; Singh, V.P.; Bengtsson, L. Numerical Solution of Fractional Advection-Dispersion Equation. J. Hydraul. Eng. 2004, 130, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Tadjeran, C.; Meerschaert, M.M.; Scheffler, H.P. A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213, 205–213. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. Appl. Math. Comput. 2007, 191, 12–20. [Google Scholar] [CrossRef]
- Fomin, S.; Chugunov, V.; Hashida, T. Application of Fractional Differential Equations for Modeling the Anomalous Diffusion of Contaminant from Fracture into Porous Rock Matrix with Bordering Alteration Zone. Transp. Porous Media 2009, 81, 187–205. [Google Scholar] [CrossRef]
- Ouloin, M.; Maryshev, B.; Joelson, M.; Latrille, C.; Néel, M.C. Laplace-Transform Based Inversion Method for Fractional Dispersion. Transp. Porous Media 2013, 98, 1–14. [Google Scholar] [CrossRef]
- Saffarian, M.; Mohebbi, A. Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection–dispersion equations. Math. Comput. Simul. 2022, 193, 348–370. [Google Scholar] [CrossRef]
- Ciesielski, M.; Leszczynski, J. Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator. arXiv 2006, arXiv:math/0607140. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2014. [Google Scholar]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Schumer, R.; Meerschaert, M.M.; Baeumer, B. Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophys. Res. Earth Surf. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- de Moraes, R.M. Cálculo Fracionário, Microtomografia e Multifractalidade Aplicados à Modelagem de Ensaios em Coluna em Diferentes Escalas. Ph.D. Thesis, Universidade de Brasilia, Brasilia, Brazil, 2017. Available online: https://repositorio.unb.br/handle/10482/31155 (accessed on 13 December 2021).
- de Moraes, R.M.; Cavalcante, A.L.B.; Mascarenhas, P.V.S. ContFlow1D. INPI Patent BR512018051619-0, 1 June 2018. [Google Scholar]
- de Moraes, R.M.; Cavalcante, A.L.B.; Mascarenhas, P.V.S. FraContFlow1D. INPI Patent BR512018051673-4, 1 June 2018. [Google Scholar]
- Bear, J.; Cheng, A.H. Modeling Groundwater Flow and Contaminant Transport; Springer Science & Business Media: Berlin, Germany, 2010; Volume 23. [Google Scholar]
- Shackelford, C.D. Contaminant transport. In Geotechnical Practice for Waste Disposal; Springer: Berlin, Germany, 1993; pp. 33–65. [Google Scholar]
- Su, N.; Sander, G.; Liu, F.; Anh, V.; Barry, D. Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity. Appl. Math. Model 2005, 29, 852–870. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. In Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1998; Volume 198. [Google Scholar]
References | Type of Solution |
---|---|
Benson et al. [36] | Analytical, with data application/comparison, |
Meerschaert et al. [37] | Analytical, continuous time random walk (CTRW) approach, |
Lu et al. [29] | Analytical, 3D space fractional derivatives, |
Cortis et al. [38] | Numerical, CTRW approach, not assignable directly |
Deng et al. [39] | Numerical, space fractional derivative, |
Tadjeran et al. [40] | Numerical, with space fractional derivative, for and |
Burrage [41] | Numerical, with fractional derivatives in space and time, for and not assignable directly |
Fomin et al. [42] | Numerical, with data application/comparison, |
Ouloin et al. [43] | Numerical, space fractional derivative, |
Saffarian and Mohebbi [44] | Numerical, 2D space fractional derivatives, not assignable directly |
D | R | |||||
---|---|---|---|---|---|---|
S6-01 | ||||||
Equation (3) | 0.012 | - | - | - | 0.93 | 25.5 |
Equation (6) | - | 0.684 | 1.22 | - | - | 25.5 |
Equation (17) | - | 0.332 | 1.10 | −0.88 | 25.5 | |
S6-02 | ||||||
Equation (3) | 0.006 | - | - | - | 0.95 | 24.4 |
Equation (6) | - | 0.056 | 1.52 | - | - | 24.4 |
Equation (17) | - | 0.158 | 1.21 | −0.86 | 0.58 | 24.4 |
S6-03 | ||||||
Equation (3) | 0.034 | - | - | - | 0.93 | 9.3 |
Equation (6) | - | 0.420 | 1.46 | - | - | 9.3 |
Equation (17) | - | 0.387 | 1.38 | −0.79 | 0.83 | 9.2 |
S6-04 | ||||||
Equation (3) | 0.055 | - | - | - | 0.79 | 27.7 |
Equation (6) | - | 1.38 | 1.30 | - | - | 27.7 |
Equation (17) | - | 0.740 | 1.26 | −0.98 | 27.7 |
D | R | |||||
---|---|---|---|---|---|---|
S6-01 | ||||||
Equation (3) | 0.009 | - | - | - | 0.95 | 36.6 |
Equation (6) | - | 8.320 | 1.03 | - | - | 36.6 |
Equation (17) | - | 0.328 | 1.11 | −0.94 | 36.6 | |
S6-02 | ||||||
Equation (3) | 0.008 | - | - | - | 0.93 | 35.5 |
Equation (6) | - | 0.009 | 1.99 | - | - | 35.5 |
Equation (17) | - | 0.276 | 1.15 | −1.00 | 35.5 |
D | R | ||||||
---|---|---|---|---|---|---|---|
S12-01 | |||||||
Equation (3) | 0.043 | - | - | - | 0.95 | 11.9 | 0.038 |
Equation (6) | - | 0.184 | 1.60 | - | - | 11.9 | 0.024 |
Equation (17) | - | 0.136 | 1.61 | −0.99 | 0.93 | 11.9 | 0.009 |
S12-02 | |||||||
Equation (3) | 0.066 | - | - | - | 0.95 | 8.1 | 0.021 |
Equation (6) | - | 0.314 | 1.59 | - | - | 8.1 | 0.013 |
Equation (17) | - | 0.234 | 1.59 | −0.99 | 0.90 | 8.1 | 0.008 |
S12-03 | |||||||
Equation (3) | 0.029 | - | - | - | 0.97 | 13.3 | 0.072 |
Equation (6) | - | 0.519 | 1.34 | - | - | 13.3 | 0.029 |
Equation (17) | - | 0.235 | 1.39 | −0.50 | 0.92 | 13.3 | 0.026 |
S12-04 | |||||||
Equation (3) | 0.992 | - | - | - | 0.53 | 23.6 | 0.039 |
Equation (6) | - | 3.251 | 1.64 | - | - | 23.6 | 0.036 |
Equation (17) | - | 8.916 | 1.18 | −0.16 | 23.6 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Moraes, R.M.; Ozelim, L.C.d.S.M.; Cavalcante, A.L.B. Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena. Sustainability 2022, 14, 4024. https://doi.org/10.3390/su14074024
de Moraes RM, Ozelim LCdSM, Cavalcante ALB. Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena. Sustainability. 2022; 14(7):4024. https://doi.org/10.3390/su14074024
Chicago/Turabian Stylede Moraes, Ricardo Mendonça, Luan Carlos de Sena Monteiro Ozelim, and André Luís Brasil Cavalcante. 2022. "Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena" Sustainability 14, no. 7: 4024. https://doi.org/10.3390/su14074024
APA Stylede Moraes, R. M., Ozelim, L. C. d. S. M., & Cavalcante, A. L. B. (2022). Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena. Sustainability, 14(7), 4024. https://doi.org/10.3390/su14074024