Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling
Abstract
:1. Introduction
Selection and Evaluation of Sources
- The work provides significant information directly relevant to the subject under review;
- The source is published in a recognised and legitimate journal or conference proceedings, or by a known legitimate publisher, or by a known company or industrial author with a recognised interest in the field;
- The information provided is corroborated, either wholly or in part, by other sources;
- The authors of the work have published other articles, patents, chapters or reports in the fields of recycling and/or photovoltaic materials.
2. Module Deconstruction
3. Crystalline Silicon
3.1. Recycling of Intact Silicon Wafers
3.2. Recycling of Crushed Modules
3.3. Backsheet Polymers
3.4. Encapsulant
4. CdTe and CIGS
4.1. CdTe Recycling
4.2. CIGS Recycling
5. Combined Recycling Methods
6. Future Directions
7. Conclusions
7.1. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacKay, D.J.C. Sustainable Energy—Without the Hot Air; UIT Cambridge Ltd.: Cambridge, UK, 2009; ISBN 9780954452933. [Google Scholar]
- IEA. Solar PV.; IEA: Paris, France, 2020. [Google Scholar]
- BP. BP Statistical Review of World Energy; BP: London, UK, 2019. [Google Scholar]
- Heath, G.A.; Silverman, T.J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nat. Energy 2020, 5, 502–510. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.L.; Ouyang, Z.; Chong, C.M. A techno-economic review of silicon photovoltaic module recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- Maani, T.; Celik, I.; Heben, M.J.; Ellingson, R.J.; Apul, D. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Sci. Total Environ. 2020, 735, 138827. [Google Scholar] [CrossRef]
- Ardente, F.; Latunussa, C.E.L.; Blengini, G.A. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Manag. 2019, 91, 156–167. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Rosa, P. End-of-Life of used photovoltaic modules: A financial analysis. Renew. Sustain. Energy Rev. 2015, 47, 552–561. [Google Scholar] [CrossRef]
- Dias, P.; Javimczik, S.; Benevit, M.; Veit, H.; Bernardes, A.M. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manag. 2016, 57, 220–225. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.; Lunardi, M.M.; Dias, P.; Bilbao, J.; Ji, J.; Chong, C.M. Remanufacturing end-of-life silicon photovoltaics: Feasibility and viability analysis. Prog. Photovolt. Res. Appl. 2021, 29, 760–774. [Google Scholar] [CrossRef]
- Latunussa, C.E.L.; Ardente, F.; Blengini, G.A.; Mancini, L. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol. Energy Mater. Sol. Cells 2016, 156, 101–111. [Google Scholar] [CrossRef]
- Padoan, F.C.S.M.; Altimari, P.; Pagnanelli, F. Recycling of end of life photovoltaic panels: A chemical prospective on process development. Sol. Energy 2019, 177, 746–761. [Google Scholar] [CrossRef]
- dos Santos Martins Padoan, F.C.; Schiavi, P.G.; Belardi, G.; Altimari, P.; Rubino, A.; Pagnanelli, F. Material Flux through an Innovative Recycling Process Treating Different Types of End-of-Life Photovoltaic Panels: Demonstration at Pilot Scale. Energies 2021, 14, 5534. [Google Scholar] [CrossRef]
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; Vintage: London, UK, 2008; ISBN 9781784873653. [Google Scholar]
- Helms, B.A.; Russell, T.P. Reaction: Polymer Chemistries Enabling Cradle-to-Cradle Life Cycles for Plastics. Chem 2016, 1, 816–818. [Google Scholar] [CrossRef] [Green Version]
- Chopra, K.L.; Paulson, P.D.; Dutta, V. Thin-film solar cells: An overview. Prog. Photovolt. Res. Appl. 2004, 12, 69–92. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. (Eds.) Handbook of Photovoltaic Science and Engineering, 2nd ed.; John Wiley & Sons: Chichester, UK, 2011; ISBN 9780470721698. [Google Scholar]
- Tao, J.; Yu, S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. [Google Scholar] [CrossRef]
- Bohland, J.R.; Anisimov, I. Possibility of Recycling Silicon PV Modules. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference—1997; IEEE: Manhattan, NY, USA, 1997; pp. 1173–1175. [Google Scholar]
- Müller, A.; Wambach, K.; Alsema, E. Life cycle analysis of solar module recycling process. Mater. Res. Soc. Symp. Proc. 2006, 895, 89–94. [Google Scholar] [CrossRef]
- Tao, M.; Fthenakis, V.; Ebin, B.; Steenari, B.M.; Butler, E.; Sinha, P.; Corkish, R.; Wambach, K.; Simon, E.S. Major challenges and opportunities in silicon solar module recycling. Prog. Photovolt. Res. Appl. 2020, 28, 1077–1088. [Google Scholar] [CrossRef]
- Julien, S.E.; Kim, J.H.; Lyu, Y.; Miller, D.C.; Gu, X.; Wan, K.t. Cohesive and adhesive degradation in PET-based photovoltaic backsheets subjected to ultraviolet accelerated weathering. Sol. Energy 2021, 224, 637–649. [Google Scholar] [CrossRef]
- Wang, T.Y.; Hsiao, J.C.; Du, C.H. Recycling of materials from silicon base solar cell module. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 2355–2358. [Google Scholar] [CrossRef]
- Pang, S.; Yan, Y.; Wang, Z.; Wang, D.; Li, S.; Ma, W.; Wei, K. Enhanced separation of different layers in photovoltaic panel by microwave field. Sol. Energy Mater. Sol. Cells 2021, 230, 111213. [Google Scholar] [CrossRef]
- Marchetti, B.; Corvaro, F.; Giacchetta, G.; Polonara, F.; Cocci Grifoni, R.; Leporini, M. Double Green Process: A low environmental impact method for recycling of CdTe, a-Si and CIS/CIGS thin-film photovoltaic modules. Int. J. Sustain. Eng. 2018, 11, 173–185. [Google Scholar] [CrossRef]
- Dias, P.; Veit, H. Recycling Crystalline Silicon Photovoltaic Modules. In Emerging Photovoltaic Materials: Silicon & Beyond; Kurinec, S.K., Ed.; Scrivener Publishing: Beverley, MA, USA, 2018; pp. 61–102. [Google Scholar]
- Bohland, J.; Anisimov, I.; Dapkus, T. Economic recycling of CdTe photovoltaic modules. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference—1997; IEEE: Manhattan, NY, USA, 1997; pp. 355–358. [Google Scholar] [CrossRef]
- Berger, W.; Simon, F.G.; Weimann, K.; Alsema, E.A. A novel approach for the recycling of thin film photovoltaic modules. Resour. Conserv. Recycl. 2010, 54, 711–718. [Google Scholar] [CrossRef]
- Bohland, J.R.; Anisimov, I.I.; Dapkus, T.J.; Sasala, R.A.; Smigielski, K.A.; Kamm, K.D. Reclaiming Metallic Material from an Article Comprising a Non-Metallic Friable Substrate. U.S. Patent 6,129,779, 10 October 2000. [Google Scholar]
- Goozner, R.E.; Long, M.O.; Drinkard, W.F. Recycling of CdTe Photovoltaic Waste. U.S. Patent 5,897,685, 27 April 1999. [Google Scholar]
- Mezei, A.; Ashbury, M.; Canizares, M.; Molnar, R.; Given, H.; Meader, A.; Squires, K.; Ojebuoboh, F.; Jones, T.; Wang, W. Hydrometallurgical recycling of the semiconductor material from photovoltaic materials—Part one: Leaching. In Hydrometallurgy 2008: Proceedings of the Sixth International Symposium; SME: Englewood, CO, USA, 2008; pp. 209–220. [Google Scholar]
- Campo, M.D.; Bonnet, D.; Gegenwart, R.; Beier, J. Process for Recycling CdTe/CdS Thin Film Solar Cell Modules. U.S. Patent 6,572,782, 3 June 2003. [Google Scholar]
- Rocchetti, L.; Beolchini, F. Recovery of valuable materials from end-of-life thin-film photovoltaic panels: Environmental impact assessment of different management options. J. Clean. Prod. 2015, 89, 59–64. [Google Scholar] [CrossRef]
- Mezei, A.; Ashbury, M.; Canizares, M.; Molnar, R.; Given, H.; Meader, A.; Squires, K.; Ojebuoboh, F.; Jones, T.; Wang, W. Hydrometallurgical recycling of the semiconductor material from photovoltaic materials—Part two: Metal recovery. In Hydrometallurgy 2008: Proceedings of the Sixth International Symposium; SME: Englewood, CO, USA, 2008; pp. 224–237. [Google Scholar]
- Bohland, J.R.; Anisimov, I.I. Recycling Silicon Photovoltaic Modules. U.S. Patent 6,063,995, 16 May 2000. [Google Scholar]
- Zeng, D.W.; Born, M.; Wambach, K. Pyrolysis of EVA and its application in recycling of photovoltaic modules. J. Environ. Sci. 2004, 16, 889–893. [Google Scholar]
- Xu, X.; Lai, D.; Wang, G.; Wang, Y. Nondestructive silicon wafer recovery by a novel method of solvothermal swelling coupled with thermal decomposition. Chem. Eng. J. 2021, 418, 129457. [Google Scholar] [CrossRef]
- Chitra; Sah, D.; Lodhi, K.; Kant, C.; Saini, P.; Kumar, S. Structural composition and thermal stability of extracted EVA from silicon solar modules waste. Sol. Energy 2020, 211, 74–81. [Google Scholar] [CrossRef]
- Fiandra, V.; Sannino, L.; Andreozzi, C.; Corcelli, F.; Graditi, G. Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Manag. 2019, 87, 97–107. [Google Scholar] [CrossRef]
- Skoczek, A.; Sample, T.; Dunlop, E.D. The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2009, 17, 227–240. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; van der Heide, A.; Radavičius, T.; Denafas, J.; Lemaire, E.; Wang, K.; Poortmans, J.; Voroshazi, E. Towards a circular supply chain for PV modules: Review of today’s challenges in PV recycling, refurbishment and re-certification. Prog. Photovolt. Res. Appl. 2020, 28, 454–464. [Google Scholar] [CrossRef]
- Ansanelli, G.; Fiorentino, G.; Tammaro, M.; Zucaro, A. A Life Cycle Assessment of a recovery process from End-of-Life Photovoltaic Panels. Appl. Energy 2021, 290, 116727. [Google Scholar] [CrossRef]
- Savvilotidou, V.; Antoniou, A.; Gidarakos, E. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Manag. 2017, 59, 394–402. [Google Scholar] [CrossRef]
- Savvilotidou, V.; Gidarakos, E. Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. J. Clean. Prod. 2020, 250, 119440. [Google Scholar] [CrossRef]
- Azeumo, M.F.; Conte, G.; Ippolito, N.M.; Medici, F.; Piga, L.; Santilli, S. Photovoltaic module recycling, a physical and a chemical recovery process. Sol. Energy Mater. Sol. Cells 2019, 193, 314–319. [Google Scholar] [CrossRef]
- Geretschläger, K.J.; Wallner, G.M.; Fischer, J. Structure and basic properties of photovoltaic module backsheet films. Sol. Energy Mater. Sol. Cells 2016, 144, 451–456. [Google Scholar] [CrossRef]
- Wang, T.Y. Recycling Solar Cell Materials at the End of Life. In Advances in Solar Photovoltaic Power Plants; Islam, M.R., Rahman, F., Xu, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 287–317. ISBN 9783662505199. [Google Scholar]
- Klugmann-Radziemska, E.; Ostrowski, P.; Drabczyk, K.; Panek, P.; Szkodo, M. Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Sol. Energy Mater. Sol. Cells 2010, 94, 2275–2282. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E.; Ostrowski, P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew. Energy 2010, 35, 1751–1759. [Google Scholar] [CrossRef]
- Yang, E.H.; Lee, J.K.; Lee, J.S.; Ahn, Y.S.; Kang, G.H.; Cho, C.H. Environmentally friendly recovery of Ag from end-of-life c-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy 2017, 167, 129–133. [Google Scholar] [CrossRef]
- Palitzsch, W.; Loser, U. Systematic photovoltaic waste recycling. Green 2013, 3, 79–82. [Google Scholar] [CrossRef]
- Park, J.; Park, N. Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Adv. 2014, 4, 34823–34829. [Google Scholar] [CrossRef]
- Komoto, K.; Lee, J.S. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies; National Renewable Energy Lab.: Golden, CO, USA, 2018.
- Veolia SA Press Release. Veolia Open the First European Plant Entirely Dedicated to Recycling Photovoltaic Panels. Available online: https://www.veolia.com/en/newsroom/news/recycling-photovoltaic-panels-circular-economy-france (accessed on 7 December 2021).
- Ulicna, S.; Sinha, A.; Springer, M.; Miller, D.C.; Hacke, P.; Schelhas, L.T.; Owen-Bellini, M. Failure Analysis of a New Polyamide-Based Fluoropolymer-Free Backsheet after Combined-Accelerated Stress Testing. IEEE J. Photovolt. 2021, 11, 1197–1205. [Google Scholar] [CrossRef]
- Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustain. Mater. Technol. 2020, 25, e00188. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2012. [Google Scholar]
- Stahel, W.R. The circular economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoellein, T. The global odyssey of plastic pollution. Science 2020, 368, 1184–1185. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B. Bio-based backsheet. Reliab. Photovolt. Cells Modul. Compon. Syst. 2008, 7048, 70480C. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Czanderna, A.W.; Pern, F.J. Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Sol. Energy Mater. Sol. Cells 1996, 43, 101–181. [Google Scholar] [CrossRef]
- Zhu, J.; Montiel-Chicharro, D.; Betts, T.; Gottschalg, R. Correlation of degree of EVA crosslinking with formation and discharge of acetic acid in PV modules. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition (PVSEC 2017), Amsterdam, The Netherlands, 25–29 September 2017; pp. 1795–1798. [Google Scholar] [CrossRef]
- Oreski, G.; Omazic, A.; Eder, G.C.; Voronko, Y.; Neumaier, L.; Mühleisen, W.; Hirschl, C.; Ujvari, G.; Ebner, R.; Edler, M. Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules. Prog. Photovolt. Res. Appl. 2020, 28, 1277–1288. [Google Scholar] [CrossRef]
- Kyranaki, N.; Zhu, J.; Gottschalg, R.; Betts, T.R. Investigating the Degradation of Front and Rear Sides of c-Si PV Cells Exposed to Acetc Acid. In Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2018), Brussels, Belgium, 24–28 September 2018; pp. 1372–1375. [Google Scholar] [CrossRef]
- Adothu, B.; Bhatt, P.; Chattopadhyay, S.; Zele, S.; Oderkerk, J.; Sagar, H.P.; Costa, F.R.; Mallick, S. Newly developed thermoplastic polyolefin encapsulant–A potential candidate for crystalline silicon photovoltaic modules encapsulation. Sol. Energy 2019, 194, 581–588. [Google Scholar] [CrossRef]
- Cyrs, W.D.; Avens, H.J.; Capshaw, Z.A.; Kingsbury, R.A.; Sahmel, J.; Tvermoes, B.E. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels. Energy Policy 2014, 68, 524–533. [Google Scholar] [CrossRef]
- Marwede, M.; Reller, A. Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resour. Conserv. Recycl. 2012, 69, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Marwede, M.; Berger, W.; Schlummer, M.; Mäurer, A.; Reller, A. Recycling paths for thin-film chalcogenide photovoltaic waste—Current feasible processes. Renew. Energy 2013, 55, 220–229. [Google Scholar] [CrossRef]
- Gustafsson, A.M.K. Recycling of CIGS Solar CELL Waste Materials; Chalmers University of Technology: Gothenburg, Sweden, 2014. [Google Scholar]
- European Commission. Report on Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Gustafsson, A.M.K.; Steenari, B.M.; Ekberg, C. Recycling of CIGS Solar Cell Waste Materials: Separation of Copper, Indium, and Gallium by High-Temperature Chlorination Reaction with Ammonium Chloride. Sep. Sci. Technol. 2015, 50, 2415–2425. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, Z.; Qu, F.; Ding, F.; Peng, X.; Wang, H.; Gu, H. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste. J. Hazard. Mater. 2014, 279, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.; Duby, P.; Wang, W.; Graves, C.; Belova, A. Recycling of CdTe photovoltaic modules: Recovery of cadmium and tellurium. In Proceedings of the 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, 4–8 September 2006; pp. 2–5. [Google Scholar]
- First Solar. First Solar CdTe Photovoltaic Technology: Environmental, Health and Safety Assessment; Fundación Chile: Santiago, Chile, 2013. [Google Scholar]
- Fthenakis, V.M.; Wang, W. Extraction and Sepration of Cd and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap. Prog. Photovolt. Res. Appl. 2006, 14, 363–371. [Google Scholar] [CrossRef]
- Rombach, E.; Friedrich, B. Recycling of Rare Metals. In Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Worrell, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 125–150. ISBN 9780123965066. [Google Scholar]
- Kushiya, K.; Ohshita, M.; Tanaka, M. Development of recycling and reuse technologies for large-area Cu(InGa)Se2-based thin-film modules. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; Volume B, pp. 1892–1895. [Google Scholar]
- Drinkard, W.F.; Long, M.O.; Goozner, R.E. Recycling of CIS Photovoltaic Waste. U.S. Patent 5,779,877, 14 July 1998. [Google Scholar]
- Gustafsson, A.M.K.; Foreman, M.R.S.J.; Ekberg, C. Recycling of high purity selenium from CIGS solar cell waste materials. Waste Manag. 2014, 34, 1775–1782. [Google Scholar] [CrossRef]
- Gu, S.; Fu, B.; Dodbiba, G.; Fujita, T.; Fang, B. Promising Approach for Recycling of Spent CIGS Targets by Combining Electrochemical Techniques with Dehydration and Distillation. ACS Sustain. Chem. Eng. 2018, 6, 6950–6956. [Google Scholar] [CrossRef]
- Menezes, S. Investigation of electrochemical processes for synthesis and removal of CuInSe2 thin films. Mater. Res. Soc. Symp.-Proc. 1996, 426, 189–194. [Google Scholar] [CrossRef]
- Menezes, S. Electrochemical solutions to some thin-film PV manufacturing issues. Thin Solid Films 2000, 361, 278–282. [Google Scholar] [CrossRef]
- Toro, L.; Paganelli, F.; Granata, G.; Moscardini, E. Process for Treating Spent Photovoltaic Panels. EP2997169B1, 8 August 2018. [Google Scholar]
- Veolia SA Press Release. Veolia Testet Mit Partnern Vollständiges Photovoltaik-Recycling im Industriellen Maßstab. Available online: https://newsroom.veolia.de/pressreleases/veolia-testet-mit-partnern-vollstaendiges-photovoltaik-recycling-im-industriellen-massstab-3098711 (accessed on 20 January 2022).
Process | Module Type | Plant Scale | Materials Recovered |
---|---|---|---|
Use of existing glass recycling facilities: crushing and use as glass cullet | All types | Fully operational industrial | Aluminium, copper, glass (contaminated cullet) |
Veolia: crushing and mechanical separation | c-Si | Fully operational industrial | Glass, aluminium, copper, silver, silicon (metallurgical grade) |
FRELP: thermo-mechanical separation; crushing; pyrolytic decomposition; and chemical separation | c-Si | Pilot line | Glass, aluminium, copper, silver, silicon (metallurgical grade) |
Various processes involving pyrolytic decomposition or chemical dissolution of polymers; module separation; chemical processing of silicon wafers | c-Si | Laboratory scale to fully operational industrial (discontinued) | Glass, aluminium, copper, silver, silicon (metallurgical to solar grade) |
First Solar: crushing; chemical leaching; sieving; and chemical recovery of materials | CdTe | Fully operational industrial | Glass, copper, cadmium, tellurium, zinc/tin/other semiconductor elements |
Drinkard Metalox CdTe process: crushing; chemical leaching; filtering of glass solids; electrowinning; and evaporation of leachate | CdTe | Pilot line (discontinued) | Glass, copper, cadmium, tellurium |
ANTEC Solar: crushing; pyrolysis; reaction with chlorine at high temperatures; evaporation; and recovery of metal chlorides | CdTe | Pilot line (discontinued) | Glass, copper, cadmium, tellurium |
Umicore: unspecified hydrometallurgical process | CIGS | Fully operational industrial | Copper, indium, gallium, selenium |
Drinkard Metalox CIGS process: crushing; chemical leaching; filtering of glass solids; electrowinning and evaporation of leachate; distillation of selenium oxide | CIGS | Laboratory scale | Glass, copper, indium, gallium, selenium, cadmium |
Module delamination through thermal softening of the encapsulant; mechanical scraping to remove absorber material; chemical removal of molybdenum | CIGS | Laboratory scale | Glass, copper, indium, gallium, selenium, cadmium, molybdenum |
Module delamination and sequential electrolytic refining | CIGS | Laboratory scale | Glass, copper, indium, gallium, selenium, cadmium |
Thermal separation of selenium; chlorination and evaporation of metal chlorides | CIGS | Laboratory scale | Glass, copper, indium, gallium, selenium, cadmium |
Module crushing; pyrolysis of polymers; use of wet mechanical or vacuum blasting processes; flotation and sieving to separate particulates | CIGS, CdTe | Laboratory scale | Glass, copper, indium, gallium, selenium, cadmium, tellurium, other metals |
Photolife: crushing; separation of particulates into three fractions by sieving; thermal combustion or chemical removal of polymers; sieving to separate materials; and alkaline or oxidising acid chemical process to retrieve metals | All types | Laboratory scale | Glass, copper, indium, gallium, selenium, cadmium, tellurium, silver, other metals, metallurgical grade silicon |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isherwood, P.J.M. Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling. Sustainability 2022, 14, 1676. https://doi.org/10.3390/su14031676
Isherwood PJM. Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling. Sustainability. 2022; 14(3):1676. https://doi.org/10.3390/su14031676
Chicago/Turabian StyleIsherwood, Patrick J. M. 2022. "Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling" Sustainability 14, no. 3: 1676. https://doi.org/10.3390/su14031676
APA StyleIsherwood, P. J. M. (2022). Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling. Sustainability, 14(3), 1676. https://doi.org/10.3390/su14031676