Application of Modern Digital Systems and Approaches to Business Process Management
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. The Proposed Algorithm
4. Illustrative Example
Demonstration of the Algorithm
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 | e16 | e17 | e18 | e19 | e20 | e21 | e22 | e23 | e24 | e25 | e26 | e27 | e28 | e29 | e30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i1 | ||||||||||||||||||||||||||||||
i2 | ||||||||||||||||||||||||||||||
i3 | ||||||||||||||||||||||||||||||
i4 | ||||||||||||||||||||||||||||||
i5 |
e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 | e16 | e17 | e18 | e19 | e20 | e21 | e22 | e23 | e24 | e25 | e26 | e27 | e28 | e29 | e30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i1 | ||||||||||||||||||||||||||||||
i2 | ||||||||||||||||||||||||||||||
i3 | ||||||||||||||||||||||||||||||
i4 | ||||||||||||||||||||||||||||||
i5 |
e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 | e16 | e17 | e18 | e19 | e20 | e21 | e22 | e23 | e24 | e25 | e26 | e27 | e28 | e29 | e30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i1 | ||||||||||||||||||||||||||||||
i2 | ||||||||||||||||||||||||||||||
i3 | ||||||||||||||||||||||||||||||
i4 | ||||||||||||||||||||||||||||||
i5 | ||||||||||||||||||||||||||||||
i6 |
e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 | e16 | e17 | e18 | e19 | e20 | e21 | e22 | e23 | e24 | e25 | e26 | e27 | e28 | e29 | e30 | |
i1 | ||||||||||||||||||||||||||||||
i2 | ||||||||||||||||||||||||||||||
i3 | ||||||||||||||||||||||||||||||
i4 |
Appendix B
e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 | e16 | e17 | e18 | e19 | e20 | e21 | e22 | e23 | e24 | e25 | e26 | e27 | e28 | e29 | e30 | |
ICS1 | . | |||||||||||||||||||||||||||||
ICS2 | ||||||||||||||||||||||||||||||
ICS3 | ||||||||||||||||||||||||||||||
ICS4 | . | . |
Appendix C
Obtained Weights of KPIs for Each Process are: |
Appendix D
p = 1 | p = 2 | p = 3 | p = 4 | ICS = 1 | ICS = 2 | ICS = 3 | ICS = 4 | |
---|---|---|---|---|---|---|---|---|
e = 1 | 0.1997 | 0.1994 | 0.1497 | 0.1833 | 0.88 | 0.88 | 0.88 | 0.72 |
e = 2 | 0.1688 | 0.1965 | 0.1463 | 0.1833 | 0.88 | 0.88 | 0.72 | 0.72 |
e = 3 | 0.1787 | 0.1898 | 0.1379 | 0.1271 | 0.72 | 0.88 | 0.72 | 0.72 |
e = 4 | 0.1492 | 0.162 | 0.1304 | 0.1199 | 0.72 | 0.72 | 0.72 | 0.88 |
e = 5 | 0.1784 | 0.146 | 0.1121 | 0.1159 | 0.56 | 0.72 | 0.72 | 0.56 |
e = 6 | 0.1614 | 0.1687 | 0.1061 | 0.1199 | 0.56 | 0.72 | 0.72 | 0.56 |
e = 7 | 0.1574 | 0.1965 | 0.1403 | 0.1705 | 0.88 | 0.88 | 0.88 | 0.56 |
e = 8 | 0.1688 | 0.1965 | 0.1451 | 0.176 | 0.72 | 0.88 | 0.88 | 0.72 |
e = 9 | 0.1842 | 0.1965 | 0.1417 | 0.1582 | 0.72 | 0.72 | 0.72 | 0.72 |
e = 10 | 0.2052 | 0.1994 | 0.1673 | 0.1955 | 0.88 | 0.88 | 0.88 | 0.88 |
e = 11 | 0.1875 | 0.1181 | 0.1428 | 0.2255 | 0.72 | 0.88 | 0.72 | 0.56 |
e = 12 | 0.1122 | 0.1092 | 0.1198 | 0.176 | 0.56 | 0.72 | 0.72 | 0.56 |
e = 13 | 0.1048 | 0.1301 | 0.1172 | 0.176 | 0.72 | 0.88 | 0.88 | 0.56 |
e = 14 | 0.1095 | 0.1023 | 0.0978 | 0.1323 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 15 | 0.1003 | 0.137 | 0.1385 | 0.176 | 0.72 | 0.72 | 0.72 | 0.88 |
e = 16 | 0.1574 | 0.1159 | 0.1647 | 0.1833 | 0.88 | 0.88 | 0.72 | 0.88 |
e = 17 | 0.0803 | 0.0804 | 0.1128 | 0.1323 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 18 | 0.0745 | 0.0775 | 0.0995 | 0.1323 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 19 | 0.1574 | 0.1527 | 0.1489 | 0.1888 | 0.88 | 0.88 | 0.56 | 0.72 |
e = 20 | 0.1312 | 0.0873 | 0.1295 | 0.1323 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 21 | 0.0762 | 0.1023 | 0.1257 | 0.0687 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 22 | 0.0777 | 0.1092 | 0.1207 | 0.1141 | 0.56 | 0.72 | 0.56 | 0.56 |
e = 23 | 0.1038 | 0.1531 | 0.1392 | 0.1522 | 0.72 | 0.88 | 0.72 | 0.72 |
e = 24 | 0.1909 | 0.1687 | 0.1592 | 0.2087 | 0.88 | 0.97 | 0.88 | 0.88 |
e = 25 | 0.1455 | 0.146 | 0.1291 | 0.1323 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 26 | 0.0921 | 0.1551 | 0.1069 | 0.1323 | 0.39 | 0.56 | 0.56 | 0.56 |
e = 27 | 0.1122 | 0.1687 | 0.1428 | 0.1574 | 0.56 | 0.72 | 0.56 | 0.56 |
e = 28 | 0.1064 | 0.1763 | 0.1065 | 0.1323 | 0.56 | 0.56 | 0.56 | 0.56 |
e = 29 | 0.0921 | 0.162 | 0.1472 | 0.1629 | 0.72 | 0.88 | 0.72 | 0.88 |
e = 30 | 0.1249 | 0.0735 | 0.1075 | 0.1201 | 0.56 | 0.56 | 0.39 | 0.39 |
Appendix E
IW | b1 | |||
---|---|---|---|---|
1.5007 | −1.6309 | 0.86557 | 0.99701 | −2.4988 |
1.226 | 1.3628 | −1.1437 | −1.3141 | −1.9081 |
−1.1365 | 1.7555 | 0.71124 | −1.0712 | 1.3724 |
1.3059 | −0.29296 | 1.4443 | −1.315 | −0.93135 |
1.4984 | 1.1729 | 0.55347 | −1.8375 | −0.67932 |
−1.3306 | -1.3533 | 0.75435 | 1.0208 | −0.72682 |
−1.0031 | −0.26165 | 1.1011 | 1.7896 | −0.35753 |
−0.20505 | 1.7655 | −0.73274 | −1.0372 | 1.6335 |
1.3854 | 1.0058 | 0.21794 | 1.5918 | 1.8425 |
1.1397 | 1.1896 | −1.0599 | −1.3549 | 2.6502 |
LW | b2 | |||||||||
−0.13908 | −0.7086 | 0.49561 | 0.23919 | 0.3903 | −0.14243 | 0.258 | −0.42744 | 0.14419 | −0.33634 | −0.00906 |
0.061347 | 0.11178 | 0.35141 | −0.09187 | 0.21791 | −0.44646 | 0.91944 | −0.21342 | −0.09013 | −0.53321 | 0.4686 |
0.77751 | −0.31071 | −0.02863 | −0.4486 | 0.75258 | 0.5476 | −0.01411 | 0.45881 | 0.45256 | 0.022131 | 0.12332 |
0.41696 | −0.02417 | 0.672 | 0.45597 | 0.051214 | 0.28033 | 0.26372 | 0.11978 | 0.20632 | −0.1249 | 0.20288 |
Appendix F
Purchasing | Production | Marketing and Sales | After Sales Service Process | Degree of Fulfillment of Customer Requirements | Customer Satisfaction with Quality | Customer Loyalty | Customer Satisfaction with the Implementation of the Contract |
---|---|---|---|---|---|---|---|
0.7586 | 0.4725 | 0.2599 | 0.2277 | 0.508906 | 0.718982 | 0.945718 | 0.969928 |
0.3097 | 0.5117 | 0.1003 | 0.7245 | 0.382157 | 0.970195 | 0.449697 | 0.55818 |
0.5141 | 0.3679 | 0.1819 | 0.7559 | 0.660412 | 0.965324 | 0.754372 | 0.496481 |
0.3113 | 0.5099 | 0.1341 | 0.7264 | 0.598932 | 0.980704 | 0.574131 | 0.658281 |
0.3101 | 0.5091 | 0.1131 | 0.7195 | 0.45391 | 0.979403 | 0.478917 | 0.598719 |
0.3371 | 0.5151 | 0.1228 | 0.7406 | 0.403378 | 0.960478 | 0.570081 | 0.590135 |
0.4766 | 0.4049 | 0.1043 | 0.6482 | 0.181812 | 0.946201 | 0.957059 | 0.547001 |
0.4978 | 0.0634 | 0.3086 | 0.9457 | 0.832441 | 0.95707 | 0.828687 | 0.85103 |
0.4976 | 0.1451 | 0.3559 | 0.9864 | 0.857691 | 0.948955 | 0.78133 | 0.899164 |
References
- Internal Market, Industry, Entrepreneurship and SMEs. Available online: https://ec.europa.eu/growth/smes/sme-definition_en (accessed on 4 December 2021).
- Ministry of Economy of the Republic of Serbia. Report on Small and Medium Enterprises and Entrepreneurship for 2015 [in Serbian]; Ministry of Economy of the Republic of Serbia: Belgrade, Serbia, 2016. [Google Scholar]
- Davis, R. It’s the customer journey that counts. BPTrends Column. 2011. Available online: https://www.bptrends.com/bpt/wp-content/publicationfiles/12-06-2011-COL-Processes%20in%20Practice-Customer%20Journey-Davis-final.pdf (accessed on 5 October 2021).
- Pavlić, D.; Ćukušić, M. Conceptualizing the convergence model of business process management and customer experience management. In International Conference on Business Process Management, Business Process Management: Blockchain and Central and Eastern Europe Forum, BPM 2019, Lecture Notes in Business Information Processing; Di Ciccio, C., Gabryelczyk, R., Garcia-Banuelos, L., Hernaus, T., Hull, R., Indihar Stemberger, M., Ko, A., Staples, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 328–332. [Google Scholar] [CrossRef]
- Kumar, V.; Smart, P.A.; Maddern, H.; Maull, R.S. Alternative perspectives on service quality and customer satisfaction: The role of BPM. Int. J. Serv. Ind. Manag. 2008, 19, 176–187. [Google Scholar] [CrossRef]
- Chicu, D.; Pàmies, M.; Ryan, G.; Cross, C. Exploring the influence of the human factor on customer satisfaction in call centres. Bus. Res. Q. 2019, 22, 83–95. [Google Scholar] [CrossRef]
- Kafetzopoulos, D.; Psomas, E. Organisational learning, non-technical innovation and customer satisfaction of SMEs. Int. J. Innov. Manag. 2016, 20, 1650041. [Google Scholar] [CrossRef]
- International Organization for Standardization—ISO. ISO 9000:2015 Quality Management Systems-Fundamentals and Vocabulary. 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en (accessed on 5 October 2021).
- Kaplan, R.S.; Norton, D.P. Strategy Maps: Converting Intangible Assets into Tangible Outcomes; Harvard Business School Press: Boston, MA, USA, 2004. [Google Scholar]
- Sawang, S. Key performance indicators for innovation implementation: Perception vs. actual usage. Asia Pac. Manag. Rev. 2011, 16, 23–29. Available online: https://eprints.qut.edu.au/28486/ (accessed on 5 October 2021).
- El-Adly, M.I. Modelling the relationship between hotel perceived value, customer satisfaction, and customer loyalty. J. Retail. Consum. Serv. 2019, 50, 322–332. [Google Scholar] [CrossRef]
- Sitorus, T.; Yustisia, M. The influence of service quality and customer trust toward customer loyalty: The role of customer satisfaction. Int. J. Qual. Res. 2018, 12, 639–654. [Google Scholar] [CrossRef]
- Wayessa, Z.; Dabi, O.; Dida, G. Customers’ satisfaction towards services provided by Bule Hora University, Ethiopia. Proc. Eng. Sci. 2021, 03, 217–230. [Google Scholar] [CrossRef]
- Đorđević, M.Z.; Aleksić, A.; Puškarić, H. Application of Intuitionistic fuzzy numbers to determination of customer satisfaction in service enterprises (In Serbian). In Proceedings of the 46th National Conference on Quality, Kragujevac, Serbia, 29 May–1 June 2019; pp. 79–84. Available online: http://www.cqm.rs/2019/papers_fq/10.pdf (accessed on 6 October 2021).
- Afthanorhan, A.; Awang, Z.; Rashid, N.; Foziah, H.; Ghazali, P. Assessing the effects of service quality on customer satisfaction. Manag. Sci. Lett. 2019, 9, 13–24. [Google Scholar] [CrossRef]
- Wu, C.C.; Liao, S.H.; Chen, Y.J.; Hsu, W.L. Service quality, brand image and price fairness impact on the customer satisfaction and loyalty. In Proceedings of the 2011 IEEE International Conference on Industrial Engineering and Engineering Management, Changchun, China, 3–5 November 2011; pp. 1160–1164. [Google Scholar] [CrossRef]
- Anwar, S.; Min, L.; Dastagir, G. Effect of Service Quality, Brand Image, Perceived Value on Customer Satisfaction and Loyalty in the Chinese Banking Industry. Int. J. Bus. Econ. Manag. Work. 2019, 6, 24–30. Available online: http://www.ijbemw.com/paper/effect-of-service-quality-brand-image-perceived-value-on-customer-satisfaction-and-loyalty-in-the-chinese-banking-industry (accessed on 10 October 2021).
- Jain, E. Quality of services and customer loyalty: A study of private banks in NCT of Delhi through SERVQUAL. Proc. Eng. Sci. 2020, 2, 361–372. [Google Scholar] [CrossRef]
- Anil, A.P.; Satish, K.P. Enhancing customer satisfaction through total quality management practices—An empirical examination. Total Qual. Manag. Bus. Excell. 2017, 30, 1528–1548. [Google Scholar] [CrossRef]
- Goshime, Y.; Kitaw, D.; Jilcha, K. Lean manufacturing as a vehicle for improving productivity and customer satisfaction: A literature review on metals and engineering industries. Int. J. Lean Six Sigma 2019, 10, 691–714. [Google Scholar] [CrossRef]
- Anil, A.P.; Satish, K.P. An empirical investigation of the relationship between TQM practices, quality performance, and customer satisfaction level. Int. J. Product. Qual. Manag. 2019, 26, 96. [Google Scholar] [CrossRef]
- Xu, L.U.; Blankson, C.; Prybutok, V. Relative contributions of product quality and service quality in the automobile industry. Qual. Manag. J. 2017, 24, 21–36. [Google Scholar] [CrossRef]
- Li, S.; Wunsch, D.C.; O’Hair, E.; Giesselmann, M.G. Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J. Sol. Energy Eng. 2001, 123, 327–332. [Google Scholar] [CrossRef]
- Zan, X.; Wu, Z.; Guo, C.; Yu, Z. A Pareto-based genetic algorithm for multi-objective scheduling of automated manufacturing systems. Adv. Mech. Eng. 2020, 12, 1687814019885294. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA; London, UK, 1992. [Google Scholar]
- Štěpánek, J.; Šťovíček, J.; Cimler, R. Application of genetic algorithms in stock market simulation. Procedia-Soc. Behav. Sci. 2012, 47, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Stravinskiene, I.; Serafinas, D. The link between business process management and quality management. J. Risk Financ. Manag. 2020, 13, 225. [Google Scholar] [CrossRef]
- Pereira, J.L.; Freitas, A.P. Towards a characterisation of BPM tools’ simulation support: The case of BPMN process models. Int. J. Qual. Res. 2019, 13, 783–796. [Google Scholar] [CrossRef]
- Pan, W.; Wei, H. Research on key performance indicator (KPI) of business process. In Proceedings of the 2012 Second International Conference on Business Computing and Global Informatization, Shanghai, China, 12–14 October 2012. [Google Scholar] [CrossRef]
- Parmenter, D. Key Performance Indicators: Developing, Implementing, and Using Winning KPIs, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wannes, A.; Ghannouchi, S.A. KPI-Based Approach for Business Process Improvement. Procedia Comput. Sci. 2019, 164, 265–270. [Google Scholar] [CrossRef]
- Weinzierl, S.; Dunzer, S.; Zilker, S.; Matzner, M. Prescriptive business process monitoring for recommending next best actions. In International Conference on Business Process Management, Business Process Management Forum, BPM 2020, Lecture Notes in Business Information Processing; Fahland, D., Ghidini, C., Becker, J., Dumas, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 193–209. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—1. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy Sets and Systems: Theory and Applications; Academic Press: Boston, MA, USA, 1980. [Google Scholar]
- Zimmermann, H.-J. Fuzzy Set Theory—And Its Applications, 4th ed.; Springer Science & Business Media: New York, NY, USA, 2001. [Google Scholar]
- Yüksel, I.; Dagdeviren, M. Using the fuzzy analytic network process (ANP) for Balanced Scorecard (BSC): A case study for a manufacturing firm. Expert Syst. Appl. 2010, 37, 1270–1278. [Google Scholar] [CrossRef]
- Dožić, S.; Lutovac, T.; Kalić, M. Fuzzy AHP approach to passenger aircraft type selection. J. Air Transp. Manag. 2017, 68, 165–175. [Google Scholar] [CrossRef]
- Metaxas, I.; Koulouriotis, D.; Spartalis, S. A multi-criteria model on calculating the Sustainable Business Excellence Index of a firm with fuzzy AHP and TOPSIS. Benchmarking Int. J. 2016, 23, 1522–1557. [Google Scholar] [CrossRef]
- Kustiyahningsih, Y.; Rahmanita, E.; Purnama, J. Integration Balanced Scorecard and Fuzzy Analytic Network Process (FANP) for Measuring Performance of Small Medium Enterprise (SME). J. Theor. Appl. Inf. Technol. 2016, 94, 343–352. [Google Scholar]
- Görener, A.; Ayvaz, B.; Kuşakcı, O.; Altınok, E. A hybrid type-2 fuzzy based supplier performance evaluation methodology: The Turkish Airlines technic case. Appl. Soft Comput. 2017, 56, 436–445. [Google Scholar] [CrossRef]
- Abdullah, L.; Zulkifli, N. Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Syst. Appl. 2017, 42, 4397–4409. [Google Scholar] [CrossRef]
- Mei, Y.; Xie, K. An improved TOPSIS method for metro station evacuation strategy selection in interval type-2 fuzzy environment. Clust. Comput. 2019, 22, 2781. [Google Scholar] [CrossRef]
- Komatina, N.; Djapan, M.; Ristić, I.; Aleksić, A. Fulfilling External Stakeholders’ Demands—Enhancement Workplace Safety Using Fuzzy MCDM. Sustainability 2021, 13, 2892. [Google Scholar] [CrossRef]
- Saini, N.; Bajaj, R.; Gandotra, N.; Dwivedi, R. Multi-criteria Decision Making with Triangular Intuitionistic Fuzzy Number based on Distance Measure & Parametric Entropy Approach. Procedia Comput. Sci. 2018, 125, 34–41. [Google Scholar] [CrossRef]
- Velu, L.G.N.; Selvaraj, J.; Ponnialagan, D. A New Ranking Principle for Ordering Trapezoidal Intuitionistic Fuzzy Numbers. Complexity 2017, 2017, 3049041. [Google Scholar] [CrossRef]
- Prakash, K.A.; Suresh, M.; Vengataasalam, S. A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept. Math. Sci. 2016, 10, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Nestić, S.; Đorđević, A.; Tadić, D.; Stefanović, M. A New Fuzzy Model for Evaluation of Key Performance Indicators and Purchasing Process Quality. In Proceedings of the 8th International Quality Conference, Kragujevac, Serbia, 23 May 2014; pp. 356–378. [Google Scholar]
- Nestic, S.; Stefanovic, M.; Djordjevic, A.; Arsovski, S.; Tadic, D. A model of the assessment and optimisation of production process quality using the fuzzy sets and genetic algorithm approach. Eur. J. Ind. Eng. 2015, 9, 77–99. [Google Scholar] [CrossRef]
- Nestic, S.; Djordjevic, A.; Puskaric, H.; Zahar Djordjevic, M.; Tadic, D.; Stefanovic, M. The evaluation and improvement of process quality by using the fuzzy sets theory and genetic algorithm approach. J. Intell. Fuzzy Syst. 2015, 29, 2017–2028. [Google Scholar] [CrossRef]
- Tadic, D.; Aleksic, A.; Popovic, P.; Arsovski, S.; Castelli, A.; Joksimovic, D.; Stefanovic, M. The evaluation and enhancement of quality, environmental protection and seaport safety by using FAHP. Nat. Hazards Earth Syst. Sci. 2017, 17, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Tadić, D.; Đorđević, A.; Erić, M.; Stefanović, M.; Nestić, S. Two-step model for performance evaluation and improvement of New Service Development process based on fuzzy logics and genetic algorithm. J. Intell. Fuzzy Syst. 2017, 33, 3959–3970. [Google Scholar] [CrossRef]
- Nestic, S.; Lampón, J.F.; Aleksic, A.; Cabanelas, P.; Tadic, D. Ranking manufacturing processes from the quality management perspective in the automotive industry. Expert Syst. 2019, 36, e12451. [Google Scholar] [CrossRef]
- Boran, F.; Genç, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 2009, 36, 11363–11368. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets; ITKR’s Scientific Session: Sophia, Bulgaria, 1983. [Google Scholar]
- Djordjevic, M.Z.; Simeunovic, B.; Nestic, S.; Aleksic, A. Study on performance evaluation of the production process-fuzzy MCDM approach. J. Intell. Fuzzy Syst. 2020, 39, 4009–4026. [Google Scholar] [CrossRef]
- Djordjevic, M.Z. Business Process Performance Management in Small and Medium-Sized Manufacturing Enterprises (in Serbian). Ph.D. Thesis, University of Kragujevac, Kragujevac, Serbia, 2020. Available online: https://nardus.mpn.gov.rs/handle/123456789/17541 (accessed on 2 October 2021).
- Haykin, S.; Haykin, S. Neural Networks and Learning Machines; Prentice Hall/Pearson: New York, NY, USA, 2009. [Google Scholar]
- Chi, M.; Zhao, J. Application of BP neural network in evaluating e-business performance for service industry. Int. J. Netw. Virtual Organ. 2021, 10, 374–385. Available online: https://ideas.repec.org/a/ids/ijnvor/v10y2012i3-4p374-385.html (accessed on 7 October 2021). [CrossRef] [Green Version]
- Qi, S.; Jin, K.; Li, B.; Qian, Y. The exploration of internet finance by using neural network. J. Comput. Appl. Math. 2019, 369, 112630. [Google Scholar] [CrossRef]
- Chen, L.; Jagota, V.; Kumar, A. Research on optimisation of scientific research performance management based on BP neural network. Int. J. Syst. Assur. Eng. Manag. 2021, 1–10. [Google Scholar] [CrossRef]
- Xu, X.; Liu, F. Optimisation of online education and teaching evaluation system based on GA-BP neural network. Comput. Intell. Neurosci. 2021, 2021, 8785127. [Google Scholar] [CrossRef]
- Al-Dmour, A.H.; Al-Dmour, R.H. Applying multiple linear regression and neural network to predict business performance using the reliability of accounting information system. Int. J. Corp. Financ. Account. 2018, 5, 12–26. [Google Scholar] [CrossRef]
- Chen, R.; Yang, B.; Li, S.; Wang, S. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [Google Scholar] [CrossRef]
- Zelenkov, Y.; Fedorova, E.; Chekrizov, D. Two-step classification method based on genetic algorithm for bankruptcy forecasting. Expert Syst. Appl. 2017, 88, 393–401. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Pourghasemi, H.R. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimisation (PSO) for landslide spatial modelling. Catena 2017, 157, 310–324. [Google Scholar] [CrossRef]
- Gacic, M.; Nestic, S.; Zahar Djordjevic, M.; Stefanovic, M. A Model for Ranking and Optimisation of Key Performance Indicators of the Strategy Process. Int. J. Ind. Eng. Manag. 2015, 6, 7–14. [Google Scholar]
- Kaur, P. Selection of Vendor Based on Intuitionistic Fuzzy Analytical Hierarchy Process. Adv. Oper. Res. 2014, 2014, 987690. [Google Scholar] [CrossRef]
- Saaty, T. The Analytic Hierarchy Process; McGraw-Hill International Book Co: New York, NY, USA, 1980. [Google Scholar]
- Chang, D. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. Available online: https://www.expertchoice.ir/wp-content/uploads/2017/08/FAHP-Chang-1996.pdf (accessed on 3 October 2021). [CrossRef]
- Wang, Y.; Luo, Y.; Hua, Z. On the extent analysis method for fuzzy AHP and its applications. Eur. J. Oper. Res. 2008, 186, 735–747. Available online: https://ideas.repec.org/a/eee/ejores/v186y2008i2p735-747.html (accessed on 5 October 2021). [CrossRef]
- Banduka, N.; Tadić, D.; Mačužić, I.; Crnjac, M. Extended process failure mode and effect analysis (PFMEA) for the automotive industry: The FSQC-PFMEA. Adv. Prod. Eng. Manag. 2018, 13, 206–215. [Google Scholar] [CrossRef]
- Xiaoqiong, W.; Fang, P.; Shihuang, S.; Jianan, F. Trapezoidal Fuzzy AHP for the Comprehensive Evaluation of Highway Network Programming Schemes in Yangtze River Delta. In Proceedings of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 15–19 June 2004; pp. 5232–5236. [Google Scholar] [CrossRef]
- Sadi-Nezhad, S.; Damghani, K.K. Application of a fuzzy TOPSIS method base on modified preference ratio and fuzzy distance measurement in assessment of traffic police centers performance. Appl. Soft Comput. 2010, 10, 1028–1039. [Google Scholar] [CrossRef]
- Kahraman, C.; Öztayşi, B.; Sarı, İ.U.; Turanoğlu, E. Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl.-Based Syst. 2014, 59, 48–57. [Google Scholar] [CrossRef]
- Tadić, D.; Đorđević, A.; Aleksić, A.; Nestić, S. Selection of recycling centre locations by using the interval type-2 fuzzy sets and two-objective genetic algorithm. Waste Manag. Res. 2019, 37, 26–37. [Google Scholar] [CrossRef]
- Sadiq, R.; Tesfamariam, S. Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Environ. Res. Risk Assess. 2009, 23, 75–91. [Google Scholar] [CrossRef]
- Tavana, M.; Zareinejad, M.; Di Caprio, D.; Kaviani, M. An integrated intuitionistic fuzzy AHP and SWOT method for outsourcing reverse logistics. Appl. Soft Comput. 2016, 40, 544–557. [Google Scholar] [CrossRef]
- Julie, N.; Uthra, G. Triangular intuitionistic fuzzy ahp and its application to select best product of notebook computer. Int. J. Pure Appl. Math. 2017, 113, 253–261. [Google Scholar]
- Alipour, M.; Hafezi, R.; Ervural, B.; Kaviani, M.; Kabak, Ö. Long-term policy evaluation: Application of a new robust decision framework for Iran’s energy exports security. Energy 2018, 157, 914–931. [Google Scholar] [CrossRef]
- Abdullah, L.; Najib, L. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. Int. J. Sustain. Energy 2015, 35, 360–377. [Google Scholar] [CrossRef]
- Atanassov, K.; Pasi, G.; Yager, R. Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making. Int. J. Syst. Sci. 2005, 36, 859–868. [Google Scholar] [CrossRef]
- Nayagam, V.L.G.; Jeevaraj, S.; Sivaraman, G. Complete Ranking of Intuitionistic Fuzzy Numbers. Fuzzy Inf. Eng. 2016, 8, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Nagoorgani, A.; Ponnalagu, K. A New Approach on Solving Intuitionistic Fuzzy Linear Programming Problem. Appl. Math. Sci. 2012, 6, 3467–3474. [Google Scholar]
- Li, D.; Nan, J.; Zhang, M. A Ranking Method of Triangular Intuitionistic Fuzzy Numbers and Application to Decision Making. Int. J. Comput. Intell. Syst. 2010, 3, 522–530. [Google Scholar] [CrossRef]
- Lazic, M. Measurements, Analyses and Improvements (In Serbian); Faculty of Mechanical Engineering, Center for Quality: Kragujevac, Serbia, 2008. [Google Scholar]
- Larsson, A.; Broström, E. Ensuring customer retention: Insurers’ perception of customer loyalty. Mark. Intell. Plan. 2019, 38, 151–166. [Google Scholar] [CrossRef]
Relative Importance | TIFN |
---|---|
Slightly more important | |
A bit more important | |
More important | |
Strongly more important | |
Absolutely more important |
Value of KPI | TIFN |
---|---|
Very low value | |
Low value | |
Almost low value | |
Middle value | |
Fairly high value | |
High value | |
Very high value |
Purchasing | Production | Marketing and Sales | After-Sales Service Process | |
---|---|---|---|---|
i = 1 | % of complete orders | Number of complaints due to non-compliance/total number of complaints (in %) | % of realization of sales plan (quantity) | % of complaints resolved in time |
i = 2 | % of late purchases | % of product incompetence | % of offers completed | % of complaints approved |
i = 3 | % inconsistent quality | % of production plan realization (quantity) | % of late deliveries | % of recurring complaints |
i = 4 | Non-compliance costs/total procurement costs (in %) | % of the cost of scrap | % of marketing campaigns that did not start in time | % of phone calls answered in time |
i = 5 | Time from procurement request to contract signing | Time of unplanned delays/total production cycle time | Completeness of market research information | |
i = 6 | Market research costs/total marketing and sales costs |
Optimal RBPMS | RICS | ||||||
---|---|---|---|---|---|---|---|
p = 1 | p = 2 | p = 3 | p = 4 | i = 1 | i = 2 | i = 3 | i = 4 |
0.4976 | 0.1451 | 0.3559 | 0.9864 | 0.857691 | 0.948955 | 0.78133 | 0.899164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahar Djordjevic, M.; Djordjevic, A.; Klochkova, E.; Misic, M. Application of Modern Digital Systems and Approaches to Business Process Management. Sustainability 2022, 14, 1697. https://doi.org/10.3390/su14031697
Zahar Djordjevic M, Djordjevic A, Klochkova E, Misic M. Application of Modern Digital Systems and Approaches to Business Process Management. Sustainability. 2022; 14(3):1697. https://doi.org/10.3390/su14031697
Chicago/Turabian StyleZahar Djordjevic, Marija, Aleksandar Djordjevic, Elena Klochkova, and Milan Misic. 2022. "Application of Modern Digital Systems and Approaches to Business Process Management" Sustainability 14, no. 3: 1697. https://doi.org/10.3390/su14031697
APA StyleZahar Djordjevic, M., Djordjevic, A., Klochkova, E., & Misic, M. (2022). Application of Modern Digital Systems and Approaches to Business Process Management. Sustainability, 14(3), 1697. https://doi.org/10.3390/su14031697