Workers’ Satisfaction vis-à-vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work
Abstract
:1. Introduction
2. Background and Topical Literature Review
2.1. Scholarly Sources and Search Strategy
2.2. Interpreting the Collected Materials
3. Data Processing and Four Measurements
3.1. Case Study
3.2. Noise Measurements and Apparatus
3.3. Macro-Scale UHI Investigation
- Tk = At-satellite brightness temperature in Kelvin degrees
- = TOA spectral radiance;
- K1 = band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x, where x is the band number: 10 or 11) and
- K2 = band-specific thermal conversion constant from the metadata (K2_CONSTANT_BAND_x, where x is the band number: 10 or 11)
3.4. Micro-Scale UHI Investigation
3.5. Qualitative Participant Observation: Participant Recruitment
4. Results
4.1. Sound Pressure Results
4.2. Solar Radiation and Heat Island Results
4.3. Results from Participant Observations
5. Discussion and Practical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration
- Disclosure of potential conflicts of interest: The authors of the present study declare that they have no conflicts of interest.
- Research Involving Human Participants and or Animals: There is no research involving animals. Regarding Human Participants, the researchers of the current study used volunteer participants (77 out of 123 students) in the authors’ classes during Spring 2021.
- Data collection and analysis: The authors confirm that the results presented in this study were mainly prepared for this research during the years 2020 and 2021. There is no similarity in research design or results that could be found between any previous research conducted by the authors of the present work or anybody else.
- Ethics Statement: Approval for the study was not required in accordance with local/national legislation.
References
- Chang, J.-H. Thermal comfort and climatic design in the tropics: An historical critique. J. Arch. 2016, 21, 1171–1202. [Google Scholar] [CrossRef]
- Clark, S.N.; Alli, A.S.; Nathvani, R.; Hughes, A.; Ezzati, M.; Brauer, M.; Toledano, M.B.; Baumgartner, J.; Bennett, J.E.; Nimo, J.; et al. Space-time characterization of community noise and sound sources in Accra, Ghana. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Martins, J. Work in and for a healthy city. Urban Des. Int. 2021, 26, 117–121. [Google Scholar] [CrossRef]
- Oke, T.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cabridge University Press: Cabridge, UK, 2017. [Google Scholar]
- Shandas, V.; Skelhorn, C.; Ferwati, S. Urban Adaptation to Climate Change: The Role of Urban Form in Mediating Rising Temperatures; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Afshari, A.; Ramirez, N. Improving the accuracy of simplified urban canopy models for arid regions using site-specific prior information. Urban Clim. 2021, 35, 100722. [Google Scholar] [CrossRef]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Fang, Z.; Tang, T.; Zheng, Z.; Zhou, X.; Liu, W.; Zhang, Y. Thermal responses of workers during summer: An outdoor investigation of construction sites in South China. Sustain. Cities Soc. 2021, 66, 102705. [Google Scholar] [CrossRef]
- Gozalo, G.R.; Morillas, J.M.B.; González, D.M.; Moraga, P.A. Relationships among satisfaction, noise perception, and use of urban green spaces. Sci. Total Environ. 2018, 624, 438–450. [Google Scholar] [CrossRef]
- Huimin, L.; Junjie, Q.; Hui, H. Explore which industries are suitable for open office: Through an experiment on the impact of noise on individual job performance. Noise Control Eng. J. 2019, 67, 422–437. [Google Scholar] [CrossRef]
- Haddad, M.A.; Hellyer, J. Decent Work and Social Protection in Belo Horizonte, Brazil. J. Plan. Educ. Res. 2018, 38, 86–97. [Google Scholar] [CrossRef] [Green Version]
- International Labour Organization (ILO). Goal 8: Promote Inclusive and Sustainable Economic Growth, Employment and Decent Work for All. 2015. Available online: https://www.ilo.org/global/topics/dw4sd/theme-by-sdg-targets/WCMS_556964/lang--en/index.htm (accessed on 10 September 2021).
- Anjos, M.; Targino, A.C.; Krecl, P.; Oukawa, G.Y.; Braga, R.F. Analysis of the urban heat island under different synoptic patterns using local climate zones. Build. Environ. 2020, 185, 107268. [Google Scholar] [CrossRef]
- Dixit, S.; Mandal, S.N.; Thanikal, J.V.; Saurabh, K. Evolution of studies in construction productivity: A systematic literature review (2006–2017). Ain Shams Eng. J. 2019, 10, 555–564. [Google Scholar] [CrossRef]
- Anker, R.; Chernyshev, I.; Egger, P.; Mehran, F.; Ritter, J.A. Measuring decent work with statistical indicators. Int. Labour Rev. 2003, 142, 147–178. [Google Scholar] [CrossRef]
- Bonafoni, S.; Baldinelli, G.; Verducci, P. Sustainable strategies for smart cities: Analysis of the town development effect on surface urban heat island through remote sensing methodologies. Sustain. Cities Soc. 2017, 29, 211–218. [Google Scholar] [CrossRef]
- Liu, H.; Hu, T. How does air quality affect residents’ life satisfaction? Evidence based on multiperiod follow-up survey data of 122 cities in China. Environ. Sci. Pollut. Res. 2021, 28, 61047–61060. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, D. Workplace location and the quality of work: The case of urban-based workers in the UK. Urban Stud. 2021, 58, 2233–2257. [Google Scholar] [CrossRef]
- Monazzam, M.R.; Abolhasannejad, V.; Moasheri, B.N.; Abolhasannejad, V.; Kardanmoghaddam, H. Noise pollution in old and new urban fabric with focus on traffic flow. J. Low Freq. Noise Vib. Act. Control. 2016, 35, 257–263. [Google Scholar] [CrossRef]
- Wu, W.; Chen, Y.; Stephens, M.; Liu, Y. Long working hours and self-rated health: Evidence from Beijing, China. Cities 2019, 95, 1–9. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Guan, D.; Tinoco, D.M.; Xia, J.; Yan, Z.; Yang, J.; Liu, Q.; Huo, H. Assessment of the economic impacts of heat waves: A case study of Nanjing, China. J. Clean. Prod. 2018, 171, 811–819. [Google Scholar] [CrossRef] [Green Version]
- United Nations. The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2021. [Google Scholar]
- International Labor Organization (ILO). The 2030 Development Agenda. 2021. Available online: https://www.ilo.org/global/topics/sdg-2030/goal-8/WCMS_403787/lang--en/index.htm (accessed on 31 June 2021).
- Climate Change Vulnerability Assessment (CCVA). Appendix D: Urban Heat Island Protocol for Mapping Temperature Projections; Kleinfelder: Cambridge, UK, 2015. [Google Scholar]
- Occupational Safety and Health Administration. OSHA Technical Manual (OTM); United States Department of Labor: Washington, DC, USA, 2019.
- Ritchie, R.; Mispy, O. Measuring Progress towards the Sustainable Development Goals. SDG-Tracker.org. 2018. Available online: https://sdg-tracker.org/ (accessed on 31 June 2021).
- Hasle, P.; Vang, J. Designing better interventions: Insights from research on decent work. J. Supply Chain Manag. 2021, 57, 58–70. [Google Scholar] [CrossRef]
- Anner, M. Three labour governance mechanisms for addressing decent work deficits in global value chains. Int. Labour Rev. 2021, 160, 611–629. [Google Scholar] [CrossRef]
- Austin, S.; Sharr, A. The University of Nonstop society: Campus planning, lounge space, and incessant productivity. Arch. Cult. 2021, 9, 69–97. [Google Scholar] [CrossRef]
- Webster, E.; Budlender, D.; Orkin, M. Developing a diagnostic tool and policy instrument for the realization of decent work. Int. Labour Rev. 2015, 154, 123–145. [Google Scholar] [CrossRef]
- Chokhachian, A.; Perini, K.; Giulini, S.; Auer, T. Urban performance and density: Generative study on interdependencies of urban form and environmental measures. Sustain. Cities Soc. 2020, 53, 1–14. [Google Scholar] [CrossRef]
- Zare, S.; Hemmatjo, R.; ElahiShirvan, H.; Malekabad, A.; Ziaei, M.; Nadri, F. Evaluation of individual and environmental sound pessure level and drawing noise-Isosonic maps using surfer V.14 and noise at work V.5.0. Sound Vib. 2021, 55, 163–171. [Google Scholar]
- Palacios, J.; Eichholtz, P.; Kok, N. Moving to productivity: The benefits of healthy buildings. PLoS ONE 2020, 15, e0236029. [Google Scholar] [CrossRef]
- Adams, D.; Smith, M.; Larkham, P.; Abidin, J. Encounters with a future past: Navigating the shifting urban atmospheres of place. J. Urban Des. 2020, 25, 308–327. [Google Scholar] [CrossRef]
- Hassan, D.K.; Elkhateeb, A. Walking experience: Exploring the trilateral interrelation of walkability, temporal perception, and urban ambiance. Front. Arch. Res. 2021, 10, 516–539. [Google Scholar] [CrossRef]
- Park, G.; Evans, G.W. Environmental stressors, urban design and planning: Implications for human behaviour and health. J. Urban Des. 2016, 21, 453–470. [Google Scholar] [CrossRef]
- Idkhan, A.; Baharuddin, F. Occupational health and productivity in noise exposure and room layout. Int. J. Sci. Technol. Res. 2019, 8, 516–522. [Google Scholar]
- Liu, B.; Wu, J.; Chan, K.C. Does air pollution change a firm’s business strategy for employing capital and labor? Bus. Strategy Environ. 2021, 30, 3671–3685. [Google Scholar] [CrossRef]
- Nielsen, K.; Nielsen, M.B.; Saari, E.; Isaksson, K. Workplace resources to improve both employee well-being and performance: A systematic review and meta-analysis. Work. Stress Int. J. Work. Health Organ. 2017, 31, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Stauber, C.; Adams, E.A.; Rothenberg, R.; Dai, D.; Luo, R.; Weaver, S.R.; Prasad, A.; Kano, M.; Heath, J. Measuring the impact of environment on the health of large cities. Int. J. Environ. Res. Public Health 2018, 15, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maskooni, E.; Hashemi, H.; Berndtsson, R.; Arasteh, P.; Kazemi, M. Impact of spatiotemporal land-use and land-cover changes on surface urban heat islands in a semiarid region using Landsat data. Int. J. Digit. Earth 2020, 14, 250–270. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban heat island studies with emphasis on urban pavements: A review. Sustain. Cities Soc. 2020, 63, 1–20. [Google Scholar] [CrossRef]
- Parker, J. The Leeds urban heat island and its implications for energy use and thermal comfort. Energy Build. 2021, 235, 110636. [Google Scholar] [CrossRef]
- Silva, M.; Oliveira, V.; Leal, V. Urban morphology and energy: Progress and prospects. Urban Morphol. 2016, 20, 72–73. [Google Scholar]
- Yin, J.; Overpeck, J.; Peyser, C.; Stouffer, R. Big jump of record warm global mean surface temperature in 2014–2016 related to unusually large oceanic heat releases. Geophys. Res. Lett. 2018, 45, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Levanon, A.; Lavee, E.; Strier, R. Explaining the factors shaping the likelihood of poverty among working families by using a concurrent mixed method design. Soc. Indic. Res. 2021, 157, 1089–1109. [Google Scholar] [CrossRef]
- Matović, N.; Ovesni, K. Interaction of quantitative and qualitative methodology in mixed methods research: Integration and/or combination. Int. J. Soc. Res. Methodol. 2021, 1–15. [Google Scholar] [CrossRef]
- Ramzi, A.I. Evaluation feature extracting from DubaiSat-2 satellite images over planned/unplanned complex study area in Egypt. Ain Shams Eng. J. 2018, 9, 3371–3379. [Google Scholar] [CrossRef]
- Science for a Changing World—USGS. Mapping, Remote Sensing, and Geospatial Data What Are the Band Designations for the Landsat Satellites? 2019. Available online: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites (accessed on 10 September 2021).
- Rendenieks, Z.; Nita, M.D.; Nikodemus, O.; Radeloff, V.C. Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sens. Environ. 2020, 249, 112010. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Urban heat island formation in Greater Cairo: Spatiotemporal analysis of daytime and nighttime land surface temperatures along the urban–rural gradient. Remote Sens. 2021, 13, 1396. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. Analysis of urban built-up areas and surface urban heat island using downscaled MODIS derived land surface temperature data. Geocarto Int. 2017, 32, 900–918. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef]
- Zhou, B.; Lauwaet, D.; Hooyberghs, H.; De Ridder, K.; Kropp, J.; Rybski, D. Assessing seasonality in the surface urban heat island of London. J. Appl. Meteorol. Clim. 2016, 55, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Li, X. Investigating the spatial distribution of resident’s outdoor heat exposure across neighborhoods of Philadelphia, Pennsylvania using urban microclimate modeling. Sustain. Cities Soc. 2021, 72, 1–9. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Xia, B.; Li, Z. Optimized methods for morphological design of mesoscale cities based on performance analysis: Taking the residential urban blocks as examples. Sustain. Cities Soc. 2021, 64, 102489. [Google Scholar] [CrossRef]
- Ilbeigi, M.; Ghomeishi, M.; Dehghanbanadaki, A. Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 2020, 61, 102325. [Google Scholar] [CrossRef]
- Elbardisy, W.M.; Salheen, M.A.; Fahmy, M. Solar Irradiance Reduction Using Optimized Green Infrastructure in Arid Hot Regions: A Case Study in El-Nozha District, Cairo, Egypt. Sustainability 2021, 17, 9617. [Google Scholar] [CrossRef]
- Smith, T.A.; Brown, A. Community-led housing and urban livelihoods: Measuring employment in low-income housing delivery. Habitat Int. 2019, 94, 102061. [Google Scholar] [CrossRef]
- Barnett, J. Urban design for a warming climate: Where to build; when to build; what to build. J. Urban Des. 2020, 25, 3–5. [Google Scholar] [CrossRef]
- De Araújo, L.O.C.; Caldas, C.; Tam, V.W.-Y. Reducing labor productivity losses through a productivity stratification indicator. J. Arch. Eng. 2021, 27, 04020044. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, H. User involvement in design: The four models. Lect. Notes Comput. Sci. 2016, 9754, 141–152. [Google Scholar] [CrossRef]
- Stefansdottir, H. The role of urban atmosphere for non-work activity locations. J. Urban Des. 2018, 23, 319–335. [Google Scholar] [CrossRef]
- Elmarakby, E.; Khalifa, M.; Elshater, A.; Afifi, S. Tailored methods for mapping urban heat islands in Greater Cairo Region. Ain Shams Eng. J. 2021, 13, 101545. [Google Scholar] [CrossRef]
- Niemelä, T.; Levy, K.; Kosonen, R.; Jokisalo, J. Cost-optimal renovation solutions to maximize environmental performance, indoor thermal conditions and productivity of office buildings in cold climate. Sustain. Cities Soc. 2017, 32, 417–434. [Google Scholar] [CrossRef] [Green Version]
- Abusaada, H.; Elshater, A. Effect of people on placemaking and affective atmospheres in city streets. Ain Shams Eng. J. 2021, 12, 3389–3403. [Google Scholar] [CrossRef]
- Ornstein, S.W. A postoccupancy evaluation of workplaces in Sao Paulo, Brazil. Environ. Behav. 1999, 31, 435–462. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Næss, P.; Stefansdottir, H.; Steffansen, R.; Richardson, T. The hidden side of Norwegian cabin fairytale: Climate implications of multi-dwelling lifestyle. Scand. J. Hosp. Tour. 2020, 20, 459–484. [Google Scholar] [CrossRef]
- Abusaada, H.; Elshater, A. Improving visitor satisfaction in Egypt’s Heliopolis historical district. J. Eng. Appl. Sci. 2021, 68, 1–22. [Google Scholar] [CrossRef]
- Abusaada, H.; Elshater, A. Urban design assessment tools: A model for exploring atmospheres and situations. Proc. Inst. Civ. Eng.-Urban Des. Plan. 2021, 173, 238–255. [Google Scholar] [CrossRef]
- Barua, A.; Khataniar, B. Strong or weak sustainability: A case study of emerging Asia. Asia-Pacific Dev. J. 2016, 22, 1–31. [Google Scholar] [CrossRef]
Measurement (M0L) | Latitude | Longitude | Start Time | End Time | Elapsed Time |
---|---|---|---|---|---|
M03 | 30°3′55.116″ N | 31°16′37.2648″ E | 7:02:30 PM | 7:07:30 PM | 0:05:00 |
M04 | 30°3′58.9674″ N | 31°16′16.611″ E | 7:12:08 PM | 7:17:08 PM | 0:05:00 |
M05 | 30°3′49.8276″ N | 31°16′22.3536″ E | 7:18:59 PM | 7:23:59 PM | 0:05:00 |
Satellite | Sensor | Acquisition Date | GMT 1 | Cairo Local Time | Path and Row | Spatial Resolution 2 | Cloud Cover | Temp Measured Unit |
---|---|---|---|---|---|---|---|---|
Landsat 8 | OIL_TIRS | 6 June 2021 | 8:23:45 | 10:23:45 | 176/39 | 100 | 3.80 | °C |
Cairo | |
---|---|
Weather file | EGY_Cairo.Intle.Airport.623660_ETMY.epw |
Latitude/longitude | 30.13-degree north, 31.4-degree East |
Elevation (m) above sea level | 74 |
Data source | ETMY 623660 WMO station number |
Measurement Data | Weather Condition 1 | Leq dBA | L90 dBA | L50 dBA | L10 dBA | ||||
---|---|---|---|---|---|---|---|---|---|
WS | WD | Temp. | Humidity | P | |||||
M03 | 3.5 m/s | NE | 26 °C | 57% | 0 | 67.88 | 69.69 | 63.4 | 59.44 |
M04 | 74.81 | 75.26 | 68.63 | 63.68 | |||||
M05 | 75.54 | 77.43 | 69.99 | 64.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshater, A.; Abusaada, H.; Alfiky, A.; El-Bardisy, N.; Elmarakby, E.; Grant, S. Workers’ Satisfaction vis-à-vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work. Sustainability 2022, 14, 1699. https://doi.org/10.3390/su14031699
Elshater A, Abusaada H, Alfiky A, El-Bardisy N, Elmarakby E, Grant S. Workers’ Satisfaction vis-à-vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work. Sustainability. 2022; 14(3):1699. https://doi.org/10.3390/su14031699
Chicago/Turabian StyleElshater, Abeer, Hisham Abusaada, Abdulmoneim Alfiky, Nardine El-Bardisy, Esraa Elmarakby, and Sandy Grant. 2022. "Workers’ Satisfaction vis-à-vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work" Sustainability 14, no. 3: 1699. https://doi.org/10.3390/su14031699
APA StyleElshater, A., Abusaada, H., Alfiky, A., El-Bardisy, N., Elmarakby, E., & Grant, S. (2022). Workers’ Satisfaction vis-à-vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work. Sustainability, 14(3), 1699. https://doi.org/10.3390/su14031699