A Comparative Study of the Impact of Negative Word of Mouth on Travel Intentions of Chinese and Korean Consumers in Tourism Destinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Negative Word-of-Mouth
2.2. Negative Emotions
2.3. Destination Familiarity
2.4. Traveling Intention
3. Research Model and Hypotheses
3.1. Subsection
3.2. Research Hypotheses
3.2.1. Negative Word of Mouth and Negative Emotions
3.2.2. The Mediating Role of High/Low-Intensity Negative Emotions
3.2.3. Moderating Role of Destination Familiarity
4. Methodology
5. Data Analysis and Results
5.1. Reliability Analysis
5.2. Validity Analysis
5.3. Hypothesis Test
5.4. Mediation Analysis
5.5. Moderating Effect Analysis
6. Discussion and Conclusions
- Actively disseminate positive information about the tourist place and promptly eliminate negative information in the network. Enterprises should form their characteristics of tourist places to enhance consumers’ familiarity with them.
- Different responses are taken depending on the level of consumer familiarity with the destination. Consumers with high familiarity will make self-judgments of negative online information, which will not impact the corporate image and will even stimulate consumers’ desire to protect the destination and can reverse the negative online image to a certain extent. For consumers with low familiarity, enterprises should try their best to reverse the negative online image and transform the negative word-of-mouth; otherwise, there will be a public opinion crisis.
- Companies also need to pay attention to the negative emotions of consumers. Companies can use negative emotions to design publicity plans when conducting online publicity, which will make it easier for consumers to resonate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jalilvand, M.R.; Samiei, N.; Dini, B.; Manzari, P.Y. Examining the structural relationships of electronic word of mouth, destination image, tourist attitude toward destination and travel intention: An integrated approach. J. Destin. Mark. Manag. 2012, 1, 134–143. [Google Scholar] [CrossRef]
- Hernández-Méndez, J.; Muñoz-Leiva, F.; Sánchez-Fernández, J. The influence of e-word-of-mouth on travel decision-making: Consumer profiles. Curr. Issues Tour. 2015, 18, 1001–1021. [Google Scholar] [CrossRef]
- Zarrad, H.; Debabi, M. Analyzing the effect of electronic word of mouth on tourists’ attitude toward destination and travel intention. Int. Res. J. Soc. Sci. 2015, 4, 53–60. [Google Scholar]
- Escalas, J.E.; Bettman, J.R. You are what they eat: The influence of reference groups on consumers’ connections to brands. J. Consum. Psychol. 2003, 13, 339–348. [Google Scholar] [CrossRef]
- Wilson, A.E.; Giebelhausen, M.D.; Brady, M.K. Negative word of mouth can be a positive for consumers connected to the brand. J. Acad. Mark. Sci. 2017, 45, 534–547. [Google Scholar] [CrossRef]
- Ahluwalia, R.; Burnkrant, R.E.; Unnava, H.R. Consumer response to negative publicity: The moderating role of commitment. J. Mark. Res. 2000, 37, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, J.; Soutar, G.; Mazzarol, T. Factors enhancing word-of-mouth influence: Positive and negative service-related messages. Eur. J. Mark. 2014, 48, 336–359. [Google Scholar] [CrossRef]
- Ho-Dac, N.N.; Carson, S.J.; Moore, W.L. The effects of positive and negative online customer reviews: Do brand strength and category maturity matter? J. Mark. 2013, 77, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Rook, D.W. The Buying Impulse. J. Consum. Res. 1987, 14, 189–199. [Google Scholar] [CrossRef]
- Beatty, S.E.; Ferrell, M.E. Impulse Buying: Modeling Its Precursors. J. Retail. 1998, 74, 169–191. [Google Scholar] [CrossRef]
- Xiaofei, Z.; Hai, D. Review of the Internet Word of mouth mechanism. Manag. Rev. 2011, 23, 88–92. [Google Scholar]
- Song, X.B.; Cong, Z.; Dong, D.H. A Study on the Influence of Internet Word of mouth on Consumer Product Behavior. J. Manag. 2011, 23, 559–566. [Google Scholar]
- Escalas, J.E.; Bettman, J.R. Self-construal, reference groups, and brand meaning. J. Consum. Res. 2005, 32, 378–389. [Google Scholar] [CrossRef]
- Xiaobo, T.; Zhuo, S.; Xinseo, Z. An Empirical Study on the Influence of Negative Word of mouth on Consumer Behavior—On Corporate Response Strategies. Manag. Rev. 2013, 25, 101–110. [Google Scholar]
- Cheng, S.Y.Y.; White, T.B.; Chaplin, L.N. The Effects of Self-Brand Connections on Responses to Brand Failure: A New Look at the Consumer-Brand Relationship. J. Consum. Psychol. 2012, 22, 280–288. [Google Scholar] [CrossRef]
- Dubé, L.; Menon, K. Multiple roles of consumption emotions in post-purchase satisfaction with extended service transactions. Int. J. Serv. Ind. Manag. 2000, 11, 287–304. [Google Scholar] [CrossRef]
- Westbrook, R.A.; Oliver, R.L. The dimensionality of consumption emotion patterns and consumer satisfaction. J. Consum. Res. 1991, 18, 84–91. [Google Scholar] [CrossRef]
- Suk-geum, C.; Ji-yong, J.; Chui-ping, L. A Study on the Effect of Emotional Intensity on Usability of Negative Online Reviews. Manag. Rev. 2017, 29, 79–86. [Google Scholar]
- Howard, D.J.; Gengler, C. Emotional Contagion Effects on Product Attitudes. J. Consum. Res. 2001, 28, 189–201. [Google Scholar] [CrossRef]
- Pugh, S.D. Service with a Smile: Emotional Contagion in the Service Encounter. Acad. Manag. J. 2001, 44, 1018–1027. [Google Scholar]
- Cicchetti, D.; Ackerman, B.; Izard, C. Emotions and Emotion Regulation in Developmental Psychopathology. Dev. Psychopathol. 1995, 7, 1–10. [Google Scholar] [CrossRef]
- Chatterjee, P. Online reviews: Do consumers use them. Adv. Consum. Res. 2001, 28, 129–133. [Google Scholar]
- Milman, A.; Pizam, A. The role of awareness and familiarity with a destination: The central Florida case. J. Travel Res. 1995, 33, 21–27. [Google Scholar] [CrossRef]
- Chen, C.C.; Lin, Y.H. Segmenting mainland Chinese tourists to Taiwan by destination familiarity: A factor-cluster approach. Int. J. Tour. Res. 2011, 14, 339–352. [Google Scholar] [CrossRef]
- Woodside, A.G.; Lysonski, S. A general model of traveler destination choice. J. Travel Res. 1989, 27, 8–14. [Google Scholar] [CrossRef]
- Horng, J.S.; Liu, C.H.; Tsai, C.Y. Understanding the impact of culinary brand equity and destination familiarity on travel intentions. Tour. Manag. 2012, 33, 815–824. [Google Scholar] [CrossRef]
- Suyan, S.; Jianying, G. An Empirical Research On Visitors’ Intention To Visit World Cultural Heritage Sites. Hum. Geogr. 2011, 27, 144–149. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Pandey, R.; Rishi, B. Electronic word of mouth (eWOM) research–a comparative bibliometric analysis and future research insight. J. Hosp. Tour. Insights, 2022; ahead of print. [Google Scholar] [CrossRef]
- Al-Bourini, F.A.; Aljawarneh, N.M.; Almaaitah, M.F.; Altahat, S.; Alomari, Z.S.; Sokiyna, M.Y. The Role of E-Word of Mouth in the Relationship between Online Destination Image, E-satisfaction, E-Trust & E-Service Quality for International Tourists Perception. J. Inf. Technol. Manag. 2021, 13, 92–110. [Google Scholar]
- Khatoon, S.; Rehman, V. Negative emotions in consumer brand relationship: A review and future research agenda. Int. J. Consum. Stud. 2021, 45, 719–749. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach for structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
Valid | CHINA (Percent) | KOREA (Percent) | |
---|---|---|---|
Gender | Male | 38 | 37.6 |
Female | 62 | 62.4 | |
Age | 20–30 | 57.8 | 39.5 |
31–40 | 19.5 | 27.2 | |
41–50 | 7.6 | 16.7 | |
51–60 | 9.9 | 10.7 | |
60+ | 5.1 | 5.8 | |
Jobs | Information and communication industry | 4.2 | 4.9 |
Service industry | 24.4 | 25.7 | |
Manufacturing industry | 7.9 | 7.5 | |
Trade and distribution industry | 11.6 | 13.4 | |
Students | 51.8 | 48.4 |
Variable | Definition | Related Research |
---|---|---|
Negative Word of Mouth (NWOM) | I was impressed by the negative word-of-mouth information I see that the negative word-of-mouth message has many supporters The publisher of negative information on the Internet is familiar with information related to the tourist destination Negative word-of-mouth information on the Internet is very convincing | Bi Jidong (2010); Zhang Jiemei (2019) |
High-intensity Negative Emotions (HNE) | I will feel angry I will feel annoyed I will feel irritable | Westbrook & Oliver (1991); Feng Jiao, Lv Yilin, He Qingwen (2012) |
Low-intensity Negative Emotions (LNE) | I will be disappointed I will feel disgusted I will feel frustrated | |
Destination Familiarity (DF) | I am familiar with the tourist destination I can tell the characteristics and signs of the tourist destination I have visited this tourist destination many times My relatives/colleagues live in this tourist destination | Milman & Pizam (1995) |
Travel Intention (TI) | I want to travel to this tourist destination I expect to travel to this tourist destination in the future I will often recommend or talk about this tourist destination with my friends and family I will give priority to this destination if I have travel plans | Woodside & Lysonski (1989); Liu Wenjuan (2018) |
Variable | Cronbach’s Alpha (CHINA) | Cronbach’s Alpha (KOREA) | Items |
---|---|---|---|
NWOM | 0.869 | 0.89 | 4 |
HNE | 0.854 | 0.846 | 3 |
LNE | 0.834 | 0.813 | 3 |
DF | 0.84 | 0.828 | 4 |
TI | 0.908 | 0.902 | 4 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
TI2 | 0.84 | 0.134 | 0.114 | 0.248 | 0.156 |
TI3 | 0.827 | 0.18 | 0.097 | 0.213 | 0.158 |
TI1 | 0.807 | 0.133 | 0.133 | 0.232 | 0.139 |
TI4 | 0.797 | 0.18 | 0.131 | 0.225 | 0.173 |
NWOM3 | 0.12 | 0.836 | 0.157 | 0.133 | 0.078 |
NWOM4 | 0.191 | 0.825 | 0.171 | 0.11 | 0.047 |
NWOM2 | 0.079 | 0.808 | 0.205 | 0.029 | 0.095 |
NWOM1 | 0.167 | 0.773 | 0.178 | 0.043 | 0.059 |
DF4 | 0.136 | 0.139 | 0.828 | 0.039 | 0.102 |
DF2 | 0.071 | 0.215 | 0.801 | 0.002 | 0.094 |
DF1 | 0.066 | 0.183 | 0.789 | 0.046 | 0.039 |
DF3 | 0.126 | 0.137 | 0.754 | 0.122 | 0.032 |
HNE3 | 0.234 | 0.076 | 0.038 | 0.842 | 0.108 |
HNE2 | 0.23 | 0.106 | 0.052 | 0.835 | 0.083 |
HNE1 | 0.329 | 0.097 | 0.118 | 0.796 | 0.111 |
LNE2 | 0.166 | 0.067 | 0.061 | 0.102 | 0.867 |
LNE3 | 0.112 | 0.076 | 0.1 | 0.035 | 0.846 |
LNE1 | 0.202 | 0.093 | 0.074 | 0.147 | 0.806 |
KMO | 0.878 | ||||
Bartlett’s Test of Sphericity Approx. | Chi-Square | 3459.494 | |||
df | 153 | ||||
Sig. | 0.000 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
TI2 | 0.846 | 0.201 | 0.136 | 0.194 | 0.112 |
TI3 | 0.829 | 0.141 | 0.117 | 0.189 | 0.154 |
TI4 | 0.806 | 0.135 | 0.146 | 0.206 | 0.151 |
TI1 | 0.799 | 0.175 | 0.149 | 0.206 | 0.121 |
NWOM4 | 0.162 | 0.882 | 0.054 | 0.121 | 0.029 |
NWOM1 | 0.179 | 0.85 | 0.085 | 0.126 | 0.019 |
NWOM3 | 0.088 | 0.847 | 0.07 | 0.037 | 0.002 |
NWOM2 | 0.145 | 0.804 | 0.096 | 0.094 | 0.103 |
DF4 | 0.14 | 0.096 | 0.828 | 0.058 | 0.082 |
DF2 | 0.093 | 0.039 | 0.823 | 0.045 | 0.077 |
DF1 | 0.051 | 0.073 | 0.793 | 0.053 | 0.035 |
DF3 | 0.166 | 0.075 | 0.741 | 0.081 | 0.046 |
HNE3 | 0.206 | 0.09 | 0.076 | 0.842 | 0.099 |
HNE2 | 0.2 | 0.129 | 0.05 | 0.827 | 0.099 |
HNE1 | 0.281 | 0.134 | 0.119 | 0.803 | 0.153 |
LNE2 | 0.124 | 0.018 | 0.068 | 0.107 | 0.868 |
LNE3 | 0.099 | 0.061 | 0.092 | 0.071 | 0.835 |
LNE1 | 0.186 | 0.046 | 0.059 | 0.134 | 0.794 |
KMO | 0.871 | ||||
Bartlett’s Test of Sphericity Approx. | Chi-Square | 4423.229 | |||
df | 153 | ||||
Sig. | 0.000 |
Items | CMIN/DF | NFI | TLI | CFI | RMSEA | GFI | AGFI |
---|---|---|---|---|---|---|---|
Ideal value | >1, <3 | >0.9 | >0.9 | >0.9 | <0.08 | >0.8 | >0.8 |
China | 1.64 | 0.958 | 0.979 | 0.983 | 0.043 | 0.956 | 0.936 |
Korea | 2.072 | 0.959 | 0.973 | 0.978 | 0.048 | 0.955 | 0.936 |
Estimate | S.E. | C.R. | p | |||
---|---|---|---|---|---|---|
HIGH | ← | NWOM | 0.349 | 0.061 | 5.762 | *** |
LOW | ← | NWOM | 0.25 | 0.055 | 4.52 | *** |
Intention | ← | LOW | 0.3 | 0.053 | 5.705 | *** |
Intention | ← | HIGH | 0.532 | 0.051 | 10.336 | *** |
Estimate | S.E. | C.R. | p | |||
---|---|---|---|---|---|---|
HIGH | ← | NWOM | 0.393 | 0.054 | 7.251 | *** |
LOW | ← | NWOM | 0.158 | 0.05 | 3.149 | ** |
INTENTION | ← | LOW | 0.232 | 0.047 | 4.976 | *** |
INTENTION | ← | HIGH | 0.481 | 0.045 | 10.655 | *** |
Path | Intermediary Effect | BootSE | 95% Confidence Interval CI | Ratio of Total Effect | |
---|---|---|---|---|---|
Lower | Upper | ||||
TOTAL | 0.1524 | 0.0308 | 0.097 | 0.218 | 44% |
HNE | 0.1076 | 0.0263 | 0.0608 | 0.1643 | 31% |
LNE | 0.0448 | 0.0129 | 0.0217 | 0.0727 | 13% |
HNE-LNE | 0.0629 | 0.0278 | 0.0112 | 0.1209 | - |
Path | Intermediary Effect | BootSE | 95% Confidence Interval CI | Ratio of Total Effect | |
---|---|---|---|---|---|
Lower | Upper | ||||
TOTAL | 0.1355 | 0.0242 | 0.0893 | 0.1857 | 36% |
HNE | 0.1097 | 0.0217 | 0.0685 | 0.1548 | 30% |
LNE | 0.0258 | 0.0097 | 0.0094 | 0.0473 | 7% |
HNE-LNE | 0.0839 | 0.0233 | 0.0406 | 0.1326 | - |
CHINA | ||||||
---|---|---|---|---|---|---|
HNE | TI | |||||
Coeff. | SE | T | Coeff | SE | T | |
Constant | −0.0554 | 0.0434 | −1.2784 | −0.0595 | 0.0372 | −1.5996 |
NWOM | 0.2239 | 0.0560 | 4.0009 *** | 0.2901 | 0.0480 | 6.0403 *** |
DF | 0.1142 | 0.0499 | 2.2868 *** | 0.1617 | 0.0429 | 3.7720 *** |
NWOM × DF | 0.1812 | 0.0542 | 3.3438 *** | 0.1946 | 0.0465 | 4.1841 *** |
R-sq | 0.1068 | 0.2116 | ||||
F | 13.9145 *** | 31.2250 *** | ||||
KOREA | ||||||
HNE | TI | |||||
Coeff. | SE | T | Coeff | SE | T | |
Constant | −0.0317 | 0.0338 | −0.9374 | −0.0381 | 0.0282 | −1.3513 |
NWOM | 0.2216 | 0.0486 | 4.5637 *** | 0.2534 | 0.0404 | 6.2692 *** |
DF | 0.1454 | 0.0393 | 3.6993 *** | 0.2054 | 0.0327 | 6.2789 *** |
NWOM × DF | 0.2495 | 0.0532 | 4.6873 *** | 0.2993 | 0.0443 | 6.7572 *** |
R-sq | 0.1516 | 0.2806 | ||||
F | 27.5115 *** | 60.0808 *** |
DF | Effect | BootSE | BootLLCI | BootULCI | |
---|---|---|---|---|---|
CHINA | eff1(M + 1 SD) | 0.0148 | 0.0209 | −0.0229 | 0.0605 |
eff2 (M) | 0.0971 | 0.0313 | 0.0384 | 0.1618 | |
eff3(M − 1 SD) | 0.2424 | 0.0647 | 0.1248 | 0.3779 | |
KOREA | eff1(M + 1 SD) | 0.0014 | 0.0185 | −0.0389 | 0.0358 |
eff2 (M) | 0.0766 | 0.0210 | 0.0365 | 0.1187 | |
eff3(M − 1SD) | 0.2082 | 0.0465 | 0.1246 | 0.3068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, Z. A Comparative Study of the Impact of Negative Word of Mouth on Travel Intentions of Chinese and Korean Consumers in Tourism Destinations. Sustainability 2022, 14, 2062. https://doi.org/10.3390/su14042062
Li W, Liu Z. A Comparative Study of the Impact of Negative Word of Mouth on Travel Intentions of Chinese and Korean Consumers in Tourism Destinations. Sustainability. 2022; 14(4):2062. https://doi.org/10.3390/su14042062
Chicago/Turabian StyleLi, Weijia, and Ziyang Liu. 2022. "A Comparative Study of the Impact of Negative Word of Mouth on Travel Intentions of Chinese and Korean Consumers in Tourism Destinations" Sustainability 14, no. 4: 2062. https://doi.org/10.3390/su14042062
APA StyleLi, W., & Liu, Z. (2022). A Comparative Study of the Impact of Negative Word of Mouth on Travel Intentions of Chinese and Korean Consumers in Tourism Destinations. Sustainability, 14(4), 2062. https://doi.org/10.3390/su14042062