Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of Sensor
2.3. Instruments
2.4. Real Sample Preparation
2.5. Electrochemical Measurement of [C4mim][Cl]/Pt/SWCNTs/CPE
3. Results
3.1. Charactrization of Modified Electrode
3.2. pH Investigation
3.3. Modification Effect
3.4. Scan Rate Study and Stability Invesigation
3.5. Analytical Investigation
3.6. Selectivity Investigation
3.7. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mustafa, F.; Andreescu, S. Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 2018, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Kuswandi, B.; Wicaksono, Y.; Abdullah, A.; Heng, L.Y.; Ahmad, M. Smart packaging: Sensors for monitoring of food quality and safety. Sens. Instrum. Food Qual. Saf. 2011, 5, 137–146. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Benny, L.; John, A.; Varghese, A.; Hegde, G.; George, L. Waste elimination to porous carbonaceous materials for the application of electrochemical sensors: Recent developments. J. Clean. Prod. 2021, 290, 125759. [Google Scholar] [CrossRef]
- Tinggi, U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhagen, H.; Schilderman, P.A.; Kleinjans, J.C. Butylated hydroxyanisole in perspective. Chem. Biol. Interact. 1991, 80, 109–134. [Google Scholar] [CrossRef]
- Leslie, S.W.; Gad, S.C.; Acosta, D. Cytotoxicity of butylated hydroxytoluene and butylated hydroxyanisole in cultured heart cells. Toxicology 1978, 10, 281–289. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv. 2020, 10, 19309–19336. [Google Scholar] [CrossRef]
- Boyce, M.C. Simultaneous determination of antioxidants, preservatives and sweeteners permitted as additives in food by mixed micellar electrokinetic chromatography. J. Chromatogr. A 1999, 847, 369–375. [Google Scholar] [CrossRef]
- Cozzolino, D. Infrared spectroscopy as a versatile analytical tool for the quantitative determination of antioxidants in agricultural products, foods and plants. Antioxidants 2015, 4, 482–497. [Google Scholar] [CrossRef]
- Alizadeh, M.; Mehmandoust, M.; Nodrat, O.; Salmanpour, S.; Erk, N. A glassy carbon electrode modified based on molybdenum disulfide for determination of folic acid in the real samples. J. Food Meas. Charact. 2021, 15, 5622–5629. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Erk, N.; Alizadeh, M.; Salmanpour, S. Voltammetric carbon nanotubes based sensor for determination of tryptophan in the milk sample. J. Food Meas. Charact. 2021, 15, 5288–5295. [Google Scholar] [CrossRef]
- Tajik, S.; Orooji, Y.; Karimi, F.; Ghazanfari, Z.; Beitollahi, H.; Shokouhimehr, M.; Varma, R.S.; Jang, H.W. High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J. Food Meas. Charact. 2021, 15, 4617–4622. [Google Scholar] [CrossRef]
- Fu, L.; Chen, F.; Zhao, S.; Yu, J.; Karimi-Maleh, H.; Lin, C.-T. Analysis of coumarin in food and plant tissue without extraction based on voltammetry of microparticles. J. Food Meas. Charact. 2021, 15, 5439–5444. [Google Scholar] [CrossRef]
- Zabihpour, T.; Shahidi, S.-A.; Karimi-Maleh, H.; Ghorbani-HasanSaraei, A. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe 2 O 4 nanoparticle/ionic liquid sensor. J. Food Meas. Charact. 2020, 14, 1039–1045. [Google Scholar] [CrossRef]
- Karimi, F.; Bijad, M.; Farsi, M.; Vahid, A.; Asari-Bami, H.; Wen, Y.; Ganjali, M.R. A new nanostructure square wave voltammetric platform for determination of tert-butylhydroxyanisole in food samples. Curr. Anal. Chem. 2019, 15, 172–176. [Google Scholar] [CrossRef]
- Hurtubise, R.; Latz, H.W. Fluorimetric determination of butylated hydroxy anisole in food products and packaging material. J. Agric. Food Chem. 1970, 18, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.; Stuckey, B. Food Antioxidants, Determination of Butylated Hydroxyanisole and Butylated Hydroxytoluene in Potato Granules by Gas-Liquid Chromatography. J. Agric. Food Chem. 1961, 9, 283–285. [Google Scholar] [CrossRef]
- Xiang, Q.; Gao, Y.; Xu, Y.; Wang, E. Capillary electrophoresis-amperometric determination of antioxidant propyl gallate and butylated hydroxyanisole in foods. Anal. Sci. 2007, 23, 713–717. [Google Scholar] [CrossRef] [Green Version]
- Yankah, V.V.; Ushio, H.; Ohshima, T.; Koizumi, C. Quantitative determination of butylated hydroxyanisole, butylated hydroxytoluene, and tert-butyl hydroquinone in oils, foods, and biological fluids by high-performance liquid chromatography with fluorometric detection. Lipids 1998, 33, 1139–1145. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Erk, N.; Karaman, C.; Karimi, F.; Salmanpour, S. Sensitive and selective electrochemical detection of epirubicin as anticancer drug based on nickel ferrite decorated with gold nanoparticles. Micromachines 2021, 12, 1334. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Erk, N.; Karaman, C.; Karaman, O. An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@ MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. Chemosphere 2021, 291, 132807. [Google Scholar] [CrossRef]
- Senturk, H.; Eksin, E.; Zeybek, U.; Erdem, A. Detection of Senecionine in Dietary Sources by Single-Use Electrochemical Sensor. Micromachines 2021, 12, 1585. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zheng, Y.; Zhang, P.; Lai, G. Quantification of silicon in rice based on an electrochemical sensor via an amplified electrocatalytic strategy. Micromachines 2021, 12, 1048. [Google Scholar] [CrossRef]
- Moghadam, F.H.; Taher, M.A.; Agheli, H. Electroanalytical Monitoring of Glutathione in Biological Fluids Using Novel Pt/SWCNTs-Ionic Liquid Amplified Sensor. Top. Catal. 2022. [Google Scholar] [CrossRef]
- Yang, R.; Fan, B.; Wang, S.a.; Li, L.; Li, Y.; Li, S.; Zheng, Y.; Fu, L.; Lin, C.-T. Electrochemical Voltammogram Recording for Identifying Varieties of Ornamental Plants. Micromachines 2020, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- Low, S.S.; Ji, D.; Chai, W.S.; Liu, J.; Khoo, K.S.; Salmanpour, S.; Karimi, F.; Deepanraj, B.; Show, P.L. Recent Progress in Nanomaterials Modified Electrochemical Biosensors for the Detection of MicroRNA. Micromachines 2021, 12, 1409. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L. Horseradish Peroxidase Labelled-Sandwich Electrochemical Sensor Based on Ionic Liquid-Gold Nanoparticles for Lactobacillus brevis. Micromachines 2021, 12, 75. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Arbabzadeh, O.; Khaaki, P.; Pourmohammad, S.; Khataee, A.; Orooji, Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ. Res. 2022, 204, 112082. [Google Scholar] [CrossRef] [PubMed]
- Salmanpour, S.; Abbasghorbani, M.; Karimi, F.; Bavandpour, R.; Wen, Y. Electrocatalytic determination of cysteamine uses a nanostructure based electrochemical sensor in pharmaceutical samples. Curr. Anal. Chem. 2017, 13, 40–45. [Google Scholar] [CrossRef]
- John, A.; Benny, L.; Cherian, A.R.; Narahari, S.Y.; Varghese, A.; Hegde, G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review. J. Nanostruct. Chem. 2021, 11, 1–31. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Çakar, S.; Özacar, M.; Salmanpour, S.; Erk, N. Electrochemical sensor for facile and highly selective determination of antineoplastic agent in real samples using glassy carbon electrode modified by 2D-MoS2 NFs/TiO2 NPs. Top. Catal. 2021. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Fu, L.; Sanati, A.L.; Alizadeh, M.; Karaman, C.; Orooji, Y. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 2022, 423, 127058. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Azar, P.A.; Mozaffari, S.A.; Karimi-Maleh, H.; Tamaddon, A.-M. A DNA based biosensor amplified with ZIF-8/ionic liquid composite for determination of mitoxantrone anticancer drug: An experimental/docking investigation. Front. Chem. 2020, 8, 814. [Google Scholar] [CrossRef]
- Koshki, M.-S.; Baghayeri, M.; Fayazi, M. Application of sepiolite/FeS2 nanocomposite for highly selective detection of mercury (II) based on stripping voltammetric analysis. J. Food Meas. Charact. 2021, 15, 5318–5325. [Google Scholar] [CrossRef]
- Moghaddam, A.; Zamani, H.A.; Karimi-Maleh, H. A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor. Micromachines 2021, 12, 437. [Google Scholar] [CrossRef]
- Salmanpour, S.; Karimi, F.; Khalilzadeh, M.A.; Gupta, V.K.; Keyvanfard, M.; Bagheri, H. Liquid phase determination of isuprel in pharmaceutical and biological samples using a nanostructure modified carbon paste electrode. J. Mol. Liq. 2015, 201, 108–112. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2021, 291, 132928. [Google Scholar] [CrossRef]
- Gupta, V.K.; Karimi-Maleh, H.; Sadegh, R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 2015, 10, 303–316. [Google Scholar]
- Fouladgar, M. CuO-CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs. J. Electrochem. Soc. 2018, 165, B559. [Google Scholar] [CrossRef]
- Moshirian-Farahi, S.S.; Zamani, H.A.; Abedi, M. Nano-molar level determination of isoprenaline in pharmaceutical and clinical samples; A nanostructure electroanalytical strategy. Eurasian Chem. Commun. 2020, 2, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Hussain, R.T.; Islam, A.S.; Khairuddean, M.; Suah, F.B.M. A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alex. Eng. J. 2021, 61, 4209–4218. [Google Scholar]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021, 6, 75–81. [Google Scholar]
- Cheng, Z.; Meng, J.; Wang, X. Preparation of wood-based filter loaded with Ag nanoparticles and its catalytic degradation performance on organic dye. J. For. Eng. 2020, 5, 94–98. [Google Scholar]
- Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostruct. Chem. 2021. [Google Scholar] [CrossRef]
- Nangare, S.N.; Patil, S.R.; Patil, A.G.; Khan, Z.G.; Deshmukh, P.K.; Tade, R.S.; Mahajan, M.R.; Bari, S.B.; Patil, P.O. Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: Current challenges and future prospects. J. Nanostruct. Chem. 2021. [Google Scholar] [CrossRef]
- Xia, H.; Jiahuan, A.N.; Zhang, W.; GE, C.; Zuo, S. Effect of the metal-support interaction on catalytic oxidation performances of HMF on Ag nanoparticles. J. For. Eng. 2020, 5, 88–93. [Google Scholar]
- Muhammad, T.; Waqas, H.; Manzoor, U.; Farooq, U.; Rizvi, Z.F. On doubly stratified bioconvective transport of Jeffrey nanofluid with gyrotactic motile microorganisms. Alex. Eng. J. 2022, 61, 1571–1583. [Google Scholar] [CrossRef]
- Bai, S.; Han, C.; Ni, Z.; Ni, Y.; Lyu, Y.; Ye, X. Effect of polyethylene glycol(PEG)on properties of the surface modified cellulose nanofiber(CNF)/polylactic acid(PLA)composite. J. For. Eng. 2020, 5, 62–68. [Google Scholar]
- Rajabi, M.; Moradi, O.; Mazlomifar, A. Adsorption of methyl orange dye from water solutions by carboxylate group functionalized multi-walled carbon nanotubes. Int. J. Nano Dimens. 2015, 6, 227–240. [Google Scholar]
- Zhang, Y.; Wei, L.; Lu, L.; Gan, L.; Pan, M. Adsorption-photocatalytic properties of cellulose nanocrystal supported ZnO nanocomposites. J. For. Eng. 2020, 5, 29–35. [Google Scholar]
- Keyikoglu, R.; Khataee, A.; Lin, H.; Orooji, Y. Vanadium (V)-doped ZnFe LDH for enhanced sonocatalytic degradation of pymetrozine. Chem. Eng. J. 2022, 434, 134730. [Google Scholar] [CrossRef]
- Taherian, Z.; Gharahshiran, V.S.; Khataee, A.; Orooji, Y. Synergistic effect of freeze-drying and promoters on the catalytic performance of Ni/MgAl layered double hydroxide. Fuel 2021, 311, 122620. [Google Scholar] [CrossRef]
- Miao, X.; Lin, J.; Bian, F. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J. Bioresour. Bioprod. 2020, 5, 26–36. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, İ.A.; Karaman, O.; Karaman, C. The production of rGO/RuO2 aerogel supercapacitor and analysis of its electrochemical performances. Ceram. Int. 2021, 47, 34514–34520. [Google Scholar] [CrossRef]
- Yorseng, K.; Siengchin, S.; Ashok, B.; Rajulu, A.V. Nanocomposite Egg Shell Powder with in situ Generated Silver Nanoparticles Using Inherent Collagen as Reducing Agent. J. Bioresour. Bioprod. 2020, 5, 101–107. [Google Scholar] [CrossRef]
- Babu, A.M.; Rajeev, R.; Thadathil, D.A.; Varghese, A.; Hegde, G. Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. J. Nanostruct. Chem. 2021. [Google Scholar] [CrossRef]
- Karaman, C. Orange Peel Derived-Nitrogen and Sulfur Co-doped Carbon Dots: A Nano-booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis 2021, 33, 1356–1369. [Google Scholar] [CrossRef]
- Akça, A.; Karaman, O.; Karaman, C. Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: A density functional theory perspective. ECS J. Solid State Sci. Technol. 2021, 10, 041003. [Google Scholar] [CrossRef]
- Arefi-Oskoui, S.; Khataee, A.; Behrouz, S.J.; Vatanpour, V.; Gharamaleki, S.H.; Orooji, Y.; Safarpour, M. Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep. Purif. Technol. 2022, 280, 119822. [Google Scholar] [CrossRef]
- Taherian, Z.; Khataee, A.; Han, N.; Orooji, Y. Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. J. Ind. Eng. Chem. 2021. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K. Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: A docking/experimental investigation. Ind. Eng. Chem. Res. 2021, 60, 816–823. [Google Scholar] [CrossRef]
- Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.-A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact. 2018, 12, 634–640. [Google Scholar] [CrossRef]
- Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem. 2011, 656, 2–16. [Google Scholar] [CrossRef]
- Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 2008, 607, 126–135. [Google Scholar] [CrossRef]
- Zabihpour, T.; Shahidi, S.-A.; Karimi Maleh, H.; Ghorbani-HasanSaraei, A. MnFe2O4/1-Butyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode: An amplified food sensor for determination of gallic acid in the presence of ferulic acid as two phenolic antioxidants. Eurasian Chem. Commun. 2020, 2, 362–373. [Google Scholar]
- Thomas, D.; Rasheed, Z.; Jagan, J.S.; Kumar, K.G. Study of kinetic parameters and development of a voltammetric sensor for the determination of butylated hydroxyanisole (BHA) in oil samples. J. Food Sci. Technol. 2015, 52, 6719–6726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, Z.; Vikraman, A.E.; Thomas, D.; Jagan, J.S.; Kumar, K.G. Carbon-nanotube-based sensor for the determination of butylated hydroxyanisole in food samples. Food Anal. Methods 2015, 8, 213–221. [Google Scholar] [CrossRef]
- Jayasri, D.; Narayanan, S.S. Manganese (II) hexacyanoferrate based renewable amperometric sensor for the determination of butylated hydroxyanisole in food products. Food Chem. 2007, 101, 607–614. [Google Scholar] [CrossRef]
- Manoranjitham, J.J.; Narayanan, S.S. Electrochemical sensor for determination of butylated hydroxyanisole (BHA) in food products using poly O-cresolphthalein complexone coated multiwalled carbon nanotubes electrode. Food Chem. 2021, 342, 128246. [Google Scholar] [CrossRef]
Electrode | Mediator | LOD (µM) | LDR (µM) | Ref. |
---|---|---|---|---|
Glassy carbon electrode | Poly L−cysteine | 0.1 | 1.0–10.0 | [67] |
Platinum | Multiwalled carbon nanotube | 0.094 | 0.1–1.0 | [68] |
Graphite | Manganese (II) hexacyanoferate | 0.05 | 0.49–142 | [69] |
Paraffin wax impregnated graphite | O-cresolphthalein complexone (OC) over the multiwalled carbon nanotubes | 0.11 | 0.33–110 | [70] |
Carbon paste | [C4mim][Cl]/Pt/SWCNTs | 0.0005 | 0.001–300 | This work |
Species | Tolerance Limits (WSubstance/WBHA) |
---|---|
glucose, citric acid, and fructose | 400 |
Starch | saturation |
SCN−, Br−, Ca2+, K+, Na+ | 1000 |
glycine, lucine, phenylalanine | 500 |
Sample | BHA Added (µM) | BHA Expected (µM) | BHA Founded (µM) | Recovery% |
---|---|---|---|---|
Orange juice | --- | --- | <LOD | --- |
10.00 | 10.00 | 10.43 ± 0.87 | 104.3 | |
Edible oil | --- | --- | <LOD | --- |
20.00 | 20.00 | 19.65 ± 0.98 | 98.25 | |
Wastewater | --- | --- | <LOD | --- |
15.00 | 15.00 | 15.63 ± 0.79 | 104.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arab, Z.; Jafarian, S.; Karimi-Maleh, H.; Roozbeh Nasiraie, L.; Ahmadi, M. Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor. Sustainability 2022, 14, 2169. https://doi.org/10.3390/su14042169
Arab Z, Jafarian S, Karimi-Maleh H, Roozbeh Nasiraie L, Ahmadi M. Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor. Sustainability. 2022; 14(4):2169. https://doi.org/10.3390/su14042169
Chicago/Turabian StyleArab, Zahra, Sara Jafarian, Hassan Karimi-Maleh, Leila Roozbeh Nasiraie, and Mohammad Ahmadi. 2022. "Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor" Sustainability 14, no. 4: 2169. https://doi.org/10.3390/su14042169
APA StyleArab, Z., Jafarian, S., Karimi-Maleh, H., Roozbeh Nasiraie, L., & Ahmadi, M. (2022). Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor. Sustainability, 14(4), 2169. https://doi.org/10.3390/su14042169