Farm-Level Technical Efficiency and Its Determinants of Rice Production in Indo-Gangetic Plains: A Stochastic Frontier Model Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure
2.2. Theoretical Basis of Technical Efficiency
2.3. Specification of Frontier Model
2.4. Estimation of the Stochastic Frontier Model
2.5. Estimation of Technical Efficiency and Technical Inefficiency of Individual Rice Growers
3. Results
3.1. Summary of the Statistics Variables
3.2. Cost Production
3.3. Maximum Likelihood Estimation Results of Technical Efficiency and Inefficiency Model
3.3.1. Estimation of Technical Efficiency Model
3.3.2. Estimation of Technical Inefficiency Model
3.4. Profitability Ratio
3.5. Ranges of Technical Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pramanick, B.; Brahmachari, K.; Kar, S.; Mahapatra, B. Can foliar application of seaweed sap improve the quality of rice grown under rice–potato–greengram crop sequence with better efficiency of the system? J. Appl. Phycol. 2020, 32, 3377–3386. [Google Scholar] [CrossRef]
- FAO. Statistical Yearbook; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Samarpitha, A.; Vasudev, N.; Suhasini, K. Technical, economic and allocative efficiencies of rice farms in Nalgonda district of Telangana state. Econ. Aff. 2016, 61, 365–374. [Google Scholar] [CrossRef]
- Reddy, A.; Sen, C. Technical inefficiency in rice production and its relationship with farm-specific socio-economic characteristics. Indian J. Agric. Econ. 2004, 59, 259–267. [Google Scholar]
- Singh, V.K.; Gautam, P.; Nanda, G.; Dhaliwal, S.S.; Pramanick, B.; Meena, S.S.; Alsanie, W.F.; Gaber, A.; Sayed, S.; Hossain, A. Soil Test Based Fertilizer Application Improves Productivity, Profitability and Nutrient Use Efficiency of Rice (Oryza sativa L.) under Direct Seeded Condition. Agronomy 2021, 11, 1756. [Google Scholar] [CrossRef]
- Walker, T.S.; Ryan, J.G. Village and Household Economics in India’s Semi-Arid Tropics; Johns Hopkins University Press: Baltimore, MA, USA, 1990. [Google Scholar]
- Wu, W. Estimation of technical efficiency and output growth decomposition for small-scale rice farmers in Eastern India. J. Agribus. Dev. Emerg. Econ. 2020, 10, 139–156. [Google Scholar] [CrossRef]
- GOI. Agricultural Statistics at a Glance 2018; Ministry of Agriculture and Farmers Welfare, Directorate of Economics and Statistics: New Delhi, India, 2018.
- United States Department of Agriculture(USDA). F.A.S. Commodity Intelligence Report; USDA: Washington, DC, USA, 2015.
- United States Department of Agriculture(USDA). E.R.S. Rice Outlook; USDA: Washington, DC, USA, 2020.
- Cai, H.; Yan, T. Technology efficiency or allocation efficiency: The inverse relationship in China’s cereal production. China Agric. Econ. Rev. 2019, 11, 237–252. [Google Scholar] [CrossRef]
- Song, G.; Xiao, J.; Yu, Y.; Shen, L. A techno-economic assessment of SNG production from agriculture residuals in China. Energy Sources Part B Econ. Plan. Policy 2016, 11, 465–471. [Google Scholar] [CrossRef]
- Tiep, N.C.; Wang, M.; Mohsin, M.; Kamran, H.W.; Yazdi, F.A. An assessment of power sector reforms and utility performance to strengthen consumer self-confidence towards private investment. Econ. Anal. Policy 2021, 69, 676–689. [Google Scholar] [CrossRef]
- Chuong, H.N. Determinants of efficiency in rice production of farmers in Viet Nam rural. Sci. Technol. Dev. J.-Econ. Law Manag. 2020, 4, 715–722. [Google Scholar] [CrossRef]
- Mishra, M.K.; Sisodia, B.V.S.; Tripathi, R.K.; Ravita; Kumar, L.; Tanwar, N. Growth rate and trend analysis of rice crop in Uttar pradesh. Plant Arch. 2020, 20, 213–218. [Google Scholar]
- Choudhary, B.B.; Sirohi, S. Understanding vulnerability of agricultural production system to climatic stressors in North Indian Plains: A meso-analysis. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Mbam, B.; Edeh, H. Determinants of farm productivity among smallholder rice farmers in Anambra State, Nigeria. J. Anim. Plant Sci. JAPS 2011, 9, 1187–1191. [Google Scholar]
- Joshi, G.; Bauer, S. Farmers’ choice of the modern rice varieties in the rainfed ecosystem of Nepal. J. Agric. Rural. Dev. Trop. Subtrop. JARTS 2006, 107, 120–138. [Google Scholar]
- Akinbile, L. Determinants of productivity level among rice farmers in Ogun State, Nigeria. In Proceedings of the African Crop Science Conference, El-Minia, Egypty, 27–31 October 2007; pp. 1339–1344. [Google Scholar]
- Ayoola, J.; Dangbegnon, C.; Daudu, C.; Mando, A.; Kudi, T.; Amapu, I.; Adeosun, J.; Ezui, K. Socio-economic factors influencing rice production among male and female farmers in Northern Guinea Savanna Nigeria: Lessons for promoting gender equity in action research. Agric. Biol. J. N. Am. 2011, 2, 1010–1014. [Google Scholar] [CrossRef]
- Jirarud, S.; Suwanmaneepong, S.; Mankeb, P. Farmer and Farm Characteristics Affecting Rice Production on Large Agricultural Plot Scheme: A Case of Khlong Khuean District, Chachoengsao Province, Thailand. Int. J. Agric. Technol. 2016, 12, 1821–1831. [Google Scholar]
- Osanyinlusi, O.I.; Adenegan, K.O. The determinants of rice farmers’ productivity in Ekiti State, Nigeria. Greener J. Agric. Sci. 2016, 6, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Tanko, M.; Iddrisu, A.; Alidu, A.F. Determinants of rice yield in Northern region of Ghana, the role of policy. Asian J. Agric. Ext. Econ. Sociol. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Ayedun, B.; Adeniyi, A. Determinants of rice production of small-scale farmers in mono-cropping and intercropping systems in Nigeria. Acta Sci. Nutr. Health 2019, 3, 75–85. [Google Scholar]
- Cabrera, V.E.; Solis, D.; Del Corral, J. Determinants of technical efficiency among dairy farms in Wisconsin. J. Dairy Sci. 2010, 93, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Ali, S.; Khan, M. Technical efficiency of wheat production in district Peshawar, Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric. 2014, 30, 433–441. [Google Scholar]
- Kadiri, F.; Eze, C.; Orebiyi, J.; Lemchi, J.; Ohajianya, D.; Nwaiwu, I. Technical efficiency in paddy rice production in Niger Delta Region of Nigeria. Glob. J. Agric. Res. 2014, 2, 33–43. [Google Scholar]
- GOUP. Government of Uttar Pradesh. Available online: https://up.gov.in/Social-Demography.pdf (accessed on 22 November 2021).
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Zieschang, K.D. A note on the decomposition of cost efficiency into technical and allocative components. J. Econom. 1983, 23, 401–405. [Google Scholar] [CrossRef]
- Schmidt, P.; Lovell, C.K. Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers. J. Econom. 1979, 9, 343–366. [Google Scholar] [CrossRef]
- Kopp, R.J.; Diewert, W.E. The decomposition of frontier cost function deviations into measures of technical and allocative efficiency. J. Econom. 1982, 19, 319–331. [Google Scholar] [CrossRef]
- Koopmans, T.C. Efficient allocation of resources. Econom. J. Econom. Soc. 1951, 19, 455–465. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Aigner, D.J.; Chu, S.-F. On estimating the industry production function. Am. Econ. Rev. 1968, 58, 826–839. [Google Scholar]
- Batiese, G.E. Frontier production functions and technical efficiency: A survey of empirical applications in agricultural economics. Agric. Econ. 1992, 7, 185–208. [Google Scholar] [CrossRef]
- Khai, H.V.; Yabe, M. Technical efficiency analysis of rice production in Vietnam. J. ISSAAS 2011, 17, 135–146. [Google Scholar]
- Bravo-Ureta, B.E.; Rieger, L. Dairy farm efficiency measurement using stochastic frontiers and neoclassical duality. Am. J. Agric. Econ. 1991, 73, 421–428. [Google Scholar] [CrossRef]
- Green, W. Maximum Likelihood Estimation of frontier production function. J. Econom. 1980, 13, 27–56. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Shahid, M.; Khalid, S.; Murtaza, B.; Anwar, H.; Shah, A.H.; Sardar, A.; Shabbir, Z.; Niazi, N.K. A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environ. Geochem. Health 2020, 1–20. [Google Scholar] [CrossRef]
- Kalra, B.; Mondal, B.; Sarangi, A. Technical efficiency of wheat and paddy farms in irrigated saline environment in Haryana State, India: An assessment. Afr. J. Agric. Res. 2015, 10, 637–644. [Google Scholar]
- Paul, K. Farm level technical efficiency of paddy production in Andhra Pradesh: An empirical evidence from the cost of cultivation survey data. Econ. Aff. 2020, 65, 335212. [Google Scholar]
- Mazumder, R.; Gupta, M. Technical efficiency and its determinants in backward agriculture: The case of paddy farmers of Hailakandi district of Assam. J. Reg. Dev. Plan. 2013, 2, 35–53. [Google Scholar]
- Bhattacharyya, A.; Mandal, R. A generalized stochastic production frontier analysis of technical efficiency of rice farming: A case study from Assam, India. Indian Growth Dev. Rev. 2016, 9, 114–128. [Google Scholar] [CrossRef]
- Seok, J.H.; Moon, H.; Kim, G.; Reed, M.R. Is aging the important factor for sustainable agricultural development in Korea? Evidence from the relationship between aging and farm technical efficiency. Sustainability 2018, 10, 2137. [Google Scholar] [CrossRef] [Green Version]
- Debertin, D.L. Agricultural Production Economics; UKnowledge: Lexington, KY, USA, 2012. [Google Scholar]
- Sania Shaheen, S.; Fatima, H.; Khan, M. Technical Efficiency analysis of rice production in Pakistan under dry and puddle conditions: A case study of selected Districts of Punjab province, Pakistan. Sarhad J. Agric 2017, 33, 447–458. [Google Scholar] [CrossRef]
- Oni, S.I.; Oyewo, M.A. Gas flaring, transportation and sustainable energy development in the Niger-Delta, Nigeria. J. Hum. Ecol. 2011, 33, 21–28. [Google Scholar] [CrossRef]
- Ahmad, B.; Hassan, S.; Bakhsh, K. Factors affecting yield and profitability of carrot in two districts of Punjab. Int. J. Agric. Biol. 2005, 7, 794–798. [Google Scholar]
- Hewitt, H.G. Do we need new fungicides? Outlooks Pest Manag. 2004, 15, 90. [Google Scholar] [CrossRef]
- Sekhon, M.; Mahal, A.K.; Kaur, M.; Sidhu, M. Technical Efficiency in Crop Production: A Region-wise Analysis §. Agric. Econ. Res. Rev. 2010, 23, 367–374. [Google Scholar]
- Ibrahim, M.I.; Jan, S.A.; Shah, A.H.; Abbasi, F.M.; Abdul, M.; Uzma, K.; Abdul, Q.; Mohammad, I.; Naushad, A.; Rabbani, M.A. Estimating quantitative traits based phenotypic diversity in diverse rice germplasm. Fresenius Environ. Bull. 2019, 28, 2074–2084. [Google Scholar]
- Ali, I.; HUO, X.-X.; Khan, I.; Ali, H.; Khan, B.; Khan, S.U. Technical efficiency of hybrid maize growers: A stochastic frontier model approach. J. Integr. Agric. 2019, 18, 2408–2421. [Google Scholar] [CrossRef]
- Narala, A.; Zala, Y. Technical Efficiency of Rice Farms under Irrigated Conditions in Central Gujarat §. Agric. Econ. Res. Rev. 2010, 23, 375–381. [Google Scholar]
- Kuppannan, P.; Coimbatore Ramarao, R.; Samiappan, S.; Malik, R.P.S. Estimating technical and irrigation water productivities in rice production in Tamil Nadu, India. Irrig. Drain. 2017, 66, 163–172. [Google Scholar] [CrossRef]
- Ahmad, M.; Chaudhry, G.M.; Iqbal, M.; Khan, D.A. Wheat productivity, efficiency, and sustainability: A stochastic production frontier analysis [with comments]. Pak. Dev. Rev. 2002, 41, 643–663. [Google Scholar] [CrossRef] [Green Version]
- Shehu, J.; Iyortyer, J.; Mshelia, S.; Jongur, A. Determinants of yam production and technical efficiency among yam farmers in Benue State, Nigeria. J. Soc. Sci. 2010, 24, 143–148. [Google Scholar] [CrossRef]
- Taraka, K.; Latif, I.; Shamsudin, M.N. A Nonparametric Approach to Evaluate Technical Efficiency of Rice Farms in Central Thailand. Southeast Asian J. Econ. 2010, 22, 1–14. [Google Scholar]
- Buriro, A.; Khooharo, A.A.; Ghulam, T. Technical efficiency of rice production Sindh, Pakistan: A statistical analysis. Sci. Int. 2015, 27, 6225–6230. [Google Scholar]
- Heriqbaldi, U.; Purwono, R.; Haryanto, T.; Primanthi, M.R. An analysis of technical efficiency of rice production in Indonesia. Asian Soc. Sci. 2015, 11, 91. [Google Scholar] [CrossRef]
- Koirala, K.H.; Mishra, A.K.; Mohanty, S. Determinants of rice productivity and technical efficiency in the Philippines. In Proceedings of the Southern Agricultural Economics Association (SAEA) > 2014 Annual Meeting, Dallas, TX, USA, 1–4 February 2014. [Google Scholar]
- Vortia, P.; Nasrin, M.; Bipasha, S.K.; Islam, M. Extent of farm mechanization and technical efficiency of rice production in some selected areas of Bangladesh. GeoJournal 2021, 86, 729–742. [Google Scholar] [CrossRef]
- Chang, H.H.; Wen, F.I. Off-farm work, technical efficiency, and rice production risk in Taiwan. Agric. Econ. 2011, 42, 269–278. [Google Scholar] [CrossRef]
- Hasnain, M.N.; Hossain, M.E.; Islam, M.K. Technical efficiency of Boro rice production in Meherpur district of Bangladesh: A stochastic frontier approach. Am. J. Agric. For. 2015, 3, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Ogundele, O.O.; Okoruwa, V.O. Technical Efficiency Differentials in Rice Production Technologies in Nigeria; SAIA: Johns Creek, GA, USA, 2006. [Google Scholar]
Variable Name | Definition | Mean | SD |
---|---|---|---|
Yield | Yield of rice in kilogram per acre | 1555.66 | 1.01 |
Tractor | Tractor used by rice grower in hours per acre | 27.20 | 1.03 |
Labor | Working hours of labor on the rice field till harvest | 41.63 | 1.05 |
Chemical | Chemical used on the rice field in liters | 19.13 | 1.09 |
Irrigation | Numbers of times field has been irrigated per season | 38.74 | 1.01 |
Age | What is age of the respondent in 2020? | 58.03 | 0.42 |
Education | How many years did the interviewee go to school? | 7.97 | 0.09 |
Experience | How many years of experience do respondent have? | 43.07 | 0.42 |
Hybrid seed | Has hybrid seed is used by respondent on rice field? If yes = 1, otherwise = 0 | 0.48 | 0.02 |
Extension | Respondent has attended training programs and other services offered by government. If yes = 1, otherwise = 0 | 0.66 | 0.02 |
T. Status | Land is taken on a lease or farming on his own land? If yes = 1, otherwise = 0 | 0.18 | 0.01 |
Credit | Has the respondent gotten any kind of financial help from the government? If yes = 1, otherwise = 0 | 0.12 | 0.01 |
Particulars | Unit | Cost/Unit (USD) | Quantity | TC | Percent |
---|---|---|---|---|---|
Tractor | Hrs. | 8.00 | 27.2 | 217.48 | 44.86 |
Labor | Hrs. | 0.50 | 41.63 | 20.80 | 4.29 |
Seed sown | Kgs. | 1.07 | 6.33 | 6.75 | 1.39 |
Urea | Kgs. | 0.40 | 98.54 | 39.87 | 8.22 |
Chemicals | Liters | 14.18 | 2.85 | 40.41 | 8.34 |
Irrigation | No. | 0.52 | 16 | 8.26 | 1.70 |
Land rent | USD | 141.52 | 1 | 141.52 | 29.19 |
Production cost | USD | - | - | 475.10 | 98.01 |
Marketing cost | - | - | - | 9.66 | 1.99 |
Total Cost | - | - | - | 484.76 | 100.00 |
Variable | Coefficient | Standard-Error | z-Statistics | p-Value |
---|---|---|---|---|
lnTractor | 0.03 | 0.02 | 1.39 | 0.17 |
lnLabour | 0.28 | 0.09 | 3.02 | 0.00 |
lnChemical | 0.00 | 0.00 | 1.49 | 0.14 |
lnIrrigartion | −0.71 | 0.36 | −2.00 | 0.05 |
lnTractor2 | 0.00 | 0.00 | −1.58 | 0.11 |
lnLabour2 | −0.03 | 0.01 | −3.48 | 0.00 |
lnChemical2 | 0.00 | 0.00 | 3.47 | 0.00 |
lnIrrigation2 | 0.10 | 0.05 | 2.11 | 0.03 |
Hybrid seed | 0.16 | 0.01 | 30.55 | 0.00 |
Constant | 7.94 | 0.62 | 12.79 | 0.00 |
Variable | Coefficient | Standard Error |
---|---|---|
lnAge | −0.40 * | 0.36 |
lnEducation | −0.16 *** | 0.03 |
lnExperience | 0.41 | 0.36 |
Extension Visit | −1.59 * | 0.34 |
Tenure Status | 0.13 ** | 0.16 |
Credit | −36.27 | 1440.83 |
Constant | 3.29 | 5.25 |
lnSigv2 | −6.85 ** | 0.21 |
MLE of Variance Parameters | ||
Sigma-squared | 0.003 ** | 0.00 |
Gamma | 2.408 | 0.008 |
Lamda | 0.724 | |
Wald chi2 (9) = 1350.84 Prob > chi2 = 000 log likelihood = 1131.691 |
Particulars | Yield | Revenue | TR | TC | NR | Profitability |
---|---|---|---|---|---|---|
Main product | 1555.66 | 870.70 | 1092.71 | 484.76 | 607.95 | 1.25 |
By-product | … | 222.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandel, R.b.S.; Khan, A.; Li, X.; Xia, X. Farm-Level Technical Efficiency and Its Determinants of Rice Production in Indo-Gangetic Plains: A Stochastic Frontier Model Approach. Sustainability 2022, 14, 2267. https://doi.org/10.3390/su14042267
Chandel RbS, Khan A, Li X, Xia X. Farm-Level Technical Efficiency and Its Determinants of Rice Production in Indo-Gangetic Plains: A Stochastic Frontier Model Approach. Sustainability. 2022; 14(4):2267. https://doi.org/10.3390/su14042267
Chicago/Turabian StyleChandel, Raj bahadur Singh, Aftab Khan, Xiaojing Li, and Xianli Xia. 2022. "Farm-Level Technical Efficiency and Its Determinants of Rice Production in Indo-Gangetic Plains: A Stochastic Frontier Model Approach" Sustainability 14, no. 4: 2267. https://doi.org/10.3390/su14042267
APA StyleChandel, R. b. S., Khan, A., Li, X., & Xia, X. (2022). Farm-Level Technical Efficiency and Its Determinants of Rice Production in Indo-Gangetic Plains: A Stochastic Frontier Model Approach. Sustainability, 14(4), 2267. https://doi.org/10.3390/su14042267