Resource Pressure of Carpets: Guiding Their Circular Design
Abstract
:1. Introduction
2. Materials and Methods
3. Case Study
4. Results
4.1. Screening Process
- Pile mass ↑: RP value ↑.
- RP (wool carpets) > RP (synthetic pile material).
- RP (PA66 pile material) > RP (PA6 pile material).
- RP (Commercial sector) < RP (Residential sector).
4.2. RP and LCA Results
5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme—UNEP. Global Resource Outlook; UNEP: Nairobi, Kenya, 2019.
- Rockström, J.; Steffen, W.; Noone, K.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; De Wit, C.A.; Hughes, T.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 1–33. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.A.; van Schaik, A.; Gutzmer, J.; Bartie, N.; Abadías-Llamas, A. Challenges of the Circular Economy: A Material, Metallurgical, and Product Design Perspective. Annu. Rev. Mater. Res. 2019, 49, 253–274. [Google Scholar] [CrossRef]
- European Commission. A European Strategy for Plastics in a Circular Economy. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN (accessed on 18 December 2020).
- Desing, H.; Brunner, D.; Takacs, F.; Nahrath, S.; Frankenberger, K.; Hischier, R. A Circular Economy within the Planetary Boundaries: Towards a Resource-Based, Systemic Approach. Resour. Conserv. Recycl. 2020, 155, 104673. [Google Scholar] [CrossRef]
- Desing, H.; Braun, G.; Hischier, R. Resource Pressure—A Circular Design Method. Resour. Conserv. Recycl. 2021, 164, 105179. [Google Scholar] [CrossRef]
- Wilts, H. Germany on the Road to a Circular Economy? Friedrich Ebert Stiftung: Bonn, Germany, 2016. [Google Scholar]
- Deutsche Umwelthilfe, e.V. Swept under the Carpet: The Big Waste Problem of the Carpet Industry in Germany; Environemntal Action Germany: Radolfzell, Germany, 2017. [Google Scholar]
- Bovea, M.D.; Pérez-Belis, V. Identifying Design Guidelines to Meet the Circular Economy Principles: A Case Study on Electric and Electronic Equipment. J. Environ. Manag. 2018, 228, 483–494. [Google Scholar] [CrossRef]
- Toxopeus, M.E.; van den Hout, N.B.; van Diepen, B.G.D. Supporting Product Development with a Practical Tool for Applying the Strategy of Resource Circulation. Procedia CIRP 2018, 69, 680–685. [Google Scholar] [CrossRef]
- Broeren, M.L.M.; Molenveld, K.; van den Oever, M.J.A.; Patel, M.K.; Worrell, E.; Shen, L. Early-Stage Sustainability Assessment to Assist with Material Selection: A Case Study for Biobased Printer Panels. J. Clean. Prod. 2016, 135, 30–41. [Google Scholar] [CrossRef]
- Brundage, M.P.; Bernstein, W.Z.; Hoffenson, S.; Chang, Q.; Nishi, H.; Kliks, T.; Morris, K.C. Analyzing Environmental Sustainability Methods for Use Earlier in the Product Lifecycle. J. Clean. Prod. 2018, 187, 877–892. [Google Scholar] [CrossRef]
- Desing, H. Product and Service Design for a Sustainable Circular Economy; ETH Zürich: Zürich, Switzerland, 2021. [Google Scholar]
- Rigamonti, L.; Mancini, E. Life Cycle Assessment and Circularity Indicators. Int. J. Life Cycle Assess. 2021, 26, 1937–1942. [Google Scholar] [CrossRef]
- Haupt, M.; Hellweg, S. Measuring the Environmental Sustainability of a Circular Economy. Environ. Sustain. Indic. 2019, 1–2, 100005. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards Sustainable Development through the Circular Economy—A Review and Critical Assessment on Current Circularity Metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Schöggl, J.-P.; Baumgartner, R.J.; Hofer, D. Improving Sustainability Performance in Early Phases of Product Design: A Checklist for Sustainable Product Development Tested in the Automotive Industry. J. Clean. Prod. 2017, 140, 1602–1617. [Google Scholar] [CrossRef]
- Suppipat, S.; Teachavorasinskun, K.; Hu, A.H. Challenges of Applying Simplified LCA Tools in Sustainable Design Pedagogy. Sustainability 2021, 13, 2406. [Google Scholar] [CrossRef]
- Desing, H.; Braun, G.; Hischier, R. Ecological Resource Availability: A Method to Estimate Resource Budgets for a Sustainable Economy. Glob. Sustain. 2020, 3, e31. [Google Scholar] [CrossRef]
- Chaudhuri, S.K. 2—Structure and properties of carpet fibres and yarns. In Advances in Carpet Manufacture, 2nd ed.; Goswami, K.K., Ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2018; pp. 17–34. [Google Scholar]
- Wang, Y.; Zhang, Y.; Polk, M.; Kumar, S.; Muzzy, J. Recycling of Carpet and Textile Fibers. In Plastics and the Environment; Andrady, A.L., Ed.; John Wiley & Sons: New York, NY, USA, 2005; pp. 697–725. ISBN 9780471721550. [Google Scholar]
- The Carpet and Rug Institute (CRI). The Carpet Primer; The Carpet and Rug Institute, Inc.: Dalton, GA, USA, 2012. [Google Scholar]
- Ege Carpets. Carpet Handbook; Ege Carpets. egecarpets, Print.: Herning, Denmark, 2018. [Google Scholar]
- Whitefoot, D. 1—Carpet types and requirements. In Advances in Carpet Manufacture; Goswami, K.K., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2009; pp. 1–18. ISBN 978-1-84569-333-6. [Google Scholar]
- Baranwal, B. 17—Classification of carpets. In Advances in Carpet Manufacture, 2nd ed.; Goswami, K.K., Ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2018; pp. 467–483. [Google Scholar]
- Ege Carpets. The Architect’s Guide to Choosing the Right Carpet; Ege Carpets Online Guide: Herning, Denmark, 2019. [Google Scholar]
- EN 1307:2014; Textile Floor Coverings Classification. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- Desing, H.; Widmer, R.; Beloin-Saint-Pierre, D.; Hischier, R.; Wäger, P. Powering a Sustainable and Circular Economy—An Engineering Approach to Estimating Renewable Energy Potentials within Earth System Boundaries. Energies 2019, 12, 4723. [Google Scholar] [CrossRef] [Green Version]
- Desing, H.; Braun, G.; Hischier, R. Ecological Resource Potential. MethodsX 2020, 7, 101151. [Google Scholar] [CrossRef]
- Ivanović, T.; Hischier, R.; Som, C. Bio-Based Polyester Fiber Substitutes: From GWP to a More Comprehensive Environmental Analysis. Appl. Sci. 2021, 11, 2993. [Google Scholar] [CrossRef]
- Jain, A.; Pandey, G.; Singh, A.K.; Rajagopalan, V.; Vaidyanathan, R.; Singh, R.P. Fabrication of Structural Composites from Waste Carpet. Adv. Polym. Technol. 2012, 31, 380–389. [Google Scholar] [CrossRef]
- Mishra, K.; Das, S.; Vaidyanathan, R. The Use of Recycled Carpet in Low-Cost Composite Tooling Materials. Recycling 2019, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Fashandi, H.; Pakravan, H.R.; Latifi, M. Application of Modified Carpet Waste Cuttings for Production of Eco-Efficient Lightweight Concrete. Constr. Build. Mater. 2019, 198, 629–637. [Google Scholar] [CrossRef]
- Mishra, K.; Vaidyanathan, R.K. Application of Recycled Carpet Composite as a Potential Noise Barrier in Infrastructure Applications. Recycling 2019, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Sotayo, A.; Green, S.; Turvey, G. Carpet Recycling: A Review of Recycled Carpets for Structural Composites. Environ. Technol. Innov. 2015, 3, 97–107. [Google Scholar] [CrossRef]
- Lakshminarayanan, K. Scaling Up of Manufacturing Processes of Recycled Based Carpet Composites; Oklahoma State University: Stillwater, OK, USA, 2011. [Google Scholar]
- Asdrubali, F. Survey on The Acoustical Properties of New Sustainable Materials for Noise Control. In Proceedings of Euronoise; European Acoustics Association: Tampere, Finland, 2014. [Google Scholar]
- Pan, G.; Zhao, Y.; Xu, H.; Ma, B.; Yang, Y. Acoustical and Mechanical Properties of Thermoplastic Composites from Discarded Carpets. Compos. Part B Eng. 2016, 99, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Desing, H.; Braun, G.; Hischier, R. The Resource Reduction Index—Evaluating Product Design’s Contribution to a Sustainable Circular Economy. In Proceedings of the European Roundtable on Sustainable Consumption and Production 2021, Graz, Austria, 8–10 September 2021. [Google Scholar]
- Braun, G.; Som, C.; Schmutz, M.; Hischier, R. Environmental Consequences of Closing the Textile Loop—Life Cycle Assessment of a Circular Polyester Jacket. Appl. Sci. 2021, 11, 2964. [Google Scholar] [CrossRef]
Choose Materials with Large ERB | Mass in Product ↓ | Primary Material ↓ | Recyclability ↑ | Cascading ↑ | |
---|---|---|---|---|---|
Mass ↓ (W1 andT1) | √ | ||||
Primary material ↓ (W2 and T2) | √ | ||||
Mass ↓ + primary material ↓+ RE (W3 and T3) | √ | √ | |||
Material choice with large ERB (W4 and T4–5) | √ | ||||
Recyclability ↑ (T6) | √ | ||||
Recyclable carpet design (W5 and T7) | |||||
Design + recyclability ↑ + primary material (T8) | √ | ||||
Design + recyclability ↑ + secondary material (W6 and T9) | √ | √ | |||
Cascading ↑ (T10) | √ |
Woven CDSs | Tufted CDSs | |
---|---|---|
CO2 | 0.92 | 0.88 |
GWP | 0.92 | 0.87 |
CED (electricity) | 0.90 | 0.85 |
Ecosystem quality | 0.91 | 0.88 |
Water consumption | 0.94 | 0.86 |
Particulate matter formation | 0.94 | 0.91 |
P to ocean | 0.87 | 0.87 |
P to soil | −0.32 | 0.00 |
Reactive nitrogen emissions | 0.20 | 0.19 |
ODP | −0.61 | −0.23 |
Land occupation | −0.73 | −0.54 |
Cropland use | 0.13 | −0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lama, V.; Righi, S.; Quandt, B.M.; Hischier, R.; Desing, H. Resource Pressure of Carpets: Guiding Their Circular Design. Sustainability 2022, 14, 2530. https://doi.org/10.3390/su14052530
Lama V, Righi S, Quandt BM, Hischier R, Desing H. Resource Pressure of Carpets: Guiding Their Circular Design. Sustainability. 2022; 14(5):2530. https://doi.org/10.3390/su14052530
Chicago/Turabian StyleLama, Virginia, Serena Righi, Brit Maike Quandt, Roland Hischier, and Harald Desing. 2022. "Resource Pressure of Carpets: Guiding Their Circular Design" Sustainability 14, no. 5: 2530. https://doi.org/10.3390/su14052530
APA StyleLama, V., Righi, S., Quandt, B. M., Hischier, R., & Desing, H. (2022). Resource Pressure of Carpets: Guiding Their Circular Design. Sustainability, 14(5), 2530. https://doi.org/10.3390/su14052530