Dynamic Graphical Instructions Result in Improved Attitudes and Decreased Task Completion Time in Human–Robot Co-Working: An Experimental Manufacturing Study
Abstract
:1. Introduction
2. Materials and Methods—Study 1
2.1. Design
2.2. KUKA iiwa Lightweight Arm
2.3. Graphical Signage
2.4. Participants
2.5. Task and Procedure
2.6. Measures
2.6.1. Task Performance
2.6.2. Attitudes towards Robotics
2.6.3. Individual Differences at Baseline
2.6.4. Visual Attention towards Signage
2.7. Statistical Analysis
3. Results—Study 1
3.1. Baseline Differences
3.2. Visual Attention towards Signage
3.3. Task Performance
3.3.1. Accuracy
3.3.2. Response Time
3.4. Attitudes towards Robots
3.4.1. NARS and RAS Scales
3.4.2. Outcome Expectancy
4. Method—Study 2
4.1. Design
4.2. Participants
4.3. Measures
4.3.1. Visual Attention towards Signage
4.3.2. Effectiveness of Graphical Signs
4.4. Statistical Analysis
5. Results—Study 2
5.1. Visual Attention towards Signage
5.2. Sign Recognition
5.3. Effectiveness of Graphical Signs
6. Discussion
Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gambatese, J.; Karakhan, A.; Simmons, D. Workforce Sustainability Report. CPWR 2019, 1, 1–119. Available online: https://www.cpwr.com/wp-content/uploads/publications/publications_SS2019-workforce-sustainability-model-development.pdf (accessed on 10 February 2022).
- Manyika, J.; Chui, M.; Miremadi, M.; Bughin, J.; George, K.; Willmott, P.; Dewhurst, M. A Future That Works: Automation, Employment, and Productivity; McKinsey Global Institute: Chicago, IL, USA, 2017. [Google Scholar]
- Beier, G.; Ullrich, A.; Niehoff, S.; Reißig, M.; Habich, M. Industry 4.0: How It Is Defined from a Sociotechnical Perspective and How Much Sustainability It Includes—A Literature Review. J. Clean. Prod. 2020, 259, 120856. [Google Scholar] [CrossRef]
- The 2021 Ageing Report: Economic and B udgetary Projections for the EU Member States (2019–2070). Available online: https://ec.europa.eu/info/publications/2021-ageing-report-economic-and-budgetary-projections-eu-member-states-2019-2070_en (accessed on 10 February 2022).
- Patel, P.C.; Devaraj, S.; Hicks, M.J.; Wornell, E.J. County-Level Job Automation Risk and Health: Evidence from the United States. Soc. Sci. Med. 2018, 202, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Rama Murthy, S.; Mani, M. Discerning Rejection of Technology. SAGE Open 2013, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kluy, L.; Roesler, E. Working with Industrial Cobots: The Influence of Reliability and Transparency on Perception and Trust. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 77–81. [Google Scholar] [CrossRef]
- Cameron, D.; Aitken, J.M.; Collins, E.C.; Boorman, L.; Chua, A.; Fernando, S.; McAree, O.; Martinez-Hernandez, U.; Law, J. Framing Factors: The Importance of Context and the Individual in Understanding Trust in Human-Robot Interaction. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) 2015, Hamburg, Germany, 28 September 2015. [Google Scholar]
- Hancock, P.A.; Billings, D.R.; Schaefer, K.E.; Chen, J.Y.C.; de Visser, E.J.; Parasuraman, R. A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Hum. Factors J. Hum. Factors Ergon. Soc. 2011, 53, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Naneva, S.; Sarda Gou, M.; Webb, T.L.; Prescott, T.J. A Systematic Review of Attitudes, Anxiety, Acceptance, and Trust Towards Social Robots. Int J. Soc. Robot. 2020, 12, 1179–1201. [Google Scholar] [CrossRef]
- Baltrusch, S.J.; Krause, F.; de Vries, A.W.; van Dijk, W.; de Looze, M.P. What about the Human in Human Robot Collaboration? Ergonomics 2021, 1–22. [Google Scholar] [CrossRef]
- Charalambous, G.; Fletcher, S.; Webb, P. Human-Automation Collaboration in Manufacturing: Identifying Key Implementation Factors. In Proceedings of the International Conference on Ergonomics & Human Factors, Cranfield, UK, 9 April 2013. [Google Scholar]
- Meissner, A.; Trübswetter, A.; Conti-Kufner, A.S.; Schmidtler, J. Friend or Foe? Understanding Assembly Workers’ Acceptance of Human-Robot Collaboration. J. Hum.-Robot Interact. 2021, 10, 1–30. [Google Scholar] [CrossRef]
- Laughery, K.R. Safety Communications: Warnings. Appl. Ergon. 2006, 37, 467–478. [Google Scholar] [CrossRef]
- Camblor, B.; Salotti, J.-M.; Fage, C.; Daney, D. Degraded Situation Awareness in a Robotic Workspace: Accident Report Analysis. Theor. Issues Ergon. Sci. 2022, 23, 60–79. [Google Scholar] [CrossRef]
- Vroom, V. Expectancy Theory. In Work and Motivation; Wiley: Oxford, UK, 1964. [Google Scholar]
- Williams, D.M. Outcome Expectancy and Self-Efficacy: Theoretical Implications of an Unresolved Contradiction. Personal. Soc. Psychol. Rev. 2010, 14, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Marsh, H.W.; Pekrun, R.; Parker, P.D.; Murayama, K.; Guo, J.; Dicke, T.; Arens, A.K. The Murky Distinction between Self-Concept and Self-Efficacy: Beware of Lurking Jingle-Jangle Fallacies. J. Educ. Psychol. 2019, 111, 331. [Google Scholar] [CrossRef]
- Brivio, E.; Gaudioso, F.; Vergine, I.; Mirizzi, C.R.; Reina, C.; Stellari, A.; Galimberti, C. Preventing Technostress Through Positive Technology. Front. Psychol. 2018, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gwilt, I.; Rolph, J.; Eimontaite, I.; Cameron, D.; Aitken, J.; Mokaram, S.; Law, J. Cobotics: Developing a Visual Language for Human-Robotic Collaborations. In Proceedings of the Cumulus Conference Proceedings Paris 2018—To get there: Designing Together, Paris, France, 11–14 April 2018. [Google Scholar]
- Gross, J.J. Emotion Regulation: Affective, Cognitive, and Social Consequences. Psychophysiology 2002, 39, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.J.; John, O.P. Individual Differences in Two Emotion Regulation Processes: Implications for Affect, Relationships, and Well-Being. J. Personal. Soc. Psychol. 2003, 85, 348–362. [Google Scholar] [CrossRef]
- Sheppes, G.; Gross, J.J. Is Timing Everything? Temporal Considerations in Emotion Regulation. Personal. Soc. Psychol. Rev. 2011, 15, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Extremera, N.; Fernández-Berrocal, P. Emotional Intelligence as Predictor of Mental, Social, and Physical Health in University Students. Span. J. Psychol. 2006, 9, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Butler, E.A.; Egloff, B.; Wilhelm, F.H.; Smith, N.C.; Erickson, E.A.; Gross, J.J. The Social Consequences of Expressive Suppression. Emotion 2003, 3, 48–67. [Google Scholar] [CrossRef] [Green Version]
- McLean, C.P.; Miller, N.A.; Hope, D.A. Mediating Social Anxiety and Disordered Eating: The Role of Expressive Suppression. Eat. Disord. 2007, 15, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.A.; Zoellner, L.A.; Mollenholt, N. Are Expressive Suppression and Cognitive Reappraisal Associated with Stress-Related Symptoms? Behav. Res. Ther. 2008, 46, 993–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.F.; Martelaro, N.; Hinds, P.J. Using Robots to Moderate Team Conflict: The Case of Repairing Violations. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, OR, USA, 2 March 2015. [Google Scholar]
- Hu, X.; Zhang, H.; Yuan, Y.; Chen, Y.; Zhong, M. A Model for Reappraisal with Personality in Emotion Regulation. Int. J. Comput. Integr. Manuf. 2020, 33, 1197–1207. [Google Scholar] [CrossRef]
- Eimontaite, I.; Gwilt, I.; Cameron, D.; Aitken, J.M.; Rolph, J.; Mokaram, S.; Law, J. Language-Free Graphical Signage Improves Human Performance and Reduces Anxiety When Working Collaboratively with Robots. Int J. Adv. Manuf Technol 2019, 100, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Urry, H.L.; Gross, J.J. Emotion Regulation in Older Age. Curr. Dir. Psychol. Sci. 2010, 19, 352–357. [Google Scholar] [CrossRef]
- Ng, A.W.Y.; Chan, A.H.S. The Effects of Driver Factors and Sign Design Features on the Comprehensibility of Traffic Signs. J. Saf. Res. 2008, 39, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H.; Wu, W.-T.; Lin, C.-Y. Using Virtual Reality to Determine How Emergency Signs Facilitate Way-Finding. Appl. Ergon. 2009, 40, 722–730. [Google Scholar] [CrossRef]
- Vilar, E.; Rebelo, F.; Noriega, P. Indoor Human Wayfinding Performance Using Vertical and Horizontal Signage in Virtual Reality: Indoor Human Wayfinding and Virtual Reality. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 601–615. [Google Scholar] [CrossRef]
- The American Heritage Dictionary of the English Language, 4th ed.; [updated]; Houghton Mifflin: Boston, MA, USA, 2006.
- Ahmed, N.; Aftab, H.M.; Nafees, A.M. Communication Modes Used for Information Sharing in Construction Projects of Pakistan. IJETER 2021, 9, 1305–1311. [Google Scholar]
- Smaldino, S.E.; Lowther, D.L.; Mims, C.; Russell, J.D. Instructional Technology and Media for Learning, 12th ed.; Pearson Education, Inc.: New York, NY, USA, 2019. [Google Scholar]
- Houts, P.S.; Doak, C.C.; Doak, L.G.; Loscalzo, M.J. The Role of Pictures in Improving Health Communication: A Review of Research on Attention, Comprehension, Recall, and Adherence. Patient Educ. Couns. 2006, 61, 173–190. [Google Scholar] [CrossRef]
- Habibi, S.A.; Salim, L. Static vs. Dynamic Methods of Delivery for Science Communication: A Critical Analysis of User Engagement with Science on Social Media. PLoS ONE 2021, 16, e0248507. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Awamlh, B.A.H.A.; Wu, X.; O’Malley, P.; Inoyatov, I.M.; Ayangbesan, A.; Faltas, B.M.; Christos, P.J.; Scherr, D.S. Recurrence Patterns After Open and Robot-Assisted Radical Cystectomy for Bladder Cancer. Eur. Urol. 2015, 68, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-K.; Lin, Y.-F.; Hsu, Y.-S. Effects of Representation Sequences and Spatial Ability on Students’ Scientific Understandings about the Mechanism of Breathing. Instr. Sci. 2013, 41, 555–573. [Google Scholar] [CrossRef]
- Harrison, J.V.; Andrusiewicz, A. A Virtual Marketplace for Advertising Narrowcast over Digital Signage Networks. Electron. Commer. Res. Appl. 2004, 3, 163–175. [Google Scholar] [CrossRef]
- Kwee-Meier, S.T.; Mertens, A.; Schlick, C.M. Age-Related Differences in Decision-Making for Digital Escape Route Signage under Strenuous Emergency Conditions of Tilted Passenger Ships. Appl. Ergon. 2017, 59, 264–273. [Google Scholar] [CrossRef]
- Van der Lippe, T.; Lippényi, Z. (Eds.) Investments in a Sustainable Workforce in Europe, 1st ed.; Routledge/Taylor and Francis Group: Abingdon, UK, 2019. [Google Scholar]
- Bogataj, D.; Battini, D.; Calzavara, M.; Persona, A. The Ageing Workforce Challenge: Investments in Collaborative Robots or Contribution to Pension Schemes, from the Multi-Echelon Perspective. Int. J. Prod. Econ. 2019, 210, 97–106. [Google Scholar] [CrossRef]
- Desai, M.; Stubbs, K.; Steinfeld, A.; Yanco, H. Creating Trustworthy Robots: Lessons and Inspirations from Automated Systems. In Proceedings of the AISB ’09 Convention: New Frontiers in Human-Robot Interaction, Edinburgh, UK, 6–9 April 2009. [Google Scholar]
- Madhavan, P.; Phillips, R.R. Effects of Computer Self-Efficacy and System Reliability on User Interaction with Decision Support Systems. Comput. Hum. Behav. 2010, 26, 199–204. [Google Scholar] [CrossRef]
- Ozer, E.M.; Bandura, A. Mechanisms Governing Empowerment Effects: A Self-Efficacy Analysis. J. Personal. Soc. Psychol. 1990, 58, 472. [Google Scholar] [CrossRef]
- Venkatesh, V. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef] [Green Version]
- Norman, D.A. The Design of Everyday Things. Revisited and Explained Edition; Basic Books: New York, NY, USA, 2013. [Google Scholar]
- Mokaram, S.; Martinez-Hernandez, U.; Aitken, J.M.; Eimontaite, I.; Cameron, D.; Law, J.; Rolph, J.; Gwilt, I.; McAree, O.A. A ROS-Integrated API for the KUKA LBR Iiwa Collaborative Robot. In Proceedings of the 20th World Congress of the International Federation of Automatic Control (IFAC), Toulouse, France, 11–14 July 2017. [Google Scholar]
- Eimontaite, I.; Gwilt, I.; Cameron, D.; Aitken, J.M.; Rolph, J.; Mokaram, S.; Law, J. Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. In Proceedings of the 7th AHFE International Conference on Human Aspects of Advanced Manufacturing, Florida, USA, 27–31 July 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Nomura, T.; Suzuki, T.; Kanda, T.; Kato, K. Measurement of Negative Attitudes toward Robots. Interact. Stud. 2006, 7, 437–454. [Google Scholar] [CrossRef]
- Nomura, T.; Suzuki, T.; Kanda, T.; Kato, K. Measurement of Anxiety toward Robots. In Proceedings of the Robot and Human Interactive Communication, 2006. ROMAN 2006, Hatfield, UK, 6–8 September 2006. [Google Scholar]
- Compeau, D.R.; Higgins, C.A. Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Q. 1995, 19, 189. [Google Scholar] [CrossRef] [Green Version]
- MacDorman, K.F.; Vasudevan, S.K.; Ho, C.-C. Does Japan Really Have Robot Mania? Comparing Attitudes by Implicit and Explicit Measures. AI SOCIETY 2009, 23, 485–510. [Google Scholar] [CrossRef]
- Nicholson, N.; Soane, E.; Fenton-O’Creevy, M.; Willman, P. Personality and Domain-Specific Risk Taking. J. Risk Res. 2005, 8, 157–176. [Google Scholar] [CrossRef]
- Galea, E.; Xie, H.; Lawrence, P. Experimental and Survey Studies on the Effectiveness of Dynamic Signage Systems. Fire Saf. Sci. 2014, 11, 1129–1143. [Google Scholar] [CrossRef] [Green Version]
- Sima, V.; Gheorghe, I.G.; Subić, J.; Nancu, D. Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review. Sustainability 2020, 12, 4035. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The Expected Contribution of Industry 4.0 Technologies for Industrial Performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Stafford, R.Q.; Broadbent, E.; Jayawardena, C.; Unger, U.; Kuo, I.H.; Igic, A.; Wong, R.; Kerse, N.; Watson, C.; MacDonald, B.A. Improved Robot Attitudes and Emotions at a Retirement Home after Meeting a Robot. In Proceedings of the RO-MAN, Viareggio, Italy, 13–15 September 2010. [Google Scholar]
- Porter, L.W.; Bigley, G.A.; Steers, R.M. Motivation and Work Behavior; McGraw-Hill/Irwin: Boston, MA, USA, 2003. [Google Scholar]
- Maddux, J.E.; Sherer, M.; Rogers, R.W. Self-Efficacy Expectancy and Outcome Expectancy: Their Relationship and Their Effects on Behavioral Intentions. Cogn. Ther. Res. 1982, 6, 207–211. [Google Scholar] [CrossRef]
- Henry, J.W.; Stone, R.W. Computer Self-Efficacy and Outcome Expectancy: The Effects on the End-User’s Job Satisfaction. ACM SIGCPR Comput. Pers. 1995, 16, 15–34. [Google Scholar] [CrossRef]
- Paton, D.; Johnston, D.; Smith, L.; Millar, M. Responding to Hazard Effects: Promoting Resilience and Adjustment Adoption. Aust. J. Emerg. Manag. 2001, 16, 47–52. [Google Scholar]
- Gallagher, M.W.; Long, L.J.; Richardson, A.; D’Souza, J.M. Resilience and Coping in Cancer Survivors: The Unique Effects of Optimism and Mastery. Cogn. Res. 2019, 43, 32–44. [Google Scholar] [CrossRef]
- Moniz, A.; Krings, B.-J. Robots Working with Humans or Humans Working with Robots? Searching for Social Dimensions in New Human-Robot Interaction in Industry. Societies 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
Experimental Group | Control Group | |
---|---|---|
Sex: Male, Female | 17, 4 | 13, 5 |
Age (Years) | 36.00 (12.57) | 41.17 (14.11) |
Tenure (Years) | 2.79 (2.40) | 4.84 (6.44) |
Robotics Experience | 10.48 (4.90) | 10.39 (5.34) |
RAS | 7.48 (4.23) | 10.00 (6.62) |
NARS | 12.29 (4.20) | 13.56 (5.82) |
Self-Efficacy | 5.09 (1.92) | 4.34 (2.33) |
Outcome Expectancy | 2.29 (0.61) | 2.64 (0.94) |
Risk taking | 2.30 (1.30) | 2.75 (1.65) |
Computer usage (h/week) | ||
Work | 6.19 (10.60) | 10.81 (14.34) |
Socialising and Entertainment | 8.90 (12.15) | 5.44 (2.57) |
Gaming | 4.14 (7.01) | 1.08 (2.57) |
Emotion Regulation: | ||
Expressive suppression * | 4.36 (1.27) | 3.57 (1.39) |
Cognitive reappraisal | 5.08 (1.04) | 4.89 (1.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eimontaite, I.; Cameron, D.; Rolph, J.; Mokaram, S.; Aitken, J.M.; Gwilt, I.; Law, J. Dynamic Graphical Instructions Result in Improved Attitudes and Decreased Task Completion Time in Human–Robot Co-Working: An Experimental Manufacturing Study. Sustainability 2022, 14, 3289. https://doi.org/10.3390/su14063289
Eimontaite I, Cameron D, Rolph J, Mokaram S, Aitken JM, Gwilt I, Law J. Dynamic Graphical Instructions Result in Improved Attitudes and Decreased Task Completion Time in Human–Robot Co-Working: An Experimental Manufacturing Study. Sustainability. 2022; 14(6):3289. https://doi.org/10.3390/su14063289
Chicago/Turabian StyleEimontaite, Iveta, David Cameron, Joe Rolph, Saeid Mokaram, Jonathan M. Aitken, Ian Gwilt, and James Law. 2022. "Dynamic Graphical Instructions Result in Improved Attitudes and Decreased Task Completion Time in Human–Robot Co-Working: An Experimental Manufacturing Study" Sustainability 14, no. 6: 3289. https://doi.org/10.3390/su14063289
APA StyleEimontaite, I., Cameron, D., Rolph, J., Mokaram, S., Aitken, J. M., Gwilt, I., & Law, J. (2022). Dynamic Graphical Instructions Result in Improved Attitudes and Decreased Task Completion Time in Human–Robot Co-Working: An Experimental Manufacturing Study. Sustainability, 14(6), 3289. https://doi.org/10.3390/su14063289