Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity?
Abstract
:1. Introduction
2. Nanofertilizers and Agriculture
2.1. Nanofertilizers for Crop Production
2.2. Nanofertilizers vs. Traditional Fertilizers
2.3. The Nanofertilizer Industry and Its Obstacles
2.4. Nanofertilizers for the Mitigation of Stress on Plants
2.5. Nanofertilizers and Their Research Gap
- Nanoscale input fertilizers, or nanoscale fertilizers: this category includes the nutrients that already exist in nanofertilizers (nanoparticles, which contain nutrients), alone, or in combination with other constituents;
- Nanoscale additive fertilizers, or nanoscale additives, which are traditional fertilizers with nanoscale additives. This category includes the application of nanoscale materials or formulations to the existing traditional macroscale fertilizers; and
- Nanoscale host fertilizers, or nanoscale coating, which is formed from traditional fertilizers that have been coated or loaded with nanoparticles. This category includes nutrient or fertilizer supplements, which could be entrapped, adsorbed, or encapsulated into any type of nanospace of the host material [40].
2.6. Nanofertilizers and Phytotoxicity
2.7. Nanofertilizers and Climate Change
3. Application of Nanofertilizers
4. Crop Response to Applied Nanofertilizers under Individual Stress
5. Combined Stress and Applied Nanofertilizers
6. Applied Nanofertilizers under Multiple Stresses
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ramady, H.; Faizy, S.E.-D.; Abdalla, N.; Taha, H.; Domokos-Szabolcsy, É.; Fari, M.; Elsakhawy, T.; Omara, A.E.-D.; Shalaby, T.; Bayoumi, Y.; et al. Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. Soil Syst. 2020, 4, 57. [Google Scholar] [CrossRef]
- El-Ramady, H.; Singh, A.; Rajput, V.D.; Amer, M.; Omara, A.E.-D.; Elsakhawy, T.; Elbehiry, F.; Elbasiouny, H.; Abdalla, N. Environment, Biodiversity and Soil Security: A New Dimension in the Era of COVID-19. Environ. Biodiv. Soil Secur. 2021, 5, 1–14. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Lal, M.K.; Naga, K.C.; Kumar, R.; Chourasia, K.N.; Subhash, S.; Kumar, D.; Sharma, S. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci. Hortic. 2020, 272, 109592. [Google Scholar] [CrossRef]
- Nabi, R.B.S.; Tayade, R.; Hussain, A.; Kulkarni, K.P.; Imran, Q.M.; Mun, B.-G.; Yun, B.-W. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ. Exp. Bot. 2019, 161, 120–133. [Google Scholar] [CrossRef]
- Boari, F.; Cantore, V.; Di Venere, D.; Sergio, L.; Candido, V.; Schiattone, M.I. Pyraclostrobin can mitigate salinity stress in tomato crop. Agric. Water Manag. 2019, 222, 254–264. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 2020, 20, 175. [Google Scholar] [CrossRef]
- Sindhu, S.; Dahiya, A.; Gera, R.; Sindhu, S.S. Mitigation of Abiotic Stress in Legume-Nodulating Rhizobia for Sustainable Crop Production. Agric. Res. 2020, 9, 444–459. [Google Scholar] [CrossRef]
- Hossain, A.; Raza, A.; Maitra, S.; Asaduzzaman, M.; Islam, M.R.; Hossain, M.J.; Sabagh, A.E.L.; Garai, S.; Mondal, M.; Abdel Latef, A.A.H.; et al. Strigolactones: A Novel Carotenoid Derived Phytohormone—Biosynthesis, Transporters, Signalling, and Mechanisms in Abiotic Stress. In Plant Growth Regulators; Aftab, T., Hakeem, K.R., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 275–303. [Google Scholar] [CrossRef]
- Alhaithloul, H.A.S.; Soliman, M.H. Methyl Jasmonate and Brassinosteroids: Emerging Plant Growth Regulators in Plant Abiotic Stress Tolerance and Environmental Changes. In Plant Growth Regulators; Aftab, T., Hakeem, K.R., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 173–195. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Ashfaque, F.; Chhillar, H.; Irfan, M.; Khan, N.A. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiol. Biochem. 2021, 36–47. [Google Scholar] [CrossRef]
- Ranjan, A.; Sinha, R.; Bala, M.; Pareek, A.; Singla-Pareek, S.L.; Singh, A.K. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiol. Biochem. 2021, 163, 15–25. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Rizwan, M.; Ali, S.; Parveen, A.; Malik, Z.; Wang, X. Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review. Chemosphere 2021, 273, 129690. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.; Sharaf-Eldin, S.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Hakki, K.E.; Gezgin, S.; Hamurcu, M. Combined Boron Toxicity and Salinity Stress—An Insight into Its Interaction in Plants. Plants 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaqat, S.; Umar, S.; Safeullah, P.; Iqbal, N.; Siddiqi, T.O.; Khan, M.I.R. Protective Effect of 24-Epibrassinolide on Barley Plants Growing Under Combined Stress of Salinity and Potassium Deficiency. J. Plant Growth Regul. 2020, 39, 1543–1558. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Abd-Alkarim, E.; El-Ramady, H.; El-Aidy, F.; Hamed, E.-S.; Taha, N.; Prohens, J.; Rakha, M. Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Horticulturae 2021, 7, 61. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Simón-Grao, S.; Martínez-Nicolás, J.J.; Alfosea-Simón, M.; Liu, C.; Chatzissavvidis, C.; Pérez-Pérez, J.G.; Cámara-Zapata, J.M. Multiple stresses occurring with boron toxicity and deficiency in plants. J. Hazard. Mater. 2020, 397, 122713. [Google Scholar] [CrossRef] [PubMed]
- Madzokere, T.C.; Murombo, L.T.; Chiririwa, H. Nano-based slow releasing fertilizers for enhanced agricultural productivity. Mater. Today Proc. 2021, 45, 3709–3715. [Google Scholar] [CrossRef]
- Guo, H.; White, J.C.; Wang, Z.; Xing, B. Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr. Opin. Environ. Sci. 2018, 6, 77–83. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants 2021, 10, 2. [Google Scholar] [CrossRef]
- Ahmadian, K.; Jalilian, J.; Pirzad, A. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agric. Water Manag. 2021, 244, 106544. [Google Scholar] [CrossRef]
- Sajadinia, H.; Ghazanfari, D.; Naghavii, K.; Naghavi, H.; Tahamipur, B. A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon 2021, 7, e06094. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Qi, M.; Huang, Z.; Xu, X.; Begum, N.; Qin, C.; Zhang, C.; Ahmad, N.; Mustafa, N.S.; Ashraf, M.; et al. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol. Environ. Saf. 2021, 216, 112195. [Google Scholar] [CrossRef]
- Farshchi, H.K.; Azizi, M.; Teymouri, M.; Nikpoor, A.R.; Jaafari, M.R. Synthesis and characterization of nanoliposome containing Fe2+ element: A superior nano-fertilizer for ferrous iron delivery to sweet basil. Sci. Hortic. 2021, 283, 110110. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Islam, M.R.; Nahar, N.; Al-Mamun, M.R.; Khan, M.A.S.; Matin, M.A. Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients. Heliyon 2021, 7, e06091. [Google Scholar] [CrossRef]
- Abdulhameed, M.F.; Taha, A.A.; Ismail, R.A. Improvement of cabbage growth and yield by nanofertilizers and nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100437. [Google Scholar] [CrossRef]
- Saini, S.; Kumar, P.; Sharma, N.C.; Sharma, N.; Balachandar, D. Nano-enabled Zn fertilization against conventional Zn analogues in strawberry (Fragaria × ananassa Duch.). Sci. Hortic. 2021, 282, 110016. [Google Scholar] [CrossRef]
- Singh, S.K.; Patra, A.; Verma, Y.; Chattopadhyay, A.; Rakshit, A.; Kumar, S. Potential and Risk of Nanotechnology Application in Agriculture vis-à-vis Nanomicronutrient Fertilizers. In Soil Science: Fundamentals to Recent Advances; Rakshit, A., Singh, S.K., Abhilash, P.C., Biswas, A., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2021; pp. 513–530. [Google Scholar] [CrossRef]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; ur Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon 2021, 7, e08539. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, M.R.; Hasan, M.R.; Ahommed, M.S.; Bacchu, M.S.; Ali, M.R.; Khan, M.Z.H. Nanofertilizers towards sustainable agriculture and environment. Environ. Technol. Innov. 2021, 23, 101658. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Satapathya, K.C.; Panda, B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Total Environ. 2022, 803, 149990. [Google Scholar] [CrossRef] [PubMed]
- Mahto, R.; Rani, P.; Bhardwaj, R.; Singh, R.K.; Prasad, S.K.; Rakshit, A. Nanotechnology: A potential approach for abiotic stress management. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture a Smart Delivery System for Crop Improvement; Jogaiah, S., Singh, H.B., Fraceto, L.F., de Lima, R., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 249–259. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.K.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.-H. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: The case of phosphorus nanofertilizer. 3 Biotech 2021, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Poonam Jasrotia, P.; Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.K.; Song, X.-P.; Joshi, A.; Tian, D.-D.; Rajput, V.D.; Singh, M.; Arora, J.; Minkina, T.; Li, Y.-R. Recent Trends in NanoFertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12, 173. [Google Scholar] [CrossRef]
- Kalwani, M.; Chakdar, H.; Srivastava, A.; Pabbi, S.; Shukla, P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere 2022, 287, 132107. [Google Scholar] [CrossRef]
- Belal, E.; El-Ramady, H. Nanoparticles in Water, Soils and Agriculture. In Nanoscience in Food and Agriculture 2; Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2016; Volume 21. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Zia ur Rehman, M.; Riaz, M.; Adrees, M.; Hussain, A.; Zahir, Z.A.; Rinklebe, J. Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicol. Environ. Saf. 2021, 221, 112437. [Google Scholar] [CrossRef]
- Toksha, B.; Sonawale, V.A.M.; Vanarase, A.; Bornare, D.; Tonde, S.; Hazra, C.; Kundu, D.; Satdive, A.; Tayde, S.; Chatterjee, A. Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environ. Technol. Innov. 2021, 24, 101986. [Google Scholar] [CrossRef]
- Sarraf, M.; Vishwakarma, K.; Kumar, V.; Arif, N.; Das, S.; Johnson, R.; Janeeshma, E.; Puthur, J.T.; Aliniaeifard, S.; Chauhan, D.K.; et al. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants 2022, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- El-Ghamry, A.M.; Mosa, A.A.; Alshaal, T.; El-Ramady, H.R. Nanofertilizers vs. Biofertilizers: New Insights. Env. Biodiv. Soil Security 2018, 2, 51–72. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Bungau, S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. Chemosphere 2022, 288 Pt 2, 132533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ying, Y.; Ping, J. Recent Advances in Plant Nanoscience. Adv. Sci. 2022, 9, 2103414. [Google Scholar] [CrossRef] [PubMed]
- Asgari-Targhi, G.; Iranbakhsh, A.; Ardebili, Z.O. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol. Biochem. 2018, 127, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Soaresa, C.; Pinto, A.S.; Fidalgo, F. Phytotoxic effects of bulk and nano-sized Ni on Lycium barbarum L. grown in vitro—Oxidative damage and antioxidant response. Chemosphere 2019, 218, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Akanbi-Gada, M.A.; Ogunkunle, C.O.; Vishwakarma, V.; Viswanathan, K.; Fatob, P.O. Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ. Technol. Innov. 2019, 14, 100325. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Ren, Y.; Zhang, L.; Xue, Y.; Zhang, L.; He, J. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L. Bull. Environ. Contam. Toxicol. 2020, 104, 770–777. [Google Scholar] [CrossRef]
- Obrador, A.; González, D.; Almendros, P.; García-Gómez, C.; Fernández, M.D. Assessment of Phytotoxicity and Behavior of 1-Year-Aged Zn in Soil from ZnO Nanoparticles, Bulk ZnO, and Zn Sulfate in Different Soil Plant Cropping Systems: From Biofortification to Toxicity. J. Soil Sci. Plant Nutr. 2021, 22, 150–164. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Soares, C.; Ribeiro, S.; Amil, B.F.; Patinha, C.; Cachada, A.; Fidalgo, F.; Pereira, R. Nano-Fe2O3 as a tool to restore plant growth in contaminated soils—Assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. J. Hazard. Mater. 2022, 425, 127999. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Astaneh, N.; Bazrafshan, F.; Zare, M.; Amiri, B.; Bahrani, A. Nano-fertilizer prevents environmental pollution and improves physiological traits of wheat grown under drought stress conditions. Sci. Agropecu. 2021, 12, 41–47. [Google Scholar] [CrossRef]
- Manjunatha, S.B.; Biradar, D.; Aladakatti, Y. Nanotechnology and its applications in agriculture: A review. J. Farm Sci. 2016, 29, 1–13. [Google Scholar]
- Mejias, J.H.; Salazar, F.; Pérez Amaro, L.; Hube, S.; Rodriguez, M.; Alfaro, M. Nanofertilizers: A Cutting-Edge Approach to Increase Nitrogen Use Efficiency in Grasslands. Front. Environ. Sci. 2021, 9, 635114. [Google Scholar] [CrossRef]
- Elramady, H.; Elbasiouny, H.; Elbehiry, F.; Zia-urRehman, M. Nano-Nutrients for Carbon Sequestration: A Short Communication. Egypt. J. Soil Sci. 2021, 61, 389–398. [Google Scholar] [CrossRef]
- Mohammadghasemi, V.; Moghaddam, S.S.; Rahimi, A.; Pourakbar, L.; Popović-Djordjević, J. Morpho-biochemical traits and macro-elements of Lallemantia iberica (M.B.) Fischer & Meyer, as affected by winter (late autumn) sowing, chemical and nano-fertilizer sources. Acta Physiol. Plant 2021, 43, 29. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhary, S.; Kaushik, M. Nano-fertilizers and Nano-pesticides as Promoters of Plant Growth in Agriculture. In Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems, Advances in Science, Technology & Innovation; Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 153–163. [Google Scholar] [CrossRef]
- Mishra, D.; Khare, P. Emerging Nano-agrochemicals for Sustainable Agriculture: Benefits, Challenges and Risk Mitigation. In Sustainable Agriculture Reviews 50; Singh, V.K., Singh, R., Lichtfouse, E., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; Volume 50, pp. 235–257. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Alshaal, T.; El-Henawy, A.; Elmahrouk, M.; Bayoumi, Y.; Shalaby, T.; Amer, M.; Shehata, S.; Fári, M.; et al. Plant nano-nutrition: Perspectives and challenges. In Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World; Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2018; pp. 129–161. [Google Scholar] [CrossRef]
- Durgam, M.; Mailapalli, D.R. Transport of Nano-plant Nutrients in Lateritic Soils. In Climate Impacts on Water Resources in India, Water Science and Technology Library; Pandey, A., Mishra, S.K., Kansal, M.L., Singh, R.D., Singh, V.P., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; Volume 95, pp. 97–107. [Google Scholar] [CrossRef]
- Gomes, M.H.F.; Duran, N.M.; Carvalho, H.W.P. Challenges and perspective for the application of nanomaterials as fertilizers. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement; Jogaiah, S., Singh, H.B., Fraceto, L.F., De Lima, R., Eds.; Woodhead Publishing: Kidlington, UK, 2021; pp. 331–359. [Google Scholar] [CrossRef]
- Knijnenburg, J.T.N.; Kasemsiri, P.; Amornrantanaworn, K.; Suwanree, S.; Iamamornphan, W.; Chindaprasirt, P.; Jetsrisuparb, K. Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. Int. J. Biol. Macromol. 2021, 181, 349–356. [Google Scholar] [CrossRef]
- Saleem, I.; Maqsood, M.A.; Rehman, M.Z.; Aziz, T.; Bhatti, I.A.; Ali, S. Potassium ferrite nanoparticles on DAP to formulate slow-release fertilizer with auxiliary nutrients. Ecotoxicol. Environ. Saf. 2021, 215, 112148. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A.J.; Ma, C.; Bai, T.; Hao, Y.; Rui, Y. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 2021, 269, 116134. [Google Scholar] [CrossRef]
- Carmona, F.J.; Dal Sasso, G.; Ramírez-Rodríguez, G.B.; Pii, Y.; Delgado-López, J.M.; Guagliardi, A.; Masciocchi, N. Urea-functionalized amorphous calcium phosphate nanofertilizers: Optimizing the synthetic strategy towards environmental sustainability and manufacturing costs. Sci. Rep. 2021, 11, 3419. [Google Scholar] [CrossRef]
- Guha, T.; Mukherjee, A.; Kundu, R. Nano-Scale Zero Valent Iron (nZVI) Priming Enhances Yield, Alters Mineral Distribution and Grain Nutrient Content of Oryza sativa L. cv. Gobindobhog: A Field Study. J. Plant Growth Regul. 2021, 41, 710–733. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Azeim, M.M.; Sherif, M.A.; Hussien, M.S.; Tantawy, I.A.A.; Bashandy, S.O. Impacts of nano- and non-nanofertilizers on potato quality and productivity. Acta Ecol. Sin. 2020, 40, 388–397. [Google Scholar] [CrossRef]
- Cota-Ruiz, K.; Ye, Y.; Valdes, C.; Deng, C.; Wang, Y.; Hernández-Viezcas, J.A.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Sci. Total Environ. 2020, 742, 140572. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, V.M.; Moghaddam, S.S.; Rahimi, A.; Pourakbar, L.; Popović-Djordjević, J. Winter Cultivation and Nano Fertilizers Improve Yield Components and Antioxidant Traits of Dragon’s Head (Lallemantia iberica (M.B.) Fischer & Meyer). Plants 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Dimkpa, C.O.; Andrews, J.; Sanabria, J.; Bindraban, P.S.; Singh, U.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Sci. Total Environ. 2020, 722, 137808. [Google Scholar] [CrossRef]
- Hafez, Y.M.; Attia, K.A.; Kamel, S.; Alamery, S.F.; El-Gendy, S.; Al-Doss, A.A.; Mehiar, F.; Ghazy, A.I.; Ibrahim, E.I.; Abdelaal, K.A.A. Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiol. Mol. Plant Pathol 2020, 111, 101489. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Machiani, M.A.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha × piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Meier, S.; Moorea, F.; Morales, A.; González, M.-E.; Seguel, A.; Meriño-Gergichevich, C.; Rubilar, O.; Cumming, J.; Aponte, H.; Alarcón, D.; et al. Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plant Physiol. Biochem. 2020, 151, 673–680. [Google Scholar] [CrossRef]
- Sajyan, T.K.; Alturki, S.M.; Sassine, Y.N. Nano-fertilizers and their impact on vegetables: Contribution of Nano-chelate Super plus ZFM and Lithovit®-standard to improve salt-tolerance of pepper. Ann. Agric. Sci. 2020, 65, 200–208. [Google Scholar] [CrossRef]
- Sega, D.; Baldan, B.; Zamboni, A.; Varanini, Z. FePO4 NPs Are an Efficient Nutritional Source for Plants: Combination of Nano-Material Properties and Metabolic Responses to Nutritional Deficiencies. Front. Plant Sci. 2020, 11, 586470. [Google Scholar] [CrossRef]
- Shebl, A.; Hassan, A.A.; Salama, D.M.; Abd El-Aziz, M.E.; Abd Elwahed, M.S.A. Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon 2020, 6, e03596. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, C.; Cota-Ruiz, K.; Peralta-Videa, J.R.; Sun, Y.; Rawat, S.; Tan, W.; Reyes, A.; Hernandez-Viezcas, J.A.; Niu, G.; et al. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Sci. Total Environ. 2020, 725, 138387. [Google Scholar] [CrossRef] [PubMed]
- Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A.; Pokhrel, L.R. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 2020, 738, 140240. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambandan, T. Advances of Engineered Nanofertilizers for Modern Agriculture. In Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems; Advances in Science, Technology & Innovation; Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 131–152. [Google Scholar] [CrossRef]
- Lateef, A.; Nazir, R.; Jamila, N.; Alam, S.; Shah, S.; Khan, M.N.; Saleem, M.; Rehman, S. Synthesis and characterization of environmental friendly corncob biochar based nano-composite—A potential slow release nano-fertilizer for sustainable agriculture. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100212. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, H.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Caballero-Molada, M.; Atares, S.; García, C.; Vicente, O. New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy 2020, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, M.; Sharif, R.; Ali, Q.; Rehman, R.; Khawar, K.M. Biopolymer based nanofertilizers applications in abiotic stress (drought and salinity) control. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement; Jogaiah, S., Singh, H.B., Fraceto, L.F., De Lima, R., Eds.; Woodhead Publishing: Kidlington, UK, 2021; pp. 85–110. [Google Scholar] [CrossRef]
- Tymoszuk, A.; Wojnarowicz, J. Zinc Oxide and Zinc Oxide Nanoparticles Impact on In Vitro Germination and Seedling Growth in Allium cepa L. Materials 2020, 13, 2784. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2019, 17, 364–371. [Google Scholar] [CrossRef]
- Van Nguyen, D.; Nguyen, H.M.; Le, N.T.; Nguyen, K.H.; Nguyen, H.T.; Le, H.M.; Nguyen, A.T.; Dinh, N.T.T.; Hoang, S.A.; Van Ha, C. Copper Nanoparticle Application Enhances Plant Growth and Grain Yield in Maize Under Drought Stress Conditions. J. Plant Growth Regul. 2022, 41, 364–375. [Google Scholar] [CrossRef]
- Kamali, N.; Mehrabadi, A.R.; Mirabi, M.; Zahed, A.M. Comparison of micro and nano MgO-functionalized vinasse biochar in phosphate removal: Micro-nano particle development, RSM optimization, and potential fertilizer. J. Water Process. Eng. 2021, 39, 101741. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Meybodi, N.D.H.; da Silva, J.A.T. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- Najafi, S.; Razavi, S.M.; Khoshkam, M.; Asadi, A. Effects of green synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical factors of Lettuce (Lactuca sativa). Physiol. Mol. Biol. Plants 2020, 26, 1055–1066. [Google Scholar] [CrossRef]
- Saijo, Y.; Loo, E.P. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 2020, 225, 87–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalia, A.; Kaur, H. Nano-biofertilizers: Harnessing Dual Benefits of Nano-nutrient and Bio-fertilizers for Enhanced Nutrient Use Efficiency and Sustainable Productivity. In Nanoscience for Sustainable Agriculture; Pudake, R.N., Chauhan, N., Kole, C., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 51–73. [Google Scholar] [CrossRef]
- González-García, Y.; Cárdenas-Álvarez, C.; CadenasPliego, G.; Benavides-Mendoza, A.; Cabrera-de-la-Fuente, M.; Sandoval-Rangel, A.; Valdés-Reyna, J.; Juárez-Maldonado, A. Effect of Three Nanoparticles (Se, Si and Cu) on the Bioactive Compounds of Bell Pepper Fruits under Saline Stress. Plants 2021, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Moharrami, F.; Sarikhani, S.; Padervand, M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 2020, 10, 17672. [Google Scholar] [CrossRef]
- Pérez-Labrada, F.; López-Vargas, E.R.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles. Plants 2019, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Hasanuzzaman, M.; Raza, M.A.; Malik, A.; Ahmad, S. Plant Nutrients for Crop Growth, Development and Stress Tolerance. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 43–93. [Google Scholar] [CrossRef]
- Khalil, U.; Ali, S.; Rizwan, M.; Rahman, K.U.; Ata-Ul-Karim, S.T.; Najeeb, U.; Ahmad, M.N.; Adrees, M.; Sarwar, M.; Hussain, S.M. Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 499–524. [Google Scholar] [CrossRef]
- Ostmeyer, T.; Parker, N.; Jaenisch, B.; Alkotami, L.; Bustamante, C.; Jagadish, S.V.K. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 2020, 25, 549–568. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, P.; Kumar, P.; Singh, B.N.; Pandey, D.K.; Kumar, V.; Bose, B. Mitigation of heat stress responses in crops using nitrate primed seeds. S. Afr. J. Bot. 2021, 140, 25–36. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 2021, 160, 257–268. [Google Scholar] [CrossRef]
- Hu, J.; Xianyu, Y. When nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today 2021, 38, 101143. [Google Scholar] [CrossRef]
- Ranjan, A.; Rajput, V.D.; Minkina, T.; Bauer, T.; Chauhan, A.; Jindal, T. Nanoparticles induced stress and toxicity in plants. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100457. [Google Scholar] [CrossRef]
- Pagano, L.; Rossi, R.; Paesano, L.; Marmiroli, N.; Marmiroli, M. miRNA regulation and stress adaptation in plants. Environ. Exp. Bot. 2021, 184, 104369. [Google Scholar] [CrossRef]
- Esmaili, S.; Tavallali, V.; Amiri, B. Nano-Silicon Complexes Enhance Growth, Yield, Water Relations and Mineral Composition in Tanacetum parthenium under Water Deficit Stress. Silicon 2020, 13, 2493–2508. [Google Scholar] [CrossRef]
- Namjoyan, S.; Sorooshzadeh, A.; Rajabi, A.; Aghaalikhani, M. Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiol. Plant 2020, 42, 157. [Google Scholar] [CrossRef]
- Afshari, M.; Pazoki, A.; Sadeghipour, O. Foliar-applied Silicon and its Nanoparticles Stimulate Physio-chemical Changes to Improve Growth, Yield and Active Constituents of Coriander (Coriandrum Sativum L.) Essential Oil under Different Irrigation Regimes. Silicon 2021, 13, 4177–4188. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.B.; Mehrabani, L.V.; Tzortzakis, N. Foliar Application of Nano-zinc and Iron Affects Physiological Attributes of Rosmarinus officinalis and Quietens NaCl Salinity Depression. J. Soil Sci. Plant Nutr. 2020, 20, 335–345. [Google Scholar] [CrossRef]
- Saad-Allah, K.M.; Ragab, G.A. Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiol. Mol. Biol. Plants 2020, 26, 2209–2223. [Google Scholar] [CrossRef]
- Sun, L.; Song, F.; Guo, J.; Zhu, X.; Liu, S.; Liu, F.; Li, X. Nano-ZnO-Induced Drought Tolerance Is Associated with Melatonin Synthesis and Metabolism in Maize. Int. J. Mol. Sci. 2020, 21, 782. [Google Scholar] [CrossRef] [Green Version]
- Asadpour, S.; Madani, H.; Mohammadi, G.N.; Heravan, I.M.; Abad, H.H.S. Improving Maize Yield with Advancing Planting Time and Nano-Silicon Foliar Spray Alone or Combined with Zinc. Silicon 2020, 14, 201–209. [Google Scholar] [CrossRef]
- Rady, M.M.; El-Shewy, A.A.; Seif El-Yazal, M.A.; Abd El-Gawwad, I.F.M. Integrative Application of Soil P-Solubilizing Bacteria and Foliar Nano P Improves Phaseolus vulgaris Plant Performance and Antioxidative Defense System Components under Calcareous Soil Conditions. J. Soil Sci. Plant Nutr. 2020, 20, 820–839. [Google Scholar] [CrossRef]
- Ahmad, P.; Alyemeni, M.N.; Al-Huqail, A.A.; Alqahtani, M.A.; Wijaya, L.; Ashraf, M.; Kaya, C.; Bajguz, A. Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System. Plants 2020, 9, 825. [Google Scholar] [CrossRef] [PubMed]
- Ogunkunle, C.O.; Odulaja, D.A.; Akande, F.O.; Varun, M.; Vishwakarma, V.; Fatoba, P.O. Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J. Biotechnol. 2020, 310, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Saidi, A.; Hajibarat, Z. Application of Next Generation Sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress. J. Biotechnol. 2020, 29, 101801. [Google Scholar] [CrossRef]
- Gupta, A.; Senthil-Kumar, M. Concurrent Stresses Are Perceived as New State of Stress by the Plants: Overview of Impact of Abiotic and Biotic Stress Combinations. In Plant Tolerance to Individual and Concurrent Stresses; Senthil-Kumar, M., Ed.; Springer Pvt. Ltd.: New Delhi, India, 2017; pp. 1–31. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Kumari, A. Plant Tolerance to Combined Stress: An Overview. In Plant Tolerance to Individual and Concurrent Stresses; Senthil-Kumar, M., Ed.; Springer Pvt. Ltd.: New Delhi, India, 2017; pp. 83–90. [Google Scholar] [CrossRef]
- Gupta, A.; Patil, M.; Qamar, A.; Senthil-Kumar, M. ath-miR164c influences plant responses to the combined stress of drought and bacterial infection by regulating proline metabolism. Environ. Exp. Bot. 2020, 172, 103998. [Google Scholar] [CrossRef]
- Shahid, M. Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations. J. Hazard. Mater. 2021, 407, 124881. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Cornejo, P.; Abraham, J.; Valentine, A. Simultaneous mitigation of aluminum, salinity and drought stress in Lactuca sativa growth via formulated plant growth promoting Rhodotorula mucilaginosa CAM4. Ecotoxicol. Environ. Saf. 2019, 180, 63–72. [Google Scholar] [CrossRef]
- Alamri, S.; Hu, Y.; Mukherjee, S.; Aftab, T.; Fahad, S.; Raza, A.; Ahmad, M.; Siddiqui, M.H. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol. Biochem 2020, 157, 47–59. [Google Scholar] [CrossRef]
- Vicente, M.J.; Martínez-Díaz, E.; Martínez-Sánchez, J.J.; Franco, J.A.; Bañón, S.; Conesa, E. Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Sci. Hortic. 2020, 270, 109433. [Google Scholar] [CrossRef]
- Fattahi, M.; Mohammadkhani, A.; Shiran, B.; Baninasab, B.; Ravash, R.; Gogorcena, Y. Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp.) rootstocks submitted to drought and salinity stress. Sci. Hortic. 2021, 281, 109937. [Google Scholar] [CrossRef]
- Moghaddam, M.S.H.; Safaie, N.; Soltani, J.; Hagh-Doust, N. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol. Biochem. 2021, 160, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Ors, S.; Ekinci, M.; Yildirim, E.; Sahin, U.; Turan, M.; Dursun, A. Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. S. Afr. J. Bot. 2021, 137, 335–339. [Google Scholar] [CrossRef]
- Duc, N.H.; Csintalan, Z.; Posta, K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 2018, 132, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.Z.; Ismaili, A.; Nazarian-Firouzabadi, F.; Fallahi, H.; Nejad, A.R.; Sohrabi, S.S. Dissecting the molecular responses of lentil to individual and combined drought and heat stresses by comparative transcriptomic analysis. Genomics 2021, 113, 693–705. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Papakyriakou, E.; Petropoulos, S.A.; Tzortzakis, N. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. J. Hazard. Mater. 2019, 368, 584–593. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Desoky, E.M.; Saad, A.M.; Eid, R.S.M.; Selem, E.; Elrys, A.S. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J. Environ. Sci. 2021, 106, 1–14. [Google Scholar] [CrossRef]
- Aliakbari, M.; Cohen, S.P.; Lindlof, A.; Shamloo-Dashtpagerdi, R. Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. Plant Physiol. Biochem. 2021, 161, 248–258. [Google Scholar] [CrossRef]
- Chen, L.; Hu, W.-F.; Long, C.; Wang, D. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation. Chemosphere 2021, 262, 127809. [Google Scholar] [CrossRef]
- Li, J.; Zhao, S.; Yu, X.; Du, W.; Li, H.; Sun, Y.; Sun, H.; Ruan, C. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiol. Biochem. 2021, 162, 410–420. [Google Scholar] [CrossRef]
- Naz, R.; Sarfraz, A.; Anwar, Z.; Yasmin, H.; Nosheen, A.; Keyani, R.; Roberts, T.H. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). Plant Physiol. Biochem. 2021, 159, 285–300. [Google Scholar] [CrossRef]
- Jośko, I.; Kusiak, M.; Xing, B.; Oleszczuk, P. Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. J. Hazard. Mater. 2021, 416, 126230. [Google Scholar] [CrossRef] [PubMed]
- Saffan, M.M.; Koriem, M.A.; El-Henawy, A.; El-Mahdy, S.; El-Ramady, H.; Elbehiry, F.; Alaa El-Dein Omara, A.E.-D.; Bayoumi, Y.; Badgar, K.; Prokisch, J. Sustainable Production of Tomato Plants (Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper. Sustainability 2022, 14, 3236. [Google Scholar] [CrossRef]
- Shalaby, T.A.; El-Bialy, S.M.; El-Mahrouk, M.E.; Omara, A.E.-D.; El-Beltagi, H.S.; El-Ramady, H. Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium. Agronomy 2022, 12, 539. [Google Scholar] [CrossRef]
- Pandey, P.; Ramegowda, V.; Senthil-Kumar, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Front. Plant Sci. 2015, 6, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Han, Y.; Zhou, Y.; Wang, T.; Lian, S.; Yuan, H. Transcriptomic analysis of tea plant (Camellia sinensis) revealed the co-expression network of 4111 paralogous genes and biosynthesis of quality-related key metabolites under multiple stresses. Genomics 2021, 113, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Sao, P.; Srivastava, A.; Singh, S. Physiological and Molecular Responses to Drought, Submergence and Excessive Watering in Plants. In Harsh Environment and Plant Resilience; Husen, A., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 305–321. [Google Scholar] [CrossRef]
- Zahra, N.; Shaukat, K.; Hafeez, M.B.; Raza, A.; Hussain, S.; Chaudhary, M.T.; Akram, M.Z.; Kakavand, S.N.; Saddiq, M.S.; Wahid, A. Physiological and Molecular Responses to High, Chilling, and Freezing Temperature in Plant Growth and Production: Consequences and Mitigation Possibilities. In Harsh Environment and Plant Resilience; Husen, A., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 235–290. [Google Scholar] [CrossRef]
- Liu, X.; Guan, H.; Wang, T.; Meng, D.; Yang, Y.; Dai, J.; Fan, N.; Guo, B.; Fu, Y.; He, W.; et al. ScPNP-A, a plant natriuretic peptide from Stellera chamaejasme, confers multiple stress tolerances in Arabidopsis. Plant Physiol. Biochem. 2020, 149, 132–143. [Google Scholar] [CrossRef]
- Thomas-Barry, G.; Martin, C.C.G.; Lynch, M.D.J.; Ramsubhag, A.; Rouse-Miller, J.; Charles, T.C. Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. Sci. Total Environ. 2021, 769, 145214. [Google Scholar] [CrossRef]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Rasheed, R.; Hussain, I.; Iqbal, M.; Farooq, M.U.; Saleem, M.H.; Ali, S. Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Esmaili, S.; Tavallali, V.; Amiri, B.; Bazrafshan, F.; Sharafzadeh, S. Foliar Application of Nano-Silicon Complexes on Growth, Oxidative Damage and Bioactive Compounds of Feverfew Under Drought Stress. Silicon 2022. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Dutt, M.; Shalan, A.M.; El-Kady, M.E.; El-Boray, M.S.; Shabana, Y.; Grosser, J.W. Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S. Afr. J. Bot. 2020, 132, 155–163. [Google Scholar] [CrossRef]
- Azmat, A.; Tanveer, Y.; Yasmin, H.; Hassan, M.N.; Shahzad, A.; Reddy, M.; Ahmad, A. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of Synchronized effects of heat and drought stress in wheat plants. Chemosphere 2022, 297, 133982. [Google Scholar] [CrossRef] [PubMed]
- Adrees, M.; Khan, Z.S.; Hafeez, M.; Rizwan, M.; Hussain, K.; Asrar, M.; Alyemeni, M.N.; Wijaya, L.; Ali, S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous cd and water deficient stress. Ecotoxicol. Environ. Saf. 2021, 208, 111627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, Y.; Li, F.; Liu, Y.; Jin, S. Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana. J. Plant Res. 2021, 134, 613–623. [Google Scholar] [CrossRef]
Nutrient Element | Symbol | Uptake Form | Nutrient Mobility | Ionic Radius (nm) | ||
---|---|---|---|---|---|---|
in Soil | in Plants | Crystal | Hydrated | |||
Nitrogen | N | NH4+ and NO3− | Mobile | Mobile | 0.132 | 0.279 and 0.345, resp. |
Phosphorus | P | H2PO4−; HPO42− | Immobile | Intermediate | 0.377 | 0.377 |
Potassium | K | K+ | Intermediate | Mobile | 0.138 | 0.2798 |
Calcium | Ca | Ca2+ | Intermediate | Immobile | 0.100 | 0.2422 |
Magnesium | Mg | Mg2+ | Immobile | Intermediate | 0.072 | 0.2090 |
Sulfur | S | SO42− | Mobile | Intermediate | 0.230 | 0.3815 |
Boron | B | H2BO3− | Mobile | Immobile | 0.244 | 0.261 |
Copper | Cu | Cu2+ | Immobile | Immobile | 0.072 | 0.073 |
Chlorine | Cl | Cl− | Mobile | Mobile | 0.180 | 0.181 |
Iron | Fe | Fe2+ | Immobile | Immobile | 0.072 | 0.078 |
Nickel | Ni | Ni+2 | Intermediate | Mobile | 0.067 | 0.069 |
Manganese | Mn | Mn2+ | Mobile | Immobile | 0.080 | 0.083 |
Molybdenum | Mo | MoO4− | Intermediate | Immobile | 0.267 | 0.270 |
Zinc | Zn | Zn2+ | Immobile | Immobile | 0.070 | 0.075 |
Nanofertilizer | Crop (Scientific Name) | Main Findings | Reference |
---|---|---|---|
CeO2 NPs and nanofertilizers (N, P, K, Zn, Fe) | Cabbage (Brassica oleracea var. capitata L.) | CeO2 NPs enhanced the uptake of NPK nanofertilizer; increased head weight by three times, compared to control plants. | [28] |
Nano-vermicompost | Tomato (Solanum lycopersicon L.) | Improved tomato growth and photosynthetic performance under drought stress. | [25] |
Nanoboron, nanosilica, and nanozinc | Wheat (Triticum aestivum L.) | Nano-Zn increased the protein (%) in wheat grains; nanosilica reduced the damage caused by drought; | [23] |
Nano-urea-amorphous calcium phosphate (NUACP) | Cucumber (Cucumis sativus L.) | NUACP has NUE of 69%, compared to urea (49%); NUACP + 50% reduced N content of urea, resulted in the same biomass. | [70] |
Nano-liposome-containing Fe2+ | Sweet basil (Ocimum basilicum L.) | Increased total leaf area, and chlorophyll, ferrous, and essential oil contents of plants, compared to the FeSO4 fertilizer. | [26] |
Nanoscale zero-valent iron (nZVI) | Rice (Oryza sativa L. cv. Gobindobhog) | Priming rice with nZVI (10–80 mg L−1) enhances yield; promoted the distribution of nutrients in grains and their contents. | [71] |
Hydroxyapatite nanoparticles | Maize (Zea mays L.) | This nanophosphate fertilizer improved growth and physiological properties of maize. | [24] |
Nano-Zn fertilizer | Strawberry (Fragaria × ananassa Duch.) | Nano-Zn improved crop yield and its quality compared to conventional Zn sources (i.e., ZnSO4, Zn EDTA, ZnO). | [29] |
NPK nanofertilizers | Potato (Solanum tuberosum L.) | NPK nanofertilizers significantly improved potato yield and its parameters compared to NPK chemical fertilizers. | [72] |
Cu(OH)2 nanofertilizer | Alfalfa (Medicago sativa L.) | Cu(OH)2 nanowire was considered as a potential nanofertilizer at 80 and 280 mg kg−1 because it prompted growth. | [73] |
Nano-NPK + nanochelated-Fe | Dragon’s Head (Lallemantia iberica (Fischer and Meyer) | Nanofertilizers improved yield components and antioxidant traits during winter cultivation compared to control. | [74] |
ZnO nanoparticles (18 nm) | Wheat (Triticum aestivum L.) | Nano-ZnO modulated drought effects; increased growth and content of Zn, S, and Mg in grains. | [75] |
ZnO NPs (67 nm and 250 mg L−1) | Cucumber (Cucumis sativus L.) | Applied Bacillus subtilis combined with ZnO NPs controlled powdery mildew disease as an alternative to fungicide. | [76] |
Nanochelated fertilizer (N, P, K, Fe, Zn, Mn) | Peppermint (Mentha x piperita L.) | This nanofertilizer is reported to be an alternative and eco-friendly strategy in peppermint oil production. | [77] |
Boron nanofertilizer | Lettuce (Lactuca sativa); zucchini (Cucurbita pepo) | Foliar spray of B-nano fertilizer increased the biomass by 58 and 66%, compared to control (B for lettuce and zucchini). | [78] |
(A) nano-Ca and Mg; (B) nano-Zn-Fe-Mn | Chili pepper (Capsicum annuum) | Nanofertilizers promoted uptake of nutrients; improved photosynthetic pigments and cell membrane stability under salinity stress. | [79] |
FePO4 nanoparticles | Cucumber (Cucumis sativus L.) and maize (Zea mays L.) | FePO4 NPs are an efficient source of P and Fe compared to their bulk forms and are a new and promising class of fertilizers. | [80] |
Mn–Zn ferrite nanoparticles (Mn0.5Zn0.5Fe2O4) | Squash (Cucurbita pepo L.) | Nanoferrite produced the highest increase (of about 50%) as an appropriate fertilizer at 30 ppm, and was synthesized at 180 °C. | [81] |
CuO nanoparticles | Green onion (Allium fistulosum) | Nano-CuO (150 mg kg−1) increased root Ca, Fe (86 and 71%), and bulb Ca, Mg (74 and 108%), compared with control and enhanced allicin content in scallion. | [82] |
ZnO NPs (zinc oxide nanoparticles) | Soybean (Glycine max L.) | ZnO NPs promoted seed yield up to 160 mg kg−1; may consider nanofertilizer for enriching Zn-deficient soil with Zn. | [83] |
Abiotic Stress | Crop (Scientific Name) | Experiment Details (Nanonutrient Type) | Main Findings | Reference |
---|---|---|---|---|
Drought (for 7, 14, and 21 days) | Maize (Zea mays L.) | Pots (zero-valent copper NPs at 69.4 µM, 30–40 nm) | Nano-Cu NPs regulated protective mechanism of maize and are associated with drought tolerance. | [91] |
Drought (irrigated at 4, 8, and 12 days) | Feverfew (Tanacetum parthenium L.) | Greenhouse (nano-Si at 1.5 and 3.0 mM) | Foliar-applied 1.5 mM glycine nano-Si was the best mitigator of the adverse effects of drought. | [109] |
Water stress (100, 75, and 50% ETc) | Sugar beet (Beta vulgaris L.) | Field experiment (nano-Si applied at 1 and 2 mM) | Nano-Si protected plants during water stress by enhancing GB, antioxidants, and flavonols, such as quercetin | [110] |
Water stress (‡) (irrigated after 60, 90, and 120 mm) | Coriander (Coriandrum Sativum L.) | Field experiment (SiO2 NPs, 20–35 nm at 1.5 mM) | Foliar-applied SiO2 NPs alleviated the adverse effects of water stress and essential oil yields of coriander. | [111] |
Salt stress (75, 150, and 225 mM NaCl) | Rosemary (Rosmarinus officinalis L.) | Soilless culture system (nano-Zn, 10–30 nm; and nano-Fe, 20 nm; both at 3 mg L−1) | Foliar-applied nano-Fe and -Zn increased total phenolic and total flavonoid contents; growth and salt tolerance. | [112] |
Salt stress (100 or 200 mM NaCl) | Wheat (Triticum aestivum L.) | Pot experiments (S NPs at 100 µM, 23 nm) | S NPs mediated salt tolerance by regulating metabolic activity and decreasing oxidative stress. | [113] |
Drought (hold watering till soil water content is 45%) | Maize (Zea mays L.) | Pot experiments (nano-ZnO, at 20 nm, 100 mg L−1) | ZnO NPs promoted the synthesis of melatonin and activated enzymatic antioxidants, which alleviated damage in chloroplast due to drought. | [114] |
Soil zinc deficiency (0.2 mg kg−1) | Maize (Zea mays L.) | Field experiment (SiO2 NPs, 30 nm, 2 mM) | SiO2-NP + Zn (0.4%) increased the grain yield of maize by 37%, and linoleic acid, compared to control. | [115] |
Calcareous soil (22% CaCO3) | Common bean (Phaseolus vulgaris L.) | Pot experiments (0.1 g L−1 nano-P, 4.92–8.62 nm) | Integrative application of soil PSB + foliar nano-P improved plant growth and antioxidative defense system. | [116] |
Arsenic stress (20-µM As) | Soybean (Glycine max L.) | Pot experiment (ZnO NPs, at 50 and 100 mg L−1) | ZnO NPs alleviated As-toxicity in plants by restricting the As-uptake, modulating antioxidant enzymes and AGC. | [117] |
Cadmium stress (10 mg Cd kg−1 soil) | Cowpea (Vigna unguiculata L.) | Screen house (nano-TiO2 at 100 and 200 mg L−1) | Foliar-applied nano-TiO2 promoted total chlorophyll content and protected plants from Cd toxicity. | [118] |
Crop (Scientific Name) | Combined Stress (Details) | Main Findings | Reference |
---|---|---|---|
Cucumber (Cucumis sativus L.) | Soil salinity (4.49 dS m−1) and heat stress (>35 °C). | Grafting is a powerful agronomic practice that improved productivity under this combined stress. | [18] |
Cucumber (Cucumis sativus L.) | Soil salinity (4.49 dS m−1) and heat stress (>35 °C). | Nano-Se (25 mg L−1), Si (200 mg L−1), and H2O2 (20 mmol l−1) were active antistressors in mitigating these stresses. | [14] |
Cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) | Salinity (2.5–7.5 dS m−1) and drought (irrigated at 40–100% FC). | Desert-adapted fungus mediated the plant’s tolerance as an adapted endophyte in an agricultural system. | [128] |
Barley (Hordeum vulgare L.) | Salinity (150 mM NaCl) and drought (withholding water in pots at 60% FC). | Rubisco activase A contributed to combined stress tolerance as a central node in overlapping gene network. | [134] |
Sunflower (Helianthus annuus L.) | U and Cd stress (soil treated with 15 mg U and 15 mg Cd kg−1 soil for 30 d; seedlings were transferred to pots). | Applying PGRs (i.e., 6-BA, IAA, GA3, and 24-EBL) promoted plant growth and photosynthesis, and alleviated toxicity of U and Cd stress. | [135] |
Pistachio (Pistacia spp.) | Salinity (from 7.57 to 24.63 dS m−1) and drought (irrigated at 40–100% FC) for 60 d in two separated experiments. | Mycorrhizal fungi enhanced tolerance of pistachio rootstocks by increasing biomass, minerals, and chlorophyll content, and decreasing oxidant content. | [127] |
Common bean (Phaseolus vulgaris L.) | Soil salinity (soil EC = 7.8 dS m−1) and heavy metal stress (Cd, Pb and Ni). | Foliar bio-SiO2 NPs (2.5 and 5.0 mmol L−1) alleviated combined stress by better growth and yield due to enhancing the antioxidant defense systems. | [133] |
Lentil (Lens culinaris L.) | Drought (irrigated 20% PEG 6000 for 3 d) and heat stress (40 °C for 4 h). | Regulating the response to these stresses is linked to multiple genes, which are related to the antioxidant activity. | [131] |
Yellowhorn (Xanthoceras sorbifolium L.) | Drought (by withdrawing water †) and heat stress (35/25 °C day/night for 3, 6, 9 d from stress). | This plant mitigated combined drought and heat stress through the modulation of ROS homeostasis and stomatal closure. | [136] |
Maize (Zea mays L.) | Drought (by withholding water supply) and Cr stress (Cr-VI, 10 mg L−1) for 7 d. | Applied salicylic acid and the polyamine spermidine may boost maize tolerance to studied stresses by enhancing antioxidant enzyme activities. | [137] |
Tomato (Lycopersicon esculentum L.) | Salinity (150 mM NaCl) and drought (irrigated at 50–100% FC). | Both stresses changed the compositions of mineral nutrients by decreasing Ca, Fe, N, P, K and Zn contents, but increased contents of B, Na, and Cl. | [129] |
Mustard (Brassica juncea) | Salinity (120 mM NaCl) and drought (withholding water) for 6 days. | Silicon can postpone premature leaf senescence through modulation of ion homeostasis and antioxidative defense. | [125] |
Barley (Hordeum vulgare L.) | Salinity (200 mM NaCl) and potassium deficit. | 100 ppm 24-epibrassinolide alleviated the adverse effects of combined stress. | [17] |
Hypericum ericoides | Salinity stress (from 50 to 350 mM NaCl) and drought (PEG 8000) for 30 d. | Seeds of H. ericoides could germinate well under moderate salinity (150 to 250 mM) and high drought stress. | [126] |
Spearmint (Mentha spicata L.) | Salinity (150 mM NaCl) and copper stress (60 μM Cu). | In hydroponics, under studied stress, decreased N, K, and Zn (in leaves), and Ca, K, P, and Mg (in roots). | [132] |
Lettuce (Lactuca sativa L.) | Salinity (2–10% NaCl) and drought (5–20% PEG-6000) stress). | Plant growth yeast strain, CAM4, as Rhodotorula mucilaginosa as biofertilizer promoted the growth. | [124] |
Tomato (Solanum lycopersicum L.) | Drought (50% of field capacity for 7 d) and heat stress (42 °C for 6 h). | Arbuscular mycorrhizal (Septoglomus constrictum) increased tolerance of tomato to studied stress. | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalaby, T.A.; Bayoumi, Y.; Eid, Y.; Elbasiouny, H.; Elbehiry, F.; Prokisch, J.; El-Ramady, H.; Ling, W. Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? Sustainability 2022, 14, 3480. https://doi.org/10.3390/su14063480
Shalaby TA, Bayoumi Y, Eid Y, Elbasiouny H, Elbehiry F, Prokisch J, El-Ramady H, Ling W. Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? Sustainability. 2022; 14(6):3480. https://doi.org/10.3390/su14063480
Chicago/Turabian StyleShalaby, Tarek A., Yousry Bayoumi, Yahya Eid, Heba Elbasiouny, Fathy Elbehiry, József Prokisch, Hassan El-Ramady, and Wanting Ling. 2022. "Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity?" Sustainability 14, no. 6: 3480. https://doi.org/10.3390/su14063480
APA StyleShalaby, T. A., Bayoumi, Y., Eid, Y., Elbasiouny, H., Elbehiry, F., Prokisch, J., El-Ramady, H., & Ling, W. (2022). Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity? Sustainability, 14(6), 3480. https://doi.org/10.3390/su14063480