Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review
Abstract
:1. Introduction
2. Background
2.1. Distributed Ledger Technology (DLT)
2.2. Blockchain
2.3. Smart Contracts
2.4. Internet of Things (IoT)
2.5. Machine-to-Machine Communication (M2M)
2.6. Vehicular Ad Hoc Networks (VANETs)
2.7. Internet of Vehicles (IoV)
2.7.1. Vehicle-to-Infrastructure (V2I) Communication
2.7.2. Vehicle-to-Roadside Unit (V2R) Communication
2.7.3. Vehicle-to-Sensor (V2S) Communication
2.7.4. Vehicle-to-Vehicle (V2V) Communication
2.7.5. Vehicle-to-Human (V2H) Communication
2.8. Event-Driven Service-Oriented Architecture (EDSOA) for IoT
3. Materials and Methods
3.1. Planning and Conducting the Review
- “Blockchain” <AND> “VANETS”;
- “Blockchain” <AND> “VANETS” <OR> “IoV” <OR> “Internet of Vehicles”.
3.2. Inclusion/Exclusion Criteria
3.3. Abstract and Article Assessment
4. Results
Descriptive Analysis of the Corpus
5. RQ1: Blockchain Domains and Research Areas
6. RQ2: Blockchain Framework for VANETs
6.1. Decentralized Architecture for VANETs
6.1.1. Vehicles
6.1.2. On-Board Unit
6.1.3. Roadside Unit
6.1.4. Core Network
6.1.5. Blockchain Network
6.1.6. Smart Contracts
6.1.7. Agent Node
6.1.8. Miner
7. RQ3: Blockchain and the IoT/VANET Challenges, Limitations, and Techniques
8. RQ4: General Blockchain Limitations and Techniques
9. Discussions
9.1. Security, Traceability, and Transparency
9.2. IoV and Fleet Management Digitalization
9.3. Blockchain-Enabled VANET Applications
9.3.1. Fleet and Journey Management for ITS
9.3.2. Asset Tracking
9.3.3. Data Science and Management
9.3.4. Solid Waste Management
9.3.5. Contact Tracing and Social Distancing
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cole, R.; Stevenson, M.; Aitken, J. Blockchain technology: Implications for operations and supply chain management. Supply Chain. Manag. Int. J. 2019, 24, 469–483. [Google Scholar] [CrossRef]
- Tönnissen, S.; Teuteberg, F. Analysing the impact of blockchain-technology for operations and supply chain management: An explanatory model drawn from multiple case studies. Int. J. Inf. Manag. 2020, 52, 101953. [Google Scholar] [CrossRef]
- Álvares, P.; Silva, L.; Magaia, N. Blockchain-Based Solutions for UAV-Assisted Connected Vehicle Networks in Smart Cities: A Review, Open Issues, and Future Perspectives. Telecom 2021, 2, 108–140. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Parizi, R.M.; Choo, K.-K.R. Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE Access 2019, 7, 176935–176951. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A Decentralized Privacy-Preserving Healthcare Blockchain for IoT. Sensors 2019, 19, 326. [Google Scholar] [CrossRef] [Green Version]
- Mani, V.; Manickam, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. Hyperledger Healthchain: Patient-Centric IPFS-Based Storage of Health Records. Electronics 2021, 10, 3003. [Google Scholar] [CrossRef]
- Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. MedRec: Using Blockchain for Medical Data Access and Permission Management. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 25–30. [Google Scholar]
- Treleaven, P.; Brown, R.G.; Yang, D. Blockchain Technology in Finance. Computer 2017, 50, 14–17. [Google Scholar] [CrossRef]
- Pawlak, M.; Poniszewska-Marańda, A.; Kryvinska, N. Towards the intelligent agents for blockchain e-voting system. Procedia Comput. Sci. 2018, 141, 239–246. [Google Scholar] [CrossRef]
- Sheth, A.; Subramanian, H. Blockchain and contract theory: Modeling smart contracts using insurance markets. Manag. Financ. 2019, 46, 803–814. [Google Scholar] [CrossRef]
- Jha, N.; Prashar, D.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S. Blockchain Based Crop Insurance: A Decentralized Insurance System for Modernization of Indian Farmers. Sustainability 2021, 13, 8921. [Google Scholar] [CrossRef]
- Syed, T.A.; Alzahrani, A.; Jan, S.; Siddiqui, M.S.; Nadeem, A.; Alghamdi, T. A Comparative Analysis of Blockchain Architecture and its Applications: Problems and Recommendations. IEEE Access 2019, 7, 176838–176869. [Google Scholar] [CrossRef]
- Wan, P.K.; Huang, L.; Holtskog, H. Blockchain-Enabled Information Sharing within a Supply Chain: A Systematic Literature Review. IEEE Access 2020, 8, 49645–49656. [Google Scholar] [CrossRef]
- Matheu, S.N.; Robles Enciso, A.; Molina Zarca, A.; Garcia-Carrillo, D.; Hernández-Ramos, J.L.; Bernal Bernabe, J.; Skarmeta, A.F. Security Architecture for Defining and Enforcing Security Profiles in DLT/SDN-Based IoT Systems. Sensors 2020, 20, 1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Pei, L.; Liao, D.; Sun, G.; Xu, D. Blockchain Meets VANET: An Architecture for Identity and Location Privacy Protection in VANET. Peer-to-Peer Netw. Appl. 2019, 12, 1178–1193. [Google Scholar] [CrossRef]
- Košťál, K.; Helebrandt, P.; Belluš, M.; Ries, M.; Kotuliak, I. Management and Monitoring of IoT Devices Using Blockchain. Sensors 2019, 19, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morse, E.A. From Rai stones to Blockchains: The transformation of payments. Comput. Law Secur. Rev. 2018, 34, 946–953. [Google Scholar] [CrossRef]
- Sander, F.; Semeijn, J.; Mahr, D. The acceptance of blockchain technology in meat traceability and transparency. Br. Food J. 2018, 120, 2066–2079. [Google Scholar] [CrossRef] [Green Version]
- Bagga, P.; Das, A.K.; Wazid, M.; Rodrigues, J.J.P.C.; Park, Y. Authentication Protocols in Internet of Vehicles: Taxonomy, Analysis, and Challenges. IEEE Access 2020, 8, 54314–54344. [Google Scholar] [CrossRef]
- Lo, S.K.; Liu, Y.; Chia, S.Y.; Xu, X.; Lu, Q.; Zhu, L.; Ning, H. Analysis of Blockchain Solutions for IoT: A Systematic Literature Review. IEEE Access 2019, 7, 58822–58835. [Google Scholar] [CrossRef]
- Conoscenti, M.; Vetrò, A.; De Martin, J.C. Blockchain for the Internet of Things: A systematic literature review. In Proceedings of the IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), Agadir, Morocco, 29 November–2 December 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Noor, R.M.; Malik, A.W. A review of blockchain empowered vehicular network: Performance evaluation of trusted task offloading scheme. In Proceedings of the IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Shah Alam, Malaysia, 3–4 April 2021; pp. 367–371. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Shen, C.; Pena-Mora, F. Blockchain for Cities—A Systematic Literature Review. IEEE Access 2018, 6, 76787–76819. [Google Scholar] [CrossRef]
- Dutta, P.; Choi, T.-M.; Somani, S.; Butala, R. Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102067. [Google Scholar] [CrossRef] [PubMed]
- Weber, I.; Xu, X.; Riveret, R.; Governatori, G.; Ponomarev, A.; Mendling, J. Untrusted business process monitoring and execution using blockchain. In Proceedings of the International conference on business process management, Rio de Janeiro, Brazil, 18–22 September 2016; pp. 329–347. [Google Scholar]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 4, 21260. [Google Scholar] [CrossRef]
- Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Appl. Innov. 2016, 2, 71. [Google Scholar]
- Casey, M.J.; Wong, P. Global supply chains are about to get better, thanks to blockchain. Harv. Bus. Rev. 2017, 13, 1–6. [Google Scholar]
- Toyoda, K.; Mathiopoulos, P.T.; Sasase, I.; Ohtsuki, T. A Novel Blockchain-Based Product Ownership Management System (POMS) for Anti-Counterfeits in the Post Supply Chain. IEEE Access 2017, 5, 17465–17477. [Google Scholar] [CrossRef]
- Szabo, N. Smart contracts: Building blocks for digital markets. EXTROPY J. Transhumanist Thought 2016, 18, 28. [Google Scholar]
- Magazzeni, D.; McBurney, P.; Nash, W. Validation and Verification of Smart Contracts: A Research Agenda. Computer 2017, 50, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Himura, Y. Smart-contract based system operations for permissioned blockchain. In Proceedings of the 29th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; pp. 1–6. [Google Scholar]
- Watanabe, H.; Fujimura, S.; Nakadaira, A.; Miyazaki, Y.; Akutsu, A.; Kishigami, J.J. Blockchain contract: A complete consensus using blockchain. In Proceedings of the IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 577–578. [Google Scholar]
- Javaid, U.; Aman, M.N.; Sikdar, B. DrivMan: Driving trust management and data sharing in VANETS with blockchain and smart contracts. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar]
- Wang, Y.; Kogan, A. Designing confidentiality-preserving Blockchain-based transaction processing systems. Int. J. Account. Inf. Syst. 2018, 30, 1–18. [Google Scholar] [CrossRef]
- Chang, S.E.; Chen, Y.-C.; Wu, T.-C. Exploring blockchain technology in international trade: Business process re-engineering for letter of credit. Ind. Manag. Data Syst. 2019, 119, 1712–1733. [Google Scholar] [CrossRef]
- Vaidya, B.; Mouftah, H.T. IoT Applications and Services for Connected and Autonomous Electric Vehicles. Arab. J. Sci. Eng. 2020, 45, 2559–2569. [Google Scholar] [CrossRef]
- Ding, S.; Cao, J.; Li, C.; Fan, K.; Li, H. A Novel Attribute-Based Access Control Scheme Using Blockchain for IoT. IEEE Access 2019, 7, 38431–38441. [Google Scholar] [CrossRef]
- Singh, S.; Hosen, A.S.M.S.; Yoon, B. Blockchain Security Attacks, Challenges, and Solutions for the Future Distributed IoT Network. IEEE Access 2021, 9, 13938–13959. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; Salah, K.; Kumar, N. Blockchain for IoT-based healthcare: Background, consensus, platforms, and use cases. IEEE Syst. J. 2020, 15, 85–94. [Google Scholar] [CrossRef]
- Saad, M.; Bin, M.; Ahmad, A.; Muhammad, M.; Khalid, A.G.; Mohammad, A. Social Distancing and Isolation Management Using Machine-to-Machine Technologies to Prevent Pandemics. Comput. Mater. Contin. 2021, 67, 3545–3562. [Google Scholar] [CrossRef]
- Mehmood, Y.; Marwat, S.N.K.; Kuladinithi, K.; Förster, A.; Zaki, Y.; Görg, C.; Timm-Giel, A. M2M Potentials in logistics and transportation industry. Logist. Res. 2016, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Song, L.; Yu, H.; Chang, V.; Du, X.; Guizani, M. V2V Routing in a VANET Based on the Autoregressive Integrated Moving Average Model. IEEE Trans. Veh. Technol. 2018, 68, 908–922. [Google Scholar] [CrossRef]
- Peng, L.; Feng, W.; Yan, Z.; Li, Y.; Zhou, X.; Shimizu, S. Privacy preservation in permissionless blockchain: A survey. Digit. Commun. Netw. 2021, 7, 295–307. [Google Scholar] [CrossRef]
- Moloisane, N.R.; Malekian, R.; Bogatinoska, D.C. Wireless machine-to-machine communication for intelligent transportation systems: Internet of Vehicles and vehicle to grid. In Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 411–415. [Google Scholar]
- Hussain, R.; Hussain, F.; Zeadally, S. Integration of VANET and 5G Security: A review of design and implementation issues. Futur. Gener. Comput. Syst. 2019, 101, 843–864. [Google Scholar] [CrossRef]
- Kurugollu, F.; Ahmed, S.H.; Hussain, R.; Ahmad, F.; Kerrache, C.A. Vehicular Sensor Networks: Applications, Advances and Challenges. Sensors 2020, 20, 3686. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Abu Talib, M.; Ahmed, A.; Khan, F.; Ahmad, S.; Kim, D.-H. Blockchain-Based Authentication in Internet of Vehicles: A Survey. Sensors 2021, 21, 7927. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Wang, B.; Zhang, L.; Shi, R.; Li, F. An Event-driven Service-oriented Architecture for Internet of Things Service Execution. Int. J. Online Biomed. Eng. 2015, 11, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Bao-Kun, Z.; Lie-Huang, Z.; Shen, M.; Gao, F.; Zhang, C.; Yan-Dong, L.; Yang, J. Scalable and privacy-preserving data sharing based on blockchain. J. Comput. Sci. Technol. 2018, 33, 557–567. [Google Scholar]
- Busygin, A.G.; Konoplev, A.S.; Zegzhda, D.P. Providing Stable Operation of Self-Organizing Cyber-Physical System via Adaptive Topology Management Methods Using Blockchain-Like Directed Acyclic Graph. Autom. Control Comput. Sci. 2018, 52, 1080–1083. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, W.; Wang, Q.; Qu, G.; Liu, Z. A Privacy-Preserving Trust Model Based on Blockchain for VANETs. IEEE Access 2018, 6, 45655–45664. [Google Scholar] [CrossRef]
- Ali, I.; Gervais, M.; Ahene, E.; Li, F. A blockchain-based certificateless public key signature scheme for vehicle-to-infrastructure communication in VANETs. J. Syst. Archit. 2019, 99, 101636. [Google Scholar] [CrossRef]
- Shrestha, R.; Nam, S.Y. Regional Blockchain for Vehicular Networks to Prevent 51% Attacks. IEEE Access 2019, 7, 95033–95045. [Google Scholar] [CrossRef]
- Xie, L.; Ding, Y.; Yang, H.; Wang, X. Blockchain-Based Secure and Trustworthy Internet of Things in SDN-Enabled 5G-VANETs. IEEE Access 2019, 7, 56656–56666. [Google Scholar] [CrossRef]
- Kim, S. Impacts of Mobility on Performance of Blockchain in VANET. IEEE Access 2019, 7, 68646–68655. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Chou, L.-D.; Tseng, C.-W.; Tseng, F.-H.; Liu, C.-C. Blockchain-Based Traffic Event Validation and Trust Verification for VANETs. IEEE Access 2019, 7, 30868–30877. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D. Adaptive Traffic Signal Control Mechanism for Intelligent Transportation Based on a Consortium Blockchain. IEEE Access 2019, 7, 97281–97295. [Google Scholar] [CrossRef]
- Butt, T.A.; Iqbal, R.; Salah, K.; Aloqaily, M.; Jararweh, Y. Privacy Management in Social Internet of Vehicles: Review, Challenges and Blockchain Based Solutions. IEEE Access 2019, 7, 79694–79713. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Q.; Qu, G.; Zhang, H.; Liu, Z. A Blockchain-Based Privacy-Preserving Authentication Scheme for VANETs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2792–2801. [Google Scholar] [CrossRef]
- Feng, Q.; He, D.; Zeadally, S.; Liang, K. BPAS: Blockchain-Assisted Privacy-Preserving Authentication System for Vehicular Ad Hoc Networks. IEEE Trans. Ind. Inform. 2020, 16, 4146–4155. [Google Scholar] [CrossRef]
- De Maio, V.; Brundo Uriarte, R.; Brandic, I. Energy and profit-aware proof-of-stake offloading in blockchain-based VANETs. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, Auckland, New Zealand, 2–5 December 2019; pp. 177–186. [Google Scholar]
- Zhang, D.; Yu, F.R.; Yang, R. Blockchain-Based Distributed Software-Defined Vehicular Networks: A Dueling Deep Q—Learning Approach. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1086–1100. [Google Scholar] [CrossRef]
- Zheng, D.; Jing, C.; Guo, R.; Gao, S.; Wang, L. A Traceable Blockchain-Based Access Authentication System with Privacy Preservation in VANETs. IEEE Access 2019, 7, 117716–117726. [Google Scholar] [CrossRef]
- Bonadio, A.; Chiti, F.; Fantacci, R.; Vespri, V. An integrated framework for blockchain inspired fog communications and computing in Internet of Vehicles. J. Ambient Intell. Humaniz. Comput. 2019, 11, 755–762. [Google Scholar] [CrossRef]
- Lei, K.; Fang, J.; Zhang, Q.; Lou, J.; Du, M.; Huang, J.; Wang, J.; Xu, K. Blockchain-Based Cache Poisoning Security Protection and Privacy-Aware Access Control in NDN Vehicular Edge Computing Networks. J. Grid Comput. 2020, 18, 593–613. [Google Scholar] [CrossRef]
- Shrestha, R.; Bajracharya, R.; Shrestha, A.P.; Nam, S.Y. A new type of blockchain for secure message exchange in VANET. Digit. Commun. Netw. 2020, 6, 177–186. [Google Scholar] [CrossRef]
- Sutrala, A.K.; Bagga, P.; Das, A.K.; Kumar, N.; Rodrigues, J.J.P.C.; Lorenz, P. On the Design of Conditional Privacy Preserving Batch Verification-Based Authentication Scheme for Internet of Vehicles Deployment. IEEE Trans. Veh. Technol. 2020, 69, 5535–5548. [Google Scholar] [CrossRef]
- Ahmad, F.; Kurugollu, F.; Adnane, A.; Hussain, R.; Hussain, F. MARINE: Man-in-the-Middle Attack Resistant Trust Model in Connected Vehicles. IEEE Internet Things J. 2020, 7, 3310–3322. [Google Scholar] [CrossRef] [Green Version]
- Shala, B.; Trick, U.; Lehmann, A.; Ghita, B.; Shiaeles, S. Blockchain and trust for secure, end-user-based and decentralized iot service provision. IEEE Access 2020, 8, 119961–119979. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, J.; Guo, Y.; Liu, Y.; Liu, X.; He, W. An Efficient Decentralized Key Management Mechanism for VANET With Blockchain. IEEE Trans. Veh. Technol. 2020, 69, 5836–5849. [Google Scholar] [CrossRef]
- Ryu, K.; Kim, W.; Lee, E.-K. payGo: Incentive-Comparable Payment Routing Based on Contract Theory. IEEE Access 2020, 8, 70095–70110. [Google Scholar] [CrossRef]
- Zhao, N.; Wu, H.; Zhao, X. Consortium Blockchain-Based Secure Software Defined Vehicular Network. Mob. Netw. Appl. 2020, 25, 314–327. [Google Scholar] [CrossRef]
- Li, H.; Pei, L.; Liao, D.; Chen, S.; Zhang, M.; Xu, D. FADB: A Fine-Grained Access Control Scheme for VANET Data Based on Blockchain. IEEE Access 2020, 8, 85190–85203. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X. Secure Data Sharing and Customized Services for Intelligent Transportation Based on a Consortium Blockchain. IEEE Access 2020, 8, 56045–56059. [Google Scholar] [CrossRef]
- Malik, N.; Nanda, P.; He, X.; Liu, R.P. Vehicular networks with security and trust management solutions: Proposed secured message exchange via blockchain technology. Wirel. Netw. 2020, 26, 4207–4226. [Google Scholar] [CrossRef]
- Shi, K.; Zhu, L.; Zhang, C.; Xu, L.; Gao, F. Blockchain-based multimedia sharing in vehicular social networks with privacy protection. Multimed. Tools Appl. 2020, 79, 8085–8105. [Google Scholar] [CrossRef]
- Yang, W.; Dai, X.; Xiao, J.; Jin, H. LDV: A Lightweight DAG-Based Blockchain for Vehicular Social Networks. IEEE Trans. Veh. Technol. 2020, 69, 5749–5759. [Google Scholar] [CrossRef]
- Cho, E.M.; Perera, M.N.S. Efficient certificate management in blockchain based Internet of Vehicles. In Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 11–14 May 2020; pp. 794–797. [Google Scholar]
- Jiang, X.; Ma, Z.; Yu, F.R.; Song, T.; Boukerche, A. Edge computing for video analytics in the Internet of Vehicles with blockchain. In Proceedings of the 10th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, Alicante, Spain, 16–20 November 2020; pp. 1–7. [Google Scholar]
- Ma, Z.; Yu, F.R.; Jiang, X.; Boukerche, A. Trustworthy Traffic Information Sharing Secured via Blockchain in VANETs. In Proceedings of the 10th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, Alicante, Spain, 16–20 November 2020; pp. 33–40. [Google Scholar]
- Tomar, R. Maintaining Trust in VANETs using Blockchain. ACM SIGAda Ada Lett. 2020, 40, 91–96. [Google Scholar] [CrossRef]
- Ayaz, F.; Sheng, Z.; Tian, D.; Guan, Y.L. A Proof-of-Quality-Factor (PoQF)-Based Blockchain and Edge Computing for Vehicular Message Dissemination. IEEE Internet Things J. 2020, 8, 2468–2482. [Google Scholar] [CrossRef]
- Hussain, R.; Lee, J.; Zeadally, S. Trust in VANET: A Survey of Current Solutions and Future Research Opportunities. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2553–2571. [Google Scholar] [CrossRef]
- Lin, C.; He, D.; Huang, X.; Kumar, N.; Choo, K.-K.R. BCPPA: A Blockchain-Based Conditional Privacy-Preserving Authentication Protocol for Vehicular Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7408–7420. [Google Scholar] [CrossRef]
- Mershad, K. SURFER: A Secure SDN-Based Routing Protocol for Internet of Vehicles. IEEE Internet Things J. 2021, 8, 7407–7422. [Google Scholar] [CrossRef]
- Zheng, X.; Li, M.; Chen, Y.; Guo, J.; Alam, M.; Hu, W. Blockchain-Based Secure Computation Offloading in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4073–4087. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Lai, J.-F.; Liu, J. B-TSCA: Blockchain assisted trustworthiness scalable computation for V2I authentication in VANETs. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1386–1396. [Google Scholar] [CrossRef]
- Kudva, S.; Badsha, S.; Sengupta, S.; Khalil, I.; Zomaya, A. Towards secure and practical consensus for blockchain based VANET. Inf. Sci. 2021, 545, 170–187. [Google Scholar] [CrossRef]
- Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. A Survey of IoT and Blockchain Integration: Security Perspective. IEEE Access 2021, 9, 156114–156150. [Google Scholar] [CrossRef]
- Alharthi, A.; Ni, Q.; Jiang, R. A Privacy-Preservation Framework Based on Biometrics Blockchain (BBC) to Prevent Attacks in VANET. IEEE Access 2021, 9, 87299–87309. [Google Scholar] [CrossRef]
- Hei, Y.; Liu, Y.; Li, D.; Liu, J.; Wu, Q. Themis: An accountable blockchain-based P2P cloud storage scheme. Peer-to-Peer Netw. Appl. 2021, 14, 225–239. [Google Scholar] [CrossRef]
- Akhter, A.; Ahmed, M.; Shah, A.; Anwar, A.; Zengin, A. A Secured Privacy-Preserving Multi-Level Blockchain Framework for Cluster Based VANET. Sustainability 2021, 13, 400. [Google Scholar] [CrossRef]
- Azam, F.; Yadav, S.K.; Priyadarshi, N.; Padmanaban, S.; Bansal, R.C. A Comprehensive Review of Authentication Schemes in Vehicular Ad-Hoc Network. IEEE Access 2021, 9, 31309–31321. [Google Scholar] [CrossRef]
- Chulerttiyawong, D.; Jamalipour, A. A Blockchain Assisted Vehicular Pseudonym Issuance and Management System for Conditional Privacy Enhancement. IEEE Access 2021, 9, 127305–127319. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Amin, R.; Vollala, S. Blockchain-based secured IPFS-enable event storage technique with authentication protocol in VANET. IEEE/CAA J. Autom. Sin. 2021, 8, 1913–1922. [Google Scholar] [CrossRef]
- Firdaus, M.; Rahmadika, S.; Rhee, K.-H. Decentralized Trusted Data Sharing Management on Internet of Vehicle Edge Computing (IoVEC) Networks Using Consortium Blockchain. Sensors 2021, 21, 2410. [Google Scholar] [CrossRef]
- Ghajar, F.G.; Sratakhti, J.S.; Sikora, A. SBTMS: Scalable Blockchain Trust Management System for VANET. Appl. Sci. 2021, 11, 11947. [Google Scholar] [CrossRef]
- Jabbar, R.; Fetais, N.; Kharbeche, M.; Krichen, M.; Barkaoui, K.; Shinoy, M. Blockchain for the Internet of Vehicles: How to Use Blockchain to Secure Vehicle-to-Everything (V2X) Communication and Payment? IEEE Sens. J. 2021, 21, 15807–15823. [Google Scholar] [CrossRef]
- Kaltakis, K.; Polyzi, P.; Drosatos, G.; Rantos, K. Privacy-Preserving Solutions in Blockchain-Enabled Internet of Vehicles. Appl. Sci. 2021, 11, 9792. [Google Scholar] [CrossRef]
- Kapassa, E.; Themistocleous, M.; Christodoulou, K.; Iosif, E. Blockchain Application in Internet of Vehicles: Challenges, Contributions and Current Limitations. Future Internet 2021, 13, 313. [Google Scholar] [CrossRef]
- Kebande, V.R.; Awaysheh, F.M.; Ikuesan, R.A.; Alawadi, S.A.; Alshehri, M.D. A Blockchain-Based Multi-Factor Authentication Model for a Cloud-Enabled Internet of Vehicles. Sensors 2021, 21, 6018. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K. Enhanced IoV Security Network by Using Blockchain Governance Game. Mathematics 2021, 9, 109. [Google Scholar] [CrossRef]
- Li, F.; Guo, Z.; Zhang, C.; Li, W.; Wang, Y. ATM: An Active-Detection Trust Mechanism for VANETs Based on Blockchain. IEEE Trans. Veh. Technol. 2021, 70, 4011–4021. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Obaidat, M.S.; Vijayakumar, P.; Jiang, Q.; Amin, R. An Unlinkable Authenticated Key Agreement With Collusion Resistant for VANETs. IEEE Trans. Veh. Technol. 2021, 70, 7992–8006. [Google Scholar] [CrossRef]
- Liang, J.; Ma, M. Co-Maintained Database Based on Blockchain for IDSs: A Lifetime Learning Framework. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1629–1645. [Google Scholar] [CrossRef]
- Ma, J.; Li, T.; Cui, J.; Ying, Z.; Cheng, J. Attribute-based secure announcement sharing among vehicles using blockchain. IEEE Internet Things J. 2021, 8, 10873–10883. [Google Scholar] [CrossRef]
- Maaroufi, S.; Pierre, S. BCOOL: A Novel Blockchain Congestion Control Architecture Using Dynamic Service Function Chaining and Machine Learning for Next Generation Vehicular Networks. IEEE Access 2021, 9, 53096–53122. [Google Scholar] [CrossRef]
- Sharma, S.; Kaushik, B.; Rahmani, M.K.I.; Ahmed, E. Cryptographic Solution-Based Secure Elliptic Curve Cryptography Enabled Radio Frequency Identification Mutual Authentication Protocol for Internet of Vehicles. IEEE Access 2021, 9, 147114–147128. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, Z.; Yang, S.; Shao, H. A Novel Blockchain Framework for Industrial IoT Edge Computing. Sensors 2020, 20, 2061. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Lin, F.; Chen, Z.; Tang, C.; Ma, Y.; Yu, X. A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for Blockchain-Enabled Internet of Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6856–6868. [Google Scholar] [CrossRef]
- She, W.; Liu, Q.; Tian, Z.; Chen, J.-S.; Wang, B.; Liu, W. Blockchain Trust Model for Malicious Node Detection in Wireless Sensor Networks. IEEE Access 2019, 7, 38947–38956. [Google Scholar] [CrossRef]
- Hasrouny, H.; Samhat, A.E.; Bassil, C.; Laouiti, A. Trust model for secure group leader-based communications in VANET. Wirel. Netw. 2019, 25, 4639–4661. [Google Scholar] [CrossRef]
- Liang, J.; Chen, J.; Zhu, Y.; Yu, R. A novel Intrusion Detection System for Vehicular Ad Hoc Networks (VANETs) based on differences of traffic flow and position. Appl. Soft Comput. 2019, 75, 712–727. [Google Scholar] [CrossRef]
- He, Y.; Yu, F.R.; Wei, Z.; Leung, V. Trust management for secure cognitive radio vehicular ad hoc networks. Ad Hoc Netw. 2019, 86, 154–165. [Google Scholar] [CrossRef]
- Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 13. [Google Scholar]
- Khelifi, H.; Luo, S.; Nour, B.; Moungla, H.; Ahmed, S.H.; Guizani, M. A blockchain-based architecture for secure vehicular Named Data Networks. Comput. Electr. Eng. 2020, 86, 106715. [Google Scholar] [CrossRef]
- Minoli, D.; Occhiogrosso, B. Blockchain mechanisms for IoT security. IOT 2018, 1–2, 1–13. [Google Scholar] [CrossRef]
- Luo, B.; Li, X.; Weng, J.; Guo, J.; Ma, J. Blockchain Enabled Trust-Based Location Privacy Protection Scheme in VANET. IEEE Trans. Veh. Technol. 2019, 69, 2034–2048. [Google Scholar] [CrossRef]
- Abou-Nassar, E.M.; Iliyasu, A.M.; El-Kafrawy, P.M.; Song, O.-Y.; Bashir, A.K.; El-Latif, A.A.A. DITrust Chain: Towards Blockchain-Based Trust Models for Sustainable Healthcare IoT Systems. IEEE Access 2020, 8, 111223–111238. [Google Scholar] [CrossRef]
- Tan, H.; Chung, I. Secure Authentication and Key Management with Blockchain in VANETs. IEEE Access 2019, 8, 2482–2498. [Google Scholar] [CrossRef]
- Hu, W.; Hu, Y.; Yao, W.; Li, H. A Blockchain-Based Byzantine Consensus Algorithm for Information Authentication of the Internet of Vehicles. IEEE Access 2019, 7, 139703–139711. [Google Scholar] [CrossRef]
Studies | Composite Use of Methods to Improve Vehicular Network by Employing Blockchain | Provision of Blockchain- Enabled Decentralized Framework | Provision of Safety and Security for Intelligent Transportation System | Identification of Research Domains When Blockchain Meets IoT/VANETs | Identification of Use Cases for the Implementation of Blockchain- Enabled IoT/VANETs |
---|---|---|---|---|---|
[3] (Álvares et al., 2021) | ✔ | ✖ | ✔ | ✔ | ✖ |
[13] (Wan et al., 2020) | ✖ | ✖ | ✖ | ✖ | ✔ |
[20] (Lo et al., 2019) | ✔ | ✖ | ✖ | ✔ | ✔ |
[21] (Conoscenti et al., 2016) | ✖ | ✖ | ✖ | ✔ | ✔ |
[22] (Iqbal et al., 2021) | ✔ | ✖ | ✔ | ✖ | ✖ |
[23] (Casino et al., 2019) | ✖ | ✖ | ✔ | ✔ | ✔ |
[24] (Shen & Pena-Mora, 2018) | ✔ | ✔ | ✖ | ✖ | ✔ |
Blockchain Enabled VANETs | ✔ | ✔ | ✔ | ✔ | ✔ |
Year | No. of Studies | Articles |
---|---|---|
2018 | 3 | [52] (Bao-Kun et al., 2018), [53] (Busygin et al., 2018), [54] (Lu et al., 2018) |
2019 | 13 | [15] (Li et al., 2019), [55] (Ali et al., 2019), [56] (Shrestha & Nam, 2019), [57] (Xie et al., 2019), [58] (Kim, 2019), [59] (Yang et al., 2019), [60] (Zhang & Wang, 2019), [61] (Butt et al., 2019), [62] (Lu et al., 2019), [63] (Feng et al., 2019), [64] (De Maio et al., 2019), [65] (Zhang et al., 2019), [66] (Zheng et al., 2019) |
2020 | 26 | [14] (Matheu et al., 2020), [19] (Bagga et al., 2020), [67] (Bonadio et al., 2020), [68] (Lei et al., 2020), [69] (Shrestha et al., 2020), [70] (Sutrala et al., 2020), [71] (Ahmad et al., 2020), [72] (Shala et al., 2020), [73] (Zhuo Ma et al., 2020), [74] (Ryu et al., 2020), [75] (Zhao et al., 2020)s, [76] (Li et al., 2020), [77] (Wang & Zhang, 2020), [78] (Malik et al., 2020), [79] (Shi et al., 2020), [80] (Yang et al., 2020), [81] (Cho & Perera, 2020), [82] (Jiang et al., 2020), [83] (Zhaowei Ma et al., 2020), [84] (Tomar, 2020), [85] (Ayaz et al., 2020), [86] (Hussain et al., 2020), [87] (Lin et al., 2020), [88] (Mershad, 2020), [89] (Zheng et al., 2020), [90] (Wang et al., 2020) |
2021 | 26 | [3] (Álvares et al., 2021), [40] (Singh et al., 2021), [45] (Peng et al., 2021), [49] (Abbas et al., 2021), [22] (Iqbal et al., 2021), [91] (Kudva et al., 2021), [92] (Shammar et al., 2021), [93] (Alharthi et al., 2021), [94] (Hei et al., 2021), [95] (Akhter et al., 2021), [96] (Azam et al., 2021), [97] (Chulerttiyawong & Jamalipour, 2021), [98] (Dwivedi et al., 2021), [99] (Firdaus et al., 2021), [100] (Ghovanlooy Ghajar et al., 2021), [101] (Jabbar et al., 2021), [102] (Kaltakis et al., 2021), [103] (Kapassa et al., 2021), [104] (Kebande et al., 2021), [105] (Kim, 2021), [106] (Li et al., 2021), [107] (Li et al., 2021), [108] (Liang & Ma, 2021)s, [109] (Ma et al., 2021), [110] (Maaroufi & Pierre, 2021), [111] (Sharma et al., 2021) |
Article | Year | Source |
---|---|---|
[3] (Álvares et al., 2021) | 2021 | IEEE |
[40] (Singh et al., 2021) | 2021 | IEEE |
[45] (Peng et al., 2021) | 2021 | Elsevier |
[49] (Abbas et al., 2021) | 2021 | MDPI |
[22] (Iqbal et al., 2021) | 2021 | IEEE |
[91] (Kudva et al., 2021) | 2021 | Elsevier |
[92] (Shammar et al., 2021) | 2021 | IEEE |
[93] (Alharthi et al., 2021) | 2021 | IEEE |
[94] (Hei et al., 2021) | 2021 | Springer |
[95] (Akhter et al., 2021) | 2021 | MDPI |
[96] (Azam et al., 2021) | 2021 | IEEE |
[97] (Chulerttiyawong & Jamalipour, 2021) | 2021 | IEEE |
[98] (Dwivedi et al., 2021) | 2021 | IEEE |
[99] (Firdaus et al., 2021) | 2021 | MDPI |
[100] (Ghovanlooy Ghajar et al., 2021) | 2021 | MDPI |
[101] (Jabbar et al., 2021) | 2021 | IEEE |
[102] (Kaltakis et al., 2021) | 2021 | MDPI |
[103] (Kapassa et al., 2021) | 2021 | MDPI |
[104] (Kebande et al., 2021) | 2021 | MDPI |
[105] (Kim, 2021) | 2021 | MDPI |
[106] (Li et al., 2021) | 2021 | IEEE |
[107] (Li et al., 2021) | 2021 | IEEE |
[108] (Liang & Ma, 2021) | 2021 | IEEE |
[109] (Ma et al., 2021) | 2021 | IEEE |
[110] (Maaroufi & Pierre, 2021) | 2021 | IEEE |
[111] (Sharma et al., 2021) | 2021 | IEEE |
[14] (Matheu et al., 2020) | 2020 | MDPI |
[19] (Bagga et al., 2020) | 2020 | IEEE |
[67] (Bonadio et al., 2020) | 2020 | Springer |
[68] (Lei et al., 2020) | 2020 | Springer |
[69] (Shrestha et al., 2020) | 2020 | Elsevier |
[70] (Sutrala et al., 2020) | 2020 | IEEE |
[71] (Ahmad et al., 2020) | 2020 | IEEE |
[72] (Shala et al., 2020) | 2020 | IEEE |
[73] (Zhuo Ma et al., 2020) | 2020 | IEEE |
[74] (Ryu et al., 2020) | 2020 | IEEE |
[75] (Zhao et al., 2020)s | 2020 | Springer |
[76] (Li et al., 2020) | 2020 | IEEE |
[77] (Wang & Zhang, 2020) | 2020 | IEEE |
[78] (Malik et al., 2020) | 2020 | Springer |
[79] (Shi et al., 2020) | 2020 | Springer |
[80] (Yang et al., 2020) | 2020 | IEEE |
[81] (Cho & Perera, 2020) | 2020 | ACM |
[82] (Jiang et al., 2020) | 2020 | ACM |
[83] (Zhaowei Ma et al., 2020) | 2020 | ACM |
[84] (Tomar, 2020) | 2020 | ACM |
[85] (Ayaz et al., 2020) | 2020 | IEEE |
[86] (Hussain et al., 2020) | 2020 | IEEE |
[87] (Lin et al., 2020) | 2020 | IEEE |
[88] (Mershad, 2020) | 2020 | IEEE |
[89] (Zheng et al., 2020) | 2020 | IEEE |
[90] (Wang et al., 2020) | 2020 | IEEE |
[15] (Li et al., 2019) | 2019 | Springer |
[55] (Ali et al., 2019) | 2019 | Elsevier |
[56] (Shrestha & Nam, 2019) | 2019 | IEEE |
[57] (Xie et al., 2019) | 2019 | IEEE |
[58] (Kim, 2019) | 2019 | IEEE |
[59] (Yang et al., 2019) | 2019 | IEEE |
[60] (Zhang & Wang, 2019) | 2019 | IEEE |
[61] (Butt et al., 2019) | 2019 | IEEE |
[62] (Lu et al., 2019) | 2019 | IEEE |
[63] (Feng et al., 2019) | 2019 | IEEE |
[64] (De Maio et al., 2019) | 2019 | ACM |
[65] (Zhang et al., 2019) | 2019 | IEEE |
[66] (Zheng et al., 2019) | 2019 | IEEE |
[52] (Bao-Kun et al., 2018) | 2018 | Springer |
[53] (Busygin et al., 2018) | 2018 | Springer |
[54] (Lu et al., 2018) | 2018 | IEEE |
Article | Year | Method | Advantages | Drawbacks |
---|---|---|---|---|
[15] (Li et al., 2019) | 2019 | Blockchain Based VANETs | This is the most advanced methodology used for state of the art privacy protection and real time data transmission across vehicle to everything | In nascent stages, this methodology relied on trusted centralized entities with a drawback of center point failure, but the advancement of blockchain has made it decentralized and distributed in all as aspects. However, this methodology is regarded as the most useful when blockchain meets VANETs. |
[113] (Xia et al., 2020) | 2020 | Bayesian Model | This method provides mechanism for decentralize trust management and ensures consistency and reliability of the storage or database | The composition of trust management and privacy preservation is one of the major drawbacks of this methodology. |
[91] (Kudva et al., 2021) | 2020 | Proof of Work | This method provides trustworthiness without storage overheads | It needs enhancement to deal with crucial event message dissemination for better performance. |
[114] (She et al., 2019) | 2019 | BARS | This method provides transparency and anonymity and also ensure effective and robust mechanism | This methodology is more vulnerable to various attacks. |
[55] (Ali et al., 2019) | 2019 | CL-PKS | This method provides reliable communication between vehicles to infrastructure with less computational cost. | This method lacks in vehicle-to-vehicle communication. |
[115] (Hasrouny et al., 2019) | 2019 | HTM | This method provides trustworthiness with quick and effective identification of malicious users | This method cannot handle frequent attacks which makes it more vulnerable against the frequent attacks. |
[116] (Liang et al., 2019) | 2019 | I-GHSOM | This method has the ability to detect the attacks rapidly. It also ensure quick encoding of real time messages transmitted by vehicles. | This method needs to improve in terms of management of overheads. |
[117] (He et al., 2019) | 2019 | Unified Trust Management | This method provides effective data transmission and trust management mechanism | This method lacks in security due to virtualization and security of software-defined networks. |
Article | Limitations | Techniques/Models |
---|---|---|
[9] (Poniszewska-Marańda & Kryvinska, 2018) | Transparency and auditability | Intelligent agents and multi-agent architecture for auditable blockchain |
[15] (Li et al., 2019) | Identity and privacy protection | Blockchain based VANET & UGG, IPP and LPP algorithm for identity protection |
[19] (Bagga et al., 2020) | Data Integrity, open channel Security and secure data transmission | Pay-go protocol |
[118] (Buterin, 2014) | Consensus issues | proof of work based blockchain |
[114] (She et al., 2019) | Malicious attacks and suspicious node detection | Blockchain trust model (BTM) and smart contracts |
[55] (Ali et al., 2019) | Message exchange authentication | Certificate less public key signature (CL-PKS) scheme using bilinear pairing |
[119] (Khelifi et al., 2020) | Security for content delivery and caching | NDN based security architecture Reputation-based blockchain mechanism |
[68] (Lei et al., 2020) | Cache poisoning, key management and access control | Blockchain-based security architecture |
[120] (Minoli & Occhiogrosso, 2018) | Security (End-End) Mitigation | Permission less blockchain using cryptographic schemes |
[69] (Shrestha et al., 2020) | Time critical message dissemination | Public blockchain mechanism for message cohesion |
[56] (Shrestha & Nam, 2019) | Mobility, latency, trust management, security and 51% attack | Regional blockchain model |
[93] (Alharthi et al., 2021) | security vulnerabilities such as denial-of-service (DoS), replay attacks and Sybil attacks | Biometrics blockchain framework |
[121] (Luo et al., 2019) | Malicious attacks and data spoofing | blockchain enabled trust based location privacy protection scheme |
[52] (Bao-Kun et al., 2018) | Privacy management | Blockchain based data sharing scheme using Paillier cryptosystem |
[70] (Sutrala et al., 2020) | Security attacks: replay, traceability, man-in-the-middle and impersonation | Privacy preserving batch verification-based authentication mechanism using elliptic curve cryptography |
[71] (Ahmad et al., 2020) | Man-in-the-middle (MiTM) attack and Trust Management | MiTM attack resistance trust model |
[122] (Abou-Nassar et al., 2020) | Vehicular data confidentiality, accessibility and information reliability | Blockchain decentralized interoperable trust framework (DIT) and indirect trust inference system (ITIS) |
[72] (Shala et al., 2020) | Trust and security of vehicular information | multi-layer adaptive and trust-based weighting model using control loops and smart contracts |
[57] (Xie et al., 2019) | Malicious node identification in VANETs | Software-defined network (SDN) architecture |
[123] (Tan & Chung, 2019) | Resource management and key distribution | Secure authentication and key management scheme using consortium blockchain |
[124] (Hu et al., 2019) | Security, authentication and consensus issues | Byzantine fault tolerance algorithm |
[73] (Ma et al., 2020) | Attacks: DoS, public key tampering and collusion and key management | Blockchain enabled decentralized key management mechanism (DB-KMM), key agreement protocol based on the bivariate polynomial |
[59] (Yang et al., 2019) | Data correctness, reliability and tamper proofing | Proof of event consensus |
[60] (Zhang & Wang, 2019) | Data confidentiality, privacy and information repudiation | ElGamal encryption and group signature algorithm |
[75] (Zhao et al., 2020) | Resource allocation, malicious attacks, trust value management | Decentralized trust management architecture, joint proof-of-stake and modified PoS-mPBFT algorithm |
[76] (Li et al., 2020) | Privacy management and security of vehicular data | fine-grained access control scheme based on cipher text-based attribute encryption (CPABE) |
[77] (Wang & Zhang, 2020) | Secure information exchange, forwarding and limitations of proxy re-encryption algorithm | Data sharing and customized services based on the consortium blockchain using cipher text-policy attribute-based proxy re-encryption algorithm |
[94] (Hei et al., 2021) | Storage, data integrity and non-accountability of denial of service attack | P2P cloud storage scheme with smart contracts on ethereum |
[62] (Lu et al., 2019) | Distributed authentication, identity privacy and security attacks | privacy preserving authentication (BPPA) scheme and Merkle Patricia tree (MPT) |
[63] (Feng et al., 2019) | Authentication and privacy management | Blockchain assisted privacy preserving authentication system (BPAS) |
[54] (Lu et al., 2018) | Privacy management | Blockchain-based anonymous reputation system (BARS) and reputation evaluation algorithm |
[78] (Malik et al., 2020) | Node trust ability prediction, privacy preservation and data sanitization | Sea lion explored-whale optimization algorithm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, M.; Khan, M.K.; Ahmad, M.B. Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review. Sustainability 2022, 14, 3919. https://doi.org/10.3390/su14073919
Saad M, Khan MK, Ahmad MB. Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review. Sustainability. 2022; 14(7):3919. https://doi.org/10.3390/su14073919
Chicago/Turabian StyleSaad, Muhammad, Muhammad Khalid Khan, and Maaz Bin Ahmad. 2022. "Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review" Sustainability 14, no. 7: 3919. https://doi.org/10.3390/su14073919
APA StyleSaad, M., Khan, M. K., & Ahmad, M. B. (2022). Blockchain-Enabled Vehicular Ad Hoc Networks: A Systematic Literature Review. Sustainability, 14(7), 3919. https://doi.org/10.3390/su14073919