Bond Behavior of Deformed Bamboo (Bambusa vulgaris) Embedded in Fly Ash Geopolymer Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Properties
2.1.1. Bamboo
2.1.2. Concrete
2.2. Design of the Pull-Out Specimens
2.3. Pull-Out Loading Test Setup
3. Results and Discussion
3.1. Properties of Bambusa vulgaris and Concretes
3.2. Bond Strength
3.3. Effect of Different Concrete on the Bamboo Moisture Content
3.4. Load–Slip Behavior
3.5. Mode of Failure
4. Conclusions
- The modification of the surface of the bamboo strip increased the bond strength. The highest bond strength was showed by the wired bamboo form (10 mm) and followed by the corrugated form (1:2). The mechanical adhesion provided by the rolled wire and corrugated form increased the bamboo–concrete bond compared with plain bamboo, which relies on friction and chemical adhesion only.
- For plain bamboo strips, the pull-out behavior was controlled by the bond physical and chemical component, whereas in the deformed bamboo strip, it was controlled by its mechanical interlock.
- The bamboo strips embedded in the concrete failed in pull-out even though the modification of the strip was made. For corrugated specimens, the grooves were slightly deteriorated, which demonstrates their participation in resisting the pull-out forces. The bamboo wrapped with G.I wire also showed a deformation on the position of the wire, which indicated similar resistance toward the pull-out forces.
- FAGC contributed to the increment in the bond strength between bamboo and surrounding concrete. In addition, the properties exhibited by the FAGC, such as high density, low water absorption, and cured under ambient conditions, can reduce the moisture absorption by the bamboo strip; hence, the bond breakage may also be minimized.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andonian, R.; Mai, Y.W.; Cotterell, B. Strength and Fracture Properties of Cellulose Fibre-Reinforced Cement Composites. Int. J. Cem. Compos. 1979, 1, 151–158. [Google Scholar]
- Kamkam, C. The Influence of Palm Stalk Fiber-Reinforcement on the Shrinkage Stresses in Concrete. J. Ferrocem. 1994, 24, 249–254. [Google Scholar]
- Mansur, M.A.; Aziz, M.A. A Study of Jute Fibre Reinforced Cement Composites. Int. J. Cem. Compos. Light. Concr. 1982, 4, 75–82. [Google Scholar] [CrossRef]
- Kankam, C.K. Raffia Palm-Reinforced Concrete Beams. Mater. Struct. 1997, 30, 313–316. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, D.; Ye, F.; He, Y.; Hu, Z.; Zhao, G. A Systematic Review on the Composition, Storage, Processing of Bamboo Shoots: Focusing the Nutritional and Functional Benefits. J. Funct. Foods 2020, 71, 104015. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, X.J.; He, J.; Jin, S.H.; Guo, H.D.; Yu, X.F.; Zhou, Y.J.; Li, X.; Ma, M.D.; Chen, Q.B.; et al. Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis). PLoS ONE 2016, 11, e0165953. [Google Scholar] [CrossRef]
- Jit Kaur, P. Bamboo Availability and Utilization Potential as a Building Material. For. Res. Eng. Int. J. 2018, 2, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Liese, W. Research on Bamboo. Wood Sci. Technol. 1987, 21, 189–209. [Google Scholar]
- Shao, Z.P.; Fang, C.H.; Huang, S.X.; Tian, G.L. Tensile Properties of Moso Bamboo (Phyllostachys pubescens) and Its Components with Respect to Its Fiber-Reinforced Composite Structure. Wood Sci. Technol. 2010, 44, 655–666. [Google Scholar] [CrossRef]
- Glenn, H.E. Bamboo Reinforcement in Portland Cement Concrete; Engineering Experiment Station: College Station, TX, USA, 1950. [Google Scholar]
- Javadian, A.; Wielopolski, M.; Smith, I.F.C.; Hebel, D.E. Bond-Behavior Study of Newly Developed Bamboo-Composite Reinforcement in Concrete. Constr. Build. Mater. 2016, 122, 110–117. [Google Scholar] [CrossRef]
- Ghavami, K. Bamboo as Reinforcement in Structural Concrete Elements. Cem. Concr. Compos. 2005, 27, 637–649. [Google Scholar] [CrossRef]
- Agarwal, A.; Nanda, B.; Maity, D. Experimental Investigation on Chemically Treated Bamboo Reinforced Concrete Beams and Columns. Comput. Chem. Eng. 2014, 71, 610–617. [Google Scholar] [CrossRef]
- Ghavami, K. Ultimate Load Behaviour of Bamboo-Reinforced Lightweight Concrete Beams. Cem. Concr. Compos. 1995, 17, 281–288. [Google Scholar] [CrossRef]
- Terai, M.; Minami, K. Research and Development on Bamboo Reinforced Concrete Structure. World Conf. Earthq. Eng. 2012, 15, 1–10. [Google Scholar]
- Fernández-Jiménez, A.; Palomo, A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207–214. [Google Scholar] [CrossRef]
- Bakharev, T. Thermal Behaviour of Geopolymers Prepared Using Class F Fly Ash and Elevated Temperature Curing. Cem. Concr. Res. 2006, 36, 1134–1147. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-Activated Binders: A Review. Part 2. About Materials and Binders Manufacture. Constr. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Komnitsas, K.; Zaharaki, D. Geopolymerisation: A Review and Prospects for the Minerals Industry. Miner. Eng. 2007, 20, 1261–1277. [Google Scholar] [CrossRef]
- Palomo, A.; López dela Fuente, J.I. Alkali-Activated Cementitous Materials: Alternative Matrices for the Immobilisation of Hazardous Wastes—Part I. Stabilisation of Boron. Cem. Concr. Res. 2003, 33, 281–288. [Google Scholar] [CrossRef]
- Sofi, M.; van Deventer, J.S.J.; Mendis, P.A.; Lukey, G.C. Engineering Properties of Inorganic Polymer Concretes (IPCs). Cem. Concr. Res. 2007, 37, 251–257. [Google Scholar] [CrossRef]
- Krivenko, P.V.; Kovalchuk, G.Y. Directed Synthesis of Alkaline Aluminosilicate Minerals in a Geocement Matrix. J. Mater. Sci. 2007, 42, 2944–2952. [Google Scholar] [CrossRef]
- Rowles, M.; O’Connor, B. Chemical Optimisation of the Compressive Strength of Aluminosilicate Geopolymers Synthesised by Sodium Silicate Activation of Metakaolinite. J. Mater. Chem. 2003, 13, 1161–1165. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Factors Affecting the Performance of Metakaolin Geopolymers Exposed to Elevated Temperatures. J. Mater. Sci. 2008, 43, 824–831. [Google Scholar] [CrossRef]
- Mesgari, S.; Akbarnezhad, A.; Xiao, J.Z. Recycled Geopolymer Aggregates as Coarse Aggregates for Portland Cement Concrete and Geopolymer Concrete: Effects on Mechanical Properties. Constr. Build. Mater. 2020, 236, 117571. [Google Scholar] [CrossRef]
- Luhar, S.; Khandelwal, U. A Study on Water Absorption and Sorptivity of Geopolymer Concrete. Int. J. Civ. Eng. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Maranan, G.B.; Manalo, A.C.; Karunasena, W.; Benmokrane, B. Pullout Behaviour of GFRP Bars with Anchor Head in Geopolymer Concrete. Compos. Struct. 2015, 132, 1113–1121. [Google Scholar] [CrossRef]
- Avirneni, D.; Peddinti, P.R.T.; Saride, S. Durability and Long Term Performance of Geopolymer Stabilized Reclaimed Asphalt Pavement Base Courses. Constr. Build. Mater. 2016, 121, 198–209. [Google Scholar] [CrossRef]
- Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Sankar, K.; Kriven, W.M. Geopolymer-Bamboo Composite—A Novel Sustainable Construction Material. Constr. Build. Mater. 2016, 123, 501–507. [Google Scholar] [CrossRef]
- Ishak, S.; Lee, H.S.; Singh, J.K.; Ariffin, M.A.M.; Lim, N.H.A.S.; Yang, H.M. Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature. Materials 2019, 12, 3404. [Google Scholar] [CrossRef] [Green Version]
- Fattah, A.R.; Prinindya, K.N.N.; Ardhyananta, H. The Effect of Chemical Substance and Immersion Time to Tensile Strength of Bamboo Betung (Dendrocalamus Asper) as Chemical Preservation Treatment. IPTEK J. Proc. Ser. 2014, 1, 119–124. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 22157-1:2004; Bamboo—Determination of Physical and Mechanical Properties—Part 1: Requirements; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar] [CrossRef]
- Khatib, A.; Nounu, G. Corrugated Bamboo as Reinforcement in Concrete. Struct. Build. 2017, 170, 311–318. [Google Scholar] [CrossRef] [Green Version]
- RILEM. RC 6 Bond Test for Reinforcement Steel.2. Pull-Out Test, 1983; The International Union of Laboratories and Experts in Construction Materials, Systems and Structures: Paris, France, 1994. [Google Scholar]
- Awalluddin, D.; Ariffin, M.A.M.; Zamri, N.F.; Ahmad, Y.; Ibrahim, I.S.; Osman, M.H.; Lee, H.S. Tensile and Shear Strength of Four Species of Bamboo in Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 849, 012041. [Google Scholar] [CrossRef]
- Memon, F.A.; Nuruddin, M.F.; Khan, S.; Shafiq, N.; Ayub, T. Effect of Sodium Hydroxide Concentration on Fresh Properties and Compressive Strength of Self-Compacting Geopolymer Concrete. J. Eng. Sci. Technol. 2013, 8, 44–56. [Google Scholar]
- Wattimena, O.K.; Antoni; Hardjito, D. A Review on the Effect of Fly Ash Characteristics and Their Variations on the Synthesis of Fly Ash Based Geopolymer. AIP Conf. Proc. 2017, 1887, 020041. [Google Scholar] [CrossRef] [Green Version]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Yan, H.; Kodur, V.; Liang, S.; Wu, B. Cement & Concrete Composites Characterizing the Bond Strength of Geopolymers at Ambient and Elevated Temperatures. Cem. Concr. Compos. 2015, 58, 40–49. [Google Scholar]
- Al-Azzawi, M.; Yu, T.; Hadi, M.N.S. Factors Affecting the Bond Strength between the Fly Ash-Based Geopolymer Concrete and Steel Reinforcement. Structures 2018, 14, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Mali, P.R.; Datta, D. Experimental Study on Improving Bamboo Concrete Bond Strength. Adv. Concr. Constr. 2019, 7, 191–201. [Google Scholar] [CrossRef]
Chemical Composition (%) | ||||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | LOI | |
FA | 36.2 | 12.1 | 23.1 | 19.2 | 1.9 | 0.1 | 2.9 | 1.9 |
OPC | 20.1 | 4.9 | 2.4 | 65.0 | 3.1 | 0.2 | 0.5 | 2.5 |
Mixture Proportions (kg/m3) | ||||||||
---|---|---|---|---|---|---|---|---|
Fly Ash | OPC | Na2SiO3 | NaOH | Water | Sand | Coarse Aggregate | SP | |
FAGC | 428 | - | 123 | 49 | 13 | 720 | 1080 | 8.56 |
OPCC | - | 432 | - | - | 233 | 965 | 700 | - |
Specimen | P (mm) | A (mm) | B (mm) | A:B |
---|---|---|---|---|
COR (1:1) | 2 | 10 | 10 | 1:1 |
COR (1:2) | 2 | 10 | 20 | 1:2 |
Specimen | Spacing between G.I Wire, X (mm) |
---|---|
WR10 | 10 |
WR20 | 20 |
WR30 | 30 |
Species | Tensile Strength (MPa) | Modulus of Elastic (GPa) | Average Moisture Content (%) |
---|---|---|---|
Bambusa vulgaris | 230–320 | 30–38 | 15–17 |
Concrete | Slump (mm) | fcu (MPa) | fct (MPa) | Water Absorption (%) | Density (kg/m3) |
---|---|---|---|---|---|
FAGC | 84 | 40 | 3.8 | 1.34 | 2310 |
OPCC | 145 | 41 | 3.1 | 3.52 | 2195 |
Specimen | Type of Concrete | Bond Strength (MPa) | Average Bond Strength (MPa) | Average Bond Strength Increment (%) | Failure Mode |
---|---|---|---|---|---|
OPCC-PL (IN) | Ordinary Portland cement | 0.63 | 0.67 | 0 | Pull-out |
OPCC-PL (IN | Ordinary Portland cement | 0.71 | Pull-out | ||
OPCC-PL (IN) | Ordinary Portland cement | 0.67 | Pull-out | ||
FAGC-PL (IN) | Fly ash geopolymer | 0.77 | 0.73 | 9 | Pull-out |
FAGC-PL (IN) | Fly ash geopolymer | 0.70 | Pull-out | ||
FAGC-PL (IN) | Fly ash geopolymer | 0.72 | Pull-out | ||
FAGC-PL (N) | Fly ash geopolymer | 0.87 | 0.87 | 30 | Pull-out |
FAGC-PL (N) | Fly ash geopolymer | 0.90 | Pull-out | ||
FAGC-PL (N) | Fly ash geopolymer | 0.83 | Pull-out | ||
FAGC-COR (1:1) | Fly ash geopolymer | 1.29 | 1.40 | 109 | Pull-out |
FAGC-COR (1:1) | Fly ash geopolymer | 1.47 | Pull-out | ||
FAGC-COR (1:1) | Fly ash geopolymer | 1.45 | Pull-out | ||
FAGC-COR (1:2) | Fly ash geopolymer | 1.42 | 1.45 | 116 | Pull-out |
FAGC-COR (1:2) | Fly ash geopolymer | 1.49 | Pull-out | ||
FAGC-COR (1:2) | Fly ash geopolymer | 1.45 | Pull-out | ||
FAGC-WR10 | Fly ash geopolymer | 1.47 | 1.48 | 121 | Pull-out |
FAGC-WR10 | Fly ash geopolymer | 1.51 | Pull-out | ||
FAGC-WR10 | Fly ash geopolymer | 1.46 | Pull-out | ||
FAGC-WR20 | Fly ash geopolymer | 0.95 | 0.88 | 31 | Pull-out |
FAGC-WR20 | Fly ash geopolymer | 0.81 | Pull-out | ||
FAGC-WR20 | Fly ash geopolymer | 0.87 | Pull-out | ||
FAGC-WR30 | Fly ash geopolymer | 0.87 | 0.80 | 19 | Pull-out |
FAGC-WR30 | Fly ash geopolymer | 0.73 | Pull-out | ||
FAGC-WR30 | Fly ash geopolymer | 0.79 | Pull-out |
Specimen | Average Initial Moisture Content (%) | Average Final Moisture Content (%) | Average Moisture Content Increment (%) |
---|---|---|---|
OPCC-PL (IN) | 15.7 | 19.8 | 26.11 |
FAGC-PL (IN) | 15.5 | 16.2 | 4.52 |
FAGC-PL (N) | 15.4 | 16.2 | 5.19 |
FAGC-COR (1:1) | 15.9 | 16.7 | 5.03 |
FAGC-COR (1:2) | 15.9 | 16.6 | 4.40 |
FAGC-WR10 | 15.7 | 16.5 | 5.09 |
FAGC-WR20 | 16.0 | 16.8 | 5.00 |
FAGC-WR30 | 16.1 | 16.9 | 4.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awalluddin, D.; Mohd Ariffin, M.A.; Ahmad, Y.; Zamri, N.F.; Abdullah, M.M.A.B.; Abd Razak, R.; Lee, H.-S.; Singh, J.K. Bond Behavior of Deformed Bamboo (Bambusa vulgaris) Embedded in Fly Ash Geopolymer Concrete. Sustainability 2022, 14, 4326. https://doi.org/10.3390/su14074326
Awalluddin D, Mohd Ariffin MA, Ahmad Y, Zamri NF, Abdullah MMAB, Abd Razak R, Lee H-S, Singh JK. Bond Behavior of Deformed Bamboo (Bambusa vulgaris) Embedded in Fly Ash Geopolymer Concrete. Sustainability. 2022; 14(7):4326. https://doi.org/10.3390/su14074326
Chicago/Turabian StyleAwalluddin, Dinie, Mohd Azreen Mohd Ariffin, Yusof Ahmad, Nor Fazlin Zamri, Mohd Mustafa Al Bakri Abdullah, Rafiza Abd Razak, Han-Seung Lee, and Jitendra Kumar Singh. 2022. "Bond Behavior of Deformed Bamboo (Bambusa vulgaris) Embedded in Fly Ash Geopolymer Concrete" Sustainability 14, no. 7: 4326. https://doi.org/10.3390/su14074326
APA StyleAwalluddin, D., Mohd Ariffin, M. A., Ahmad, Y., Zamri, N. F., Abdullah, M. M. A. B., Abd Razak, R., Lee, H. -S., & Singh, J. K. (2022). Bond Behavior of Deformed Bamboo (Bambusa vulgaris) Embedded in Fly Ash Geopolymer Concrete. Sustainability, 14(7), 4326. https://doi.org/10.3390/su14074326