Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation
2.2. Screening for Cd-Tolerant Ability
2.3. Bioaccumulation of Cd in DG-20
2.4. Plant Growth-Promoting Properties of DG-20
2.4.1. IAA Production
2.4.2. Ammonia Production
2.4.3. Phosphate Solubilization
2.4.4. Potassium Solubilization
2.4.5. Siderophore Production
2.4.6. Screening of Extracellular Enzyme Production
2.5. Identification of Potent Bacterial Strain DG-20
2.6. Effect of Cd-Tolerant Bacterial Strain DG-20 on Chili Growth
2.7. Estimation of Cd in Plant Sample
2.8. Influence of Cd-Tolerant Bacterial Strain DG-20 on Physiological Properties of Chili
2.8.1. Chlorophyll Content Estimation
2.8.2. Proline Content Estimation
2.8.3. Total Phenol Content Estimation
2.8.4. Ascorbic Acid Estimation
2.9. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil Sample
3.2. Isolation, Screening, and Identification of Potent Cd-Tolerant Bacterium
3.3. Estimation of Cd Bioaccumulation in C. oceanosedimentum
3.4. Plant Growth Promotion Properties of C. oceanosedimentum
3.5. Influence of Cd-Tolerant C. oceanosedimentum on the Growth of Chili
3.6. Cd Accumulation in Chili Roots and Shoots Tissues
3.7. Effects of C. oceanosedimentum on Physiological Properties of Chili
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oh, K.; Cao, T.; Li, T.; Cheng, H. Study on application of phytoremediation technology in management and remediation of contaminated soils. J. Clean Energy Technol. 2014, 2, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Benitez, E.; Romero, E.; Gomez, M.; Gallardo-Lara, F.; Nogales, R. Biosolids and biosolids-ash as sources of heavy metals in a plant-soil system. Water. Air Soil Pollut. 2001, 132, 75–87. [Google Scholar] [CrossRef]
- Ogunsola, O.J.; Oluwole, A.F.; Obioh, I.B.; Asubiojo, O.I.; Akeredolu, F.A.; Akanle, O.A.; Spyrou, N.M. Analysis of suspended air particulates along some motorways in Nigeria by PIXE and EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1993, 79, 404–407. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Park, S.K. Environmental exposures to lead, mercury, and cadmium and hearing loss in adults and adolescents: KNHANES 2010–2012. Environ. Health Perspect. 2017, 125, 67003. [Google Scholar] [CrossRef] [Green Version]
- Kartik, V.P.; Jinal, H.N.; Amaresan, N. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa Root. Int. J. Phytoremediation 2016, 18, 1061–1066. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Yoon, M. Rapid removal of cadmium ions using green-synthesized Fe3O4 nanoparticles capped with Diethyl-4-(4 Amino-5-Mercapto-4 H-1, 2, 4-Triazol-3-Yl) phenyl phosphonate. RSC Adv. 2015, 5, 65444–65453. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.H.; Lee, C.M.; Nam, M.J. Cytoprotective effects of taxifolin against cadmium-induced apoptosis in human keratinocytes. Hum. Exp. Toxicol. 2019, 38, 992–1003. [Google Scholar] [CrossRef]
- Clemens, S.; Aarts, M.G.M.; Thomine, S.; Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef]
- Aoshima, K. Itai-Itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium—Historical review and perspectives. Soil Sci. Plant Nutr. 2016, 62, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Lalung, J. Isolation, identification, characterization, and evaluation of cadmium removal capacity of enterobacter species. J. Basic Microbiol. 2014, 54, 1279–1287. [Google Scholar] [CrossRef]
- Choi, W.-J.; Kang, S.-K.; Ham, S.; Chung, W.; Kim, A.J.; Kang, M. Chronic cadmium intoxication and renal injury among workers of a small-scale silver soldering company. Saf. Health Work 2020, 11, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Krantev, A.; Yordanova, R.; Popova, L. Salicylic acid decreases Cd toxicity in maize plants. Gen. Appl. Plant Physiol. 2006, 3, 45–52. [Google Scholar]
- Tripathi, K.M.; Singh, A.; Myung, Y.; Kim, T.; Sonkar, S.K. Sustainable nanocarbons as potential sensor for safe water. Nanotechnol. Sustain. Water Resour. 2018, 1, 141–176. [Google Scholar]
- Burzyński, M.; Żurek, A. Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 2007, 45, 239–244. [Google Scholar] [CrossRef]
- Popova, L.P.; Maslenkova, L.T.; Yordanova, R.Y.; Ivanova, A.P.; Krantev, A.P.; Szalai, G.; Janda, T. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem. 2009, 47, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Sandalio, L.M.; Dalurzo, H.C.; Gomez, M.; Romero-Puertas, M.C.; Del Rio, L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001, 52, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef]
- Haag-Kerwer, A.; Schäfer, H.J.; Heiss, S.; Walter, C.; Rausch, T. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot. 1999, 50, 1827–1835. [Google Scholar] [CrossRef]
- Omar, R.A.; Afreen, S.; Talreja, N.; Chauhan, D.; Ashfaq, M. Impact of nanomaterials in plant systems. In Plant Nanobionics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 117–140. [Google Scholar]
- Gavade, N.L.; Kadam, A.N.; Babar, S.B.; Gophane, A.D.; Garadkar, K.M.; Lee, S.-W. Biogenic synthesis of gold-anchored ZnO nanorods as photocatalyst for sunlight-induced degradation of dye effluent and its toxicity assessment. Ceram. Int. 2020, 46, 11317–11327. [Google Scholar] [CrossRef]
- Kite, S.V.; Sathe, D.J.; Kadam, A.N.; Chavan, S.S.; Garadkar, K.M. Highly efficient photodegradation of 4-nitrophenol over the nano-TiO2 obtained from chemical bath deposition technique. Res. Chem. Intermed. 2020, 46, 1255–1282. [Google Scholar] [CrossRef]
- Patil, C.S.; Kadam, A.N.; Gunjal, D.B.; Naik, V.M.; Lee, S.-W.; Kolekar, G.B.; Gore, A.H. Sugarcane molasses derived carbon sheet@ sea sand composite for direct removal of methylene blue from textile wastewater: Industrial wastewater remediation through sustainable, greener, and scalable methodology. Sep. Purif. Technol. 2020, 247, 116997. [Google Scholar] [CrossRef]
- Thi Quyen, V.; Pham, T.-H.; Kim, J.; Thanh, D.M.; Thang, P.Q.; Van Le, Q.; Jung, S.H.; Kim, T. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere 2021, 284, 131312. [Google Scholar] [CrossRef] [PubMed]
- Quartacci, M.F.; Argilla, A.; Baker, A.J.M.; Navari-Izzo, F. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 2006, 63, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.K.; Sengupta, C. Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian agricultural soil. Soil Sediment Contam. Int. J. 2019, 28, 601–629. [Google Scholar] [CrossRef]
- Kim, H.K.; Nguyen, P.T.; Kim, M.I.; Kim, B.C. Aptamer-functionalized and silver-coated polydopamine-copper hybrid nanoflower adsorbent embedded with magnetic nanoparticles for efficient mercury removal. Chemosphere 2022, 288, 132584. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology 1995, 13, 468–474. [Google Scholar] [CrossRef]
- De Mello-Farias, P.C.; Chaves, A.L.S.; Lencina, C.L. Transgenic plants for enhanced phytoremediation–physiological studies. In Genetic Transformation; InTech: Rijeca, Croatia, 2011; pp. 305–328. [Google Scholar]
- Khan, A.L.; Lee, I.-J. Endophytic Penicillium Funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. 2013, 13, 86. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chao, Y.; Li, Y.; Lin, Q.; Bai, J.; Tang, L.; Wang, S.; Ying, R.; Qiu, R. Survival strategies of the plant-associated bacterium Enterobacter sp. strain eg16 under cadmium Stress. Appl. Environ. Microbiol. 2016, 82, 1734–1744. [Google Scholar] [CrossRef] [Green Version]
- Treesubsuntorn, C.; Dhurakit, P.; Khaksar, G.; Thiravetyan, P. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2018, 25, 25690–25701. [Google Scholar] [CrossRef]
- Pramanik, K.; Ghosh, P.K.; Ghosh, A.; Sarkar, A.; Maiti, T.K. Characterization of PGP traits of a hexavalent chromium resistant Raoultella sp. isolated from the rice field near industrial sewage of Burdwan District, WB, India. Soil Sediment Contam. Int. J. 2016, 25, 313–331. [Google Scholar] [CrossRef]
- Ahmad, I.; Akhtar, M.J.; Asghar, H.N.; Ghafoor, U.; Shahid, M. Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J. Plant Growth Regul. 2016, 35, 303–315. [Google Scholar] [CrossRef]
- Płociniczak, T.; Sinkkonen, A.; Romantschuk, M.; Piotrowska-Seget, Z. Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl. Soil Ecol. 2013, 63, 1–7. [Google Scholar] [CrossRef]
- Sarathambal, C.; Khankhane, P.J.; Gharde, Y.; Kumar, B.; Varun, M.; Arun, S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and cd uptake of Arundo donax L. Int. J. Phytoremediation 2017, 19, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial communities associated with flowering plants of the Ni Hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.; Munot, H.P.; Shouche, Y.; Meyer, J.M.; Goel, R. Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr. Microbiol. 2005, 50, 233–237. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.; Ghanem, K.; Ghanem, N.; Al-Kolaibe, A. The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J. Microbiol. Biotechnol. 2008, 24, 253–262. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Lifshitz, R.; Zablotowicz, R.M. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 1989, 7, 39–44. [Google Scholar] [CrossRef]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.; Ghosh, P.K.; Ghosh, S.; De, T.K.; Maiti, T.K. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 2013, 51, 11–17. [Google Scholar] [CrossRef]
- Park, J.; Bae, B. Optimization of explosive compounds (TNT and RDX) biodegradation by indigenous microorganisms activated by external carbon source. J. Soil Groundw. Environ. 2014, 19, 56–65. [Google Scholar] [CrossRef]
- Shreya, D.; Jinal, H.N.; Kartik, V.P.; Amaresan, N. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Arch. Microbiol. 2020, 202, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Jinal, H.N.; Gopi, K.; Prittesh, P.; Kartik, V.P.; Amaresan, N. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environ. Sci. Pollut. Res. 2019, 26, 32815–32823. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.A.; Siddiqi, M.Z.; Balusamy, S.R.; Rahman, M.M.; Ashrafudoulla, M.; Apu, M.A.I.; Maitra, P.; Naserkheil, M.; Park, J.-H.; Akter, S. Pinibacter aurantiacus Gen. Nov., Sp. Nov., isolated from rhizospheric soil of a pine tree. Int. J. Syst. Evol. Microbiol. 2021, 71, 5132. [Google Scholar] [CrossRef] [PubMed]
- Gopi, K.; Jinal, H.N.; Prittesh, P.; Kartik, V.P.; Amaresan, N. Effect of copper-resistant Stenotrophomonas maltophilia on maize (Zea mays) growth, physiological properties, and copper accumulation: Potential for phytoremediation into biofortification. Int. J. Phytoremediation 2020, 22, 662–668. [Google Scholar] [CrossRef]
- Akter, S.; Lee, S.-Y.; Moon, S.-K.; Choi, C.; Balusamy, S.R.; Siddiqi, M.Z.; Ashrafudoulla, M.; Huq, M. Sphingomonas horti sp. nov., a novel bacterial species isolated from soil of a tomato garden. Arch. Microbiol. 2021, 203, 543–548. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1958; Volume 498, pp. 183–204. [Google Scholar]
- Chiboub, M.; Saadani, O.; Fatnassi, I.C.; Abdelkrim, S.; Abid, G.; Jebara, M.; Jebara, S.H. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Comptes Rendus Biol. 2016, 339, 391–398. [Google Scholar] [CrossRef]
- Bric, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Cappuccino, J.G.; Sherman, N. Biochemical Activities of Microorganisms. In Microbiology, a Laboratory Manual; The Benjamin Cummings Publishing Co. Inc.: San Francisco, CA, USA, 1992. [Google Scholar]
- Verma, S.C.; Ladha, J.K.; Tripathi, A.K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 2001, 91, 127–141. [Google Scholar] [CrossRef]
- Aleksandrov, V.G.; Blagodyr, R.N.; Ilev, I.P. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol. Z. 1967, 29, 1. [Google Scholar]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Patel, K.; Dudhagara, P. Compatibility testing and enhancing the pulp bleaching process by hydrolases of the newly isolated thermophilic Isoptericola variabilis strain UD-6. Biocatal. Biotransform. 2020, 38, 144–160. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 2001, 56, 2.4.1–2.4.5. [Google Scholar] [CrossRef]
- Desai, M.; Patel, K. Isolation, optimization, and purification of extracellular levansucrase from nonpathogenic Klebsiella strain L1 isolated from waste sugarcane bagasse. Biocatal. Agric. Biotechnol. 2019, 19, 101107. [Google Scholar] [CrossRef]
- Lee, A.; Bae, B. Selection of tolerant plant species using pot culture for remediation of explosive compounds contaminated soil. J. Soil Groundw. Environ. 2015, 20, 73–84. [Google Scholar] [CrossRef]
- Panda, D.; Sharma, S.G.; Sarkar, R.K. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat. Bot. 2008, 88, 127–133. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, J.S.; Saxena, A.K.; Singh, D.P. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 2012, 14, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Oberbacher, M.F.; Vines, H.M. Spectrophotometric assay of ascorbic acid oxidase. Nature 1963, 197, 1203–1204. [Google Scholar] [CrossRef] [PubMed]
- Burges, A.; Epelde, L.; Benito, G.; Artetxe, U.; Becerril, J.M.; Garbisu, C. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci. Total Environ. 2016, 562, 480–492. [Google Scholar] [CrossRef]
- Piotrowska-Seget, Z.; Cycoń, M.; Kozdroj, J. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. soil Ecol. 2005, 28, 237–246. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Freitas, H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater. 2009, 166, 1154–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellasamy, G.; Kiriyanthan, R.M.; Maharajan, T.; Radha, A.; Yun, K. Remediation of microplastics using bionanomaterials: A review. Environ. Res. 2022, 208, 112724. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.; El-Gizawy, E.; Geries, L. Effect of compost extract, N2-fixing bacteria and nitrogen levels applications on soil properties and onion crop. Arch. Agron. Soil Sci. 2015, 61, 185–201. [Google Scholar] [CrossRef]
- Sonali, J.M.I.; Kavitha, R.; Kumar, P.S.; Rajagopal, R.; Gayathri, K.V.; Ghfar, A.A.; Govindaraju, S. Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO2 nanocomposite as bio-fertilizer. Chemosphere 2022, 286, 131800. [Google Scholar] [CrossRef] [PubMed]
- Phulpoto, A.H.; Qazi, M.A.; Haq, I.U.; Phul, A.R.; Ahmed, S.; Kanhar, N.A. Ecotoxicological assessment of oil-based paint using three-dimensional multi-species bio-testing model: Pre-and post-bioremediation analysis. Environ. Sci. Pollut. Res. 2018, 25, 16567–16577. [Google Scholar] [CrossRef]
- Phulpoto, A.H.; Qazi, M.A.; Mangi, S.; Ahmed, S.; Phul, A.R.; Kanhar, N.A. Bioremediation of oil-based paint from aqueous media by novel indigenous Brevibacillus parabrevis strain NAP3 and its toxicity assessment. Pol. J. Environ. Stud. 2017, 26, 229–237. [Google Scholar] [CrossRef]
- Wei, G.; Fan, L.; Zhu, W.; Fu, Y.; Yu, J.; Tang, M. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J. Hazard. Mater. 2009, 162, 50–56. [Google Scholar] [CrossRef]
- Liaquat, F.; Munis, M.F.H.; Arif, S.; Haroon, U.; Che, S.; Liu, Q. Cd-tolerant SY-2 Strain of Stenotrophomonas maltophilia: A potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech 2020, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Wierzba, S. Biosorption of Lead (II), Zinc (II) and Nickel (II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Pol. J. Chem. Technol. 2015, 17, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Seo, J.-S.; Wang, J.; Keum, Y.-S.; Li, J.; Li, Q.X. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. Int. Biodeterior. Biodegrad. 2013, 79, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Guha, A.K.; Ray, L. Adsorption behaviour of cadmium by Bacillus cereus M116: Some physical and biochemical studies. Chem. Speciat. Bioavailab. 2011, 23, 175–182. [Google Scholar] [CrossRef]
- Raja, C.E.; Anbazhagan, K.; Selvam, G.S. Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World J. Microbiol. Biotechnol. 2006, 22, 577–585. [Google Scholar] [CrossRef]
- Haq, R.; Zaidi, S.K.; Shakoori, A.R. Cadmium resistant Enterobacter cloacae and Klebsiella sp. isolated from industrial effluents and their possible role in cadmium detoxification. World J. Microbiol. Biotechnol. 1999, 15, 283–290. [Google Scholar] [CrossRef]
- Afzal, A.M.; Rasool, M.H.; Waseem, M.; Aslam, B. Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Express 2017, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Selvi, A.T.; Anjugam, E.; Devi, R.A.; Madhan, B.; Kannappan, S.; Chandrasekaran, B. Isolation and characterization of bacteria from tannery effluent treatment plant and their tolerance to heavy metals and antibiotics. Asian J. Exp. Biol. Sci. 2012, 3, 34–41. [Google Scholar]
- Park, H.; Kang, S.; Bae, B. Quantifying inhibitory effects of reclaimed soils on the shoot and root growth of legume plant lentil (Lens culinaris). J. Soil Groundw. Environ. 2021, 26, 1–8. [Google Scholar]
- Xie, H.; Pasternak, J.J.; Glick, B.R. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 1996, 32, 67–71. [Google Scholar] [CrossRef]
- Pan, F.; Meng, Q.; Luo, S.; Shen, J.; Chen, B.; Khan, K.Y.; Japenga, J.; Ma, X.; Yang, X.; Feng, Y. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii hance. Int. J. Phytoremediation 2017, 19, 281–289. [Google Scholar] [CrossRef] [PubMed]
- He, L.Y.; Zhang, Y.F.; Ma, H.Y.; Chen, Z.J.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl. Soil Ecol. 2010, 44, 49–55. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free-living Rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef]
- Aureen, G.; Ramesh, R.; Saroj, B. Bacteria from sand dunes of goa promoting growth in eggplant. World J. Agric. Sci. 2010, 6, 555–564. [Google Scholar]
- Vicente, C.S.L.; Nascimento, F.; Espada, M.; Barbosa, P.; Mota, M.; Glick, B.R.; Oliveira, S. Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. PLoS ONE 2012, 7, e46661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, D.; Dhandhukia, P.; Patel, P.; Thakker, J.N. Screening of PGPR from saline desert of Kutch: Growth promotion in arachis hypogea by Bacillus licheniformis A2. Microbiol. Res. 2014, 169, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W.-A.; Young, C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006, 34, 33–41. [Google Scholar] [CrossRef]
- Adnan, M.; Alshammari, E.; Ashraf, S.A.; Patel, K.; Lad, K.; Patel, M. Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the Cones of Thuja plicata as a potent plant growth promoter with its potential application. BioMed Res. Int. 2018, 2018, 7362148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imsande, J. Iron, Sulfur, and Chlorophyll deficiencies: A need for an integrative approach in plant physiology. Physiol. Plant. 1998, 103, 139–144. [Google Scholar] [CrossRef]
- Choubane, S.; Cheba, B.A.; Benourrad, A. Screening and phenotypic diversity of amylase producing Rhizospheric bacteria from some North African plants. Procedia Technol. 2016, 22, 1197–1204. [Google Scholar] [CrossRef] [Green Version]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Portraying mechanics of plant growth promoting Rhizobacteria (PGPR): A review. Cogent Food Agric. 2016, 2, 1127500. [Google Scholar] [CrossRef]
- Luo, S.; Chen, L.; Chen, J.; Xiao, X.; Xu, T.; Wan, Y.; Rao, C.; Liu, C.; Liu, Y.; Lai, C. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 2011, 85, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Sheng, X.; Qian, M.; Wang, Q. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 2008, 72, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R.; Cheng, Z.; Czarny, J.; Duan, J. Promotion of plant growth by acc deaminase-producing soil bacteria. Eur. J. Plant Pathol. 2007, 119, 329–339. [Google Scholar] [CrossRef]
- Wan, Y.; Luo, S.; Chen, J.; Xiao, X.; Chen, L.; Zeng, G.; Liu, C.; He, Y. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 2012, 89, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Hogan, K.P. Increases of Chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ. 2003, 26, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Sárvári, É.; Solti, Á.; Basa, B.; Mészáros, I.; Lévai, L.; Fodor, F. Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar (Populus jacquemontiana Var. Glauca Cv. Kopeczkii). Plant Physiol. Biochem. 2011, 49, 499–505. [Google Scholar] [CrossRef]
- Hao, X.; Xie, P.; Zhu, Y.-G.; Taghavi, S.; Wei, G.; Rensing, C. Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environ. Sci. Technol. 2015, 49, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Chakraborty, A.; Srivastava, S.; Sahani, S.; Singh, P. Phytoremediation: A sustainable technology for pollution control and environmental cleanup. In Innovative Bio-Based Technologies for Environmental Remediation; CRC Press: Boca Raton, FL, USA, 2022; pp. 237–249. ISBN 1003004687. [Google Scholar]
- Brown, G.E.; Foster, A.L.; Ostergren, J.D. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proc. Natl. Acad. Sci. USA 1999, 96, 3388–3395. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Bae, B.; Joo, W.; Bae, S.; Bae, E. Phyto-restoration potential of soil properties using Secale cereale for recycle of soils with residual TPHs (Total Petroleum Hydrocarbons) after off-site treatment. J. Soil Groundw. Environ. 2014, 19, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the application of plant growth-promoting Rhizobacteria in phytoremediation of heavy metals. Rev. Environ. Contam. Toxicol. 2013, 223, 33–52. [Google Scholar] [PubMed]
- Phieler, R.; Voit, A.; Kothe, E. Microbially supported phytoremediation of heavy metal contaminated soils: Strategies and applications. Geobiotechnol. I 2013, 141, 211–235. [Google Scholar]
- Kartik, V.P.; Jinal, H.N.; Amaresan, N. Inoculation of cucumber (Cucumis sativus L.) seedlings with salt-tolerant plant growth promoting bacteria improves nutrient uptake, plant attributes and physiological profiles. J. Plant Growth Regul. 2021, 40, 1728–1740. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, M.I.; Naikoo, M.I.; Rehman, F.; Naushin, F.; Khan, F.A. Proline accumulation in plants: Roles in stress tolerance and plant development. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 155–166. [Google Scholar]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Islam, M.Z.; Park, B.-J.; Kang, H.-M.; Lee, Y.-T. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chem. 2020, 309, 125763. [Google Scholar] [CrossRef] [PubMed]
- Irtelli, B.; Navari-Izzo, F. Influence of Sodium Nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassica juncea grown in excess of cadmium. Chemosphere 2006, 65, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Sprada, S.; Arasimowicz-Jelonek, M.; Podgórska, M.; Deckert, J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. effects of Cadmium and Lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim. Pol. 2011, 58, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.H.; Chee Kong, Y.; Mohd Zain, N.A. Effect of Cadmium and Copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules 2017, 22, 1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Páliz, K.; Rodríguez-Vázquez, R.; Duarte, B.; Caviedes, M.A.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Caçador, M.I.; Rodríguez-Llorente, I.D.; Pajuelo, E. Investigating the mechanisms underlying phytoprotection by plant growth-promoting Rhizobacteria in Spartina densiflora under Metal Stress. Plant Biol. 2018, 20, 497–506. [Google Scholar] [CrossRef]
Properties | Values |
---|---|
pH | 7.7 ± 0.05 |
Organic carbon (%) | 2.25 ± 0.04 |
Phosphorous (mg/kg) | 423.66 ± 12.05 |
Potassium (mg/kg) | 267 ± 15.13 |
Magnesium (mg/kg) | 45.63 ± 2.92 |
Sulphur (mg/kg) | 40.16 ± 1.4 |
Calcium (mg/kg) | 21.56 ± 3.0 |
Zinc (mg/kg) | 5.04 ± 0.32 |
Arsenic (ppm) | 0.016 ± 0.001 |
Chromium (ppm) | 0.012 ± 0.001 |
Cadmium (ppm) | 0.023 ± 0.002 |
Nickel (ppm) | 0.032 ± 0.002 |
Cobalt (ppm) | 0.015 ± 0.001 |
Conditions | IAA (µg/mL) | Ammonia (µg/mL) | Siderophore | Phosphate Solubilization | Potassium Solubilization | Amylase | Cellulase | Pectinase | Chitinase |
---|---|---|---|---|---|---|---|---|---|
Normal | 183.66 ± 1.52 | 73 ± 2 | + | + | + | + | + | - | + |
Stress (Cd treated) | 116.33 ± 2.08 | 51.66 ± 1.52 | + | + | - | + | + | - | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, M.; Patel, K.; Al-Keridis, L.A.; Alshammari, N.; Badraoui, R.; Elasbali, A.M.; Al-Soud, W.A.; Hassan, M.I.; Yadav, D.K.; Adnan, M. Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens). Sustainability 2022, 14, 4335. https://doi.org/10.3390/su14074335
Patel M, Patel K, Al-Keridis LA, Alshammari N, Badraoui R, Elasbali AM, Al-Soud WA, Hassan MI, Yadav DK, Adnan M. Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens). Sustainability. 2022; 14(7):4335. https://doi.org/10.3390/su14074335
Chicago/Turabian StylePatel, Mitesh, Kartik Patel, Lamya Ahmed Al-Keridis, Nawaf Alshammari, Riadh Badraoui, Abdelbaset Mohamed Elasbali, Waleed Abu Al-Soud, Md Imtaiyaz Hassan, Dharmendra Kumar Yadav, and Mohd Adnan. 2022. "Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens)" Sustainability 14, no. 7: 4335. https://doi.org/10.3390/su14074335
APA StylePatel, M., Patel, K., Al-Keridis, L. A., Alshammari, N., Badraoui, R., Elasbali, A. M., Al-Soud, W. A., Hassan, M. I., Yadav, D. K., & Adnan, M. (2022). Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens). Sustainability, 14(7), 4335. https://doi.org/10.3390/su14074335