Optimising Land Consolidation by Implementing UAV Technology
Abstract
:1. Introduction
- The reduced number of cadastral parcels, which results in the more rational expanse of lands with respect to settlements;
- The increased average size of a cadastral parcel;
- The reduced lengths of existing access roads to parcels, which results in lower costs and a shorter time of the transport and implementation of agricultural works;
- The increased profitability of the agricultural production per hectare;
- Accessibility of each cadastral parcel to a public road after land consolidation;
- A reduced number of irregular parcels;
- Elimination of unnecessary roads, delineation, and construction of a functional system of agricultural roads;
- Elimination of unnecessary balks and recultivation of those new fragments of parcels;
- Adaptation of new parcel borders to the system of agricultural roads, the system of water meliorations, as well as to the terrain relief;
- Arrangements of parcels planned as building sites in local spatial development plans, with the exclusion of infrastructural objectives.
- An analysis of the legal regulations governing the procedure, the literature on the subject of consolidation, photogrammetric and remote sensing products, the advantages and disadvantages of the process and of the application of the abovementioned technologies, as well as the problems encountered that can be solved by means of modern geospatial tools.
- Elaboration of the procedure of conduct upon improving the spatial structure by way of consolidation with a specification of the moments of implementing photogrammetric and remote sensing products.
- Analysis of the usefulness of geospatial products gathered during an experimental UAV flight in collecting data for the needs of the land consolidation procedure and at the stage of current management and agricultural production.
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
3.1. Improving the Efficiency of the Process of Land Consolidation through the Introduction to the Procedure of Photogrammetric and Remote Sensing Products
3.2. The Scheme of Use of Photogrammetric and Remote Sensing Products for the Purposes of Improving Agricultural Production and Their Use in Smart Farming
4. Discussion
- Conventional works, aiming at the creation of better farming conditions, in particular through the elimination of the so-called “Patchwork of fields” and improvements in the shapes of fields and the technical infrastructure of rural areas;
- Infrastructural works, aiming at the minimisation of the results of the disintegrating impacts of investments on farms and disturbances resulting from line investments;
- Infrastructural works performed due to the implementation of flood protection operations, where land consolidation is one of the methods of land acquisition for the needs of such protection;
- Secondary works, being an answer to the scattering and fragmentation of agricultural properties in already consolidated areas. Other purposes of secondary land consolidation works also exist, such as protection against erosion, the possibility to terminate land communities, and consolidation of forests or forested lands;
- Ecological works, which are directed towards transformations of lands in order to allow for the rational development of the agricultural space while protecting and planning the elements of the landscape and ecology.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Balawejder, M.; Matkowska, K.; Rymarczyk, E. Effects of land consolidation in Southern Poland. Acta Sci. Pol. Admin. Locorum 2021, 20, 269–282. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives. Communication COM 380. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a3c806a6-9ab3-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 6 December 2020).
- Radočaj, D.; Obhođaš, J.; Jurišić, M.; Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- MRiRW. Rolnictwo i Gospodarka Żywnościowa w Polsce (Agriculture and Food Economy in Poland); Collective work edited by the Institute of Agricultural and Food Economics; Ministerstwo Rolnictwa i Rozwoju Wsi. Praca Zbiorowa Pod Redakcją Instytutu Ekonomiki Rolnictwa i Gospodarki Żywnościowej; Ministry of Agriculture and Rural Development: Warsaw, Poland, 2019.
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Serra, P.; Saurí, D.; Salvati, L. Peri-urban agriculture in Barcelona: Outlining landscape dynamics vis à vis socio-environmental functions. Landsc. Res. 2017, 43, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Stańczuk-Gałwiaczek, M. Assessment of the spatial effects of land-consolidation works carried out in Poland in the years 2007–2013. Geomat. Environ. Eng. 2017, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Feltynowski, M.; Kronenberg, J. Urban Green Spaces—An Underestimated Resource in Third-Tier Towns in Poland. Land 2020, 9, 453. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Sobolewska-Mikulska, K. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2018, 152, 333–339. [Google Scholar] [CrossRef]
- Leń, P. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Comput. Electron. Agric. 2018, 144, 216–221. [Google Scholar] [CrossRef]
- Cienciała, A. The issue of the legal and surveying division of agricultural land on selected examples in Poland and on the international stage. Mater. Sci. Conf. GIS Odyssey 2017, 2017, 67–75. [Google Scholar]
- Vitikainen, A. An Overview of Land Consolidation in Europe. Nord. J. Surv. Real Estate Res. 2014, 1. [Google Scholar]
- Sobolewska-Mikulska, K. Ocena Polityki Scaleniowej Oraz Prezentacja Dobrych Praktyk (The Assessment of Land Con-Solidation Policy and Presentation of Good Practices); Politechnika Warszawska: Warsaw, Poland, 2014. [Google Scholar]
- Zhang, Z.; Zhao, W. A Parametric Approach to Assess the Sustainability of Land Consolidation: A Case Study in Shandong Province, North China. Agroecol. Sustain. Food Syst. 2013, 37, 444–464. [Google Scholar] [CrossRef]
- Noga, K.; Sosnowski, Z.; Balawejder, M.; Matkowska, K.; Mazur, A.; Buczek, J. Ocena Przeprowadzonych Scaleń i Wymiany Gruntów Rolnych Województwa Podkarpackiego Pod Kątem Barier Ograniczających ich Realizację (Assessment of Conducted Land Consolidation Works of Agricultural Land in Podkarpackie Voivodeship in Terms of Barriers Restricting Their Implementation); Wyższa Szkoła Inżynieryjno-Ekonomiczna w Rzeszowie, Europejski Fundusz Rozwoju Wsi Polskiej—Counterpart Fund: Rzeszów, Poland, 2018; p. 132. [Google Scholar]
- Basista, I.; Balawejder, M. Assessment of selected land consolidation in south-eastern Poland. Land Use Policy 2020, 99, 105033. [Google Scholar] [CrossRef]
- GUS. Poland in the European Union; Statistics Poland, Statistical Products Department: Warsaw, Poland, 2020.
- GUS. Rocznik statystyczny Rolnictwa (Statistical Yearbook of Agriculture); Główny Urząd Statystyczny (Statistics Poland): Warsaw, Poland, 2019.
- Triantafyllou, A.; Sarigiannidis, P.; Bibi, S. Precision Agriculture: A Remote Sensing Monitoring System Architecture. Information 2019, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Ustawa z dnia 26 marca 1982 r. o Scaleniu i wymianie gruntów [Act of 26 March 1982 on land consolidation and exchange of land]. J. Laws 1892, 11, 80. (In Polish)
- Jezierski, A. Historia Gospodarcza Polski (The Economic History of Poland); Wydawnictwo Key: Warsaw, Poland, 2003. [Google Scholar]
- Dudzińska, M.; Kocur-Bera, K. Land consolidation as the driving force behind ecological and economic development of rural areas. In Proceedings of the 9th International Conference ‘Environmental Engineering’, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J. Safeguarding real property rights and rational use by conflicting private and public interests—The German approach. Géod. Vestnik 2014, 58, 517–534. [Google Scholar] [CrossRef]
- Branković, S.; Parezanović, L.; Simović, D. Land consolidation appraisal of agricultural land in the GIS environment. Géod. vestnik 2015, 59, 320–334. [Google Scholar] [CrossRef]
- Malashevskyi, M.; Malashevska, O. Land Consolidation Considering Natural Afforestation. Geomat. Environ. Eng. 2022, 16. [Google Scholar] [CrossRef]
- Bielska, A.; Kupidura, A. Kształtowanie Przestrzeni na Obszarach Wiejskich (Spatial Development in Rural Areas); Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2014. [Google Scholar]
- Hendricks, A.; Lisec, A. Land consolidation for large-scale infrastructure projects in Germany. Géod. Vestnik 2014, 58, 46–68. [Google Scholar] [CrossRef]
- Pawlikowska, E.; Popek, P.; Bieda, A.; Moteva, M.; Stoeva, A. Analysis of the Legal Methods of Agricultural Land Protection in Central Europe on the Example of Poland and Bulgaria. Real Estate Manag. Valuat. 2017, 25, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Davidova, S.; Buckwell, A.; Kopeva, D.; Swinnen, J.F.M.; Mathijs, E. Bulgaria: Economics and Politics of Post-Reform Farm. Structures, Agricultural Privatization, Land Reform and Farm. Restructuring in Central and Eastern Europe; Routledge: London, UK, 1997; pp. 23–62. [Google Scholar]
- Moteva, M.; Mondeshka, M.; Stoeva, A.; Yarlovska, N. Contemporary issues of land use and water management for agriculture in Bulgaria. Agronomy 2014, 57, 59–68. [Google Scholar]
- Noga, K.; Balawejder, M.; Matkowska, K. Dimensions of destruction of road network providing access to cadastral parcels resulting from motorway construction. Geomat. Environ. Eng. 2017, 11, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Kocur-Bera, K. Understanding information about agricultural land. An evaluation of the extent of data modification in the Land Parcel Identification System for the needs of area-based payments—A case study. Land Use Policy 2020, 94, 104527. [Google Scholar] [CrossRef]
- Cienciała, A.; Sobolewska-Mikulska, K.; Sobura, S. Credibility of the cadastral data on land use and the methodology for their verification and update. Land Use Policy 2021, 102, 105204. [Google Scholar] [CrossRef]
- Karabin, M.; Bakuła, K.; Łuczyński, R. Verification of the Geometrical Representation of Buildings in Cadastre Using UAV Photogrammetry. Geomat. Environ. Eng. 2021, 15, 81–99. [Google Scholar] [CrossRef]
- Puniach, E.; Bieda, A.; Ćwiąkała, P.; Kwartnik-Pruc, A.; Parzych, P. Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subjectto Landslides. ISPRS Int. J. Geo-Inform. 2018, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Sobura, S. Calibration of non-metric UAV camera using different test fields. Geodesy Cartogr. 2021, 47, 111–117. [Google Scholar] [CrossRef]
- Krupowicz, W.; Czarnecka, A.; Grus, M. Implementing crowdsourcing initiatives in land consolidation procedures in Poland. Land Use Policy 2020, 99, 105015. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Gracia-Romero, A.; Kefauver, S.C.; Vergara-Díaz, O.; Hamadziripi, E.; Zaman-Allah, M.A.; Thierfelder, C.; Prassana, B.M.; Cairns, J.E.; Araus, J.L. Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: A case of study with maize in Zimbabwe. Sci. Rep. 2020, 10, 16008. [Google Scholar] [CrossRef] [PubMed]
- Jełowicki, Ł.; Sosnowicz, K.; Ostrowski, W.; Osińska-Skotak, K.; Bakuła, K. Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery. Remote Sens. 2020, 12, 2618. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef]
- Abdullahi, H.S.; Sheriff, R.E.; Mahieddine, F. Convolution neural network in precision agriculture for plant image recognition and classification. In Proceedings of the 7th International Conference on Innovative Computing Technology (INTECH), Luton, UK, 16–18 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef] [Green Version]
- Raeva, P.L.; Šedina, J.; Dlesk, A. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens. 2018, 52, 192–201. [Google Scholar] [CrossRef] [Green Version]
Factor | UAV | Manned Aircraft | European Space Agency (ESA) Remote Sensing Imaging |
---|---|---|---|
Price | ++ | +++ | + |
Availability | +++ | + | ++ |
Dependency on weather conditions | + | +++ | ++ |
Area of elaboration from the obtained images | + | ++ | +++ |
Intensity of the work elaborated in the area for realisation of analyses | ++ | +++ | + |
Possibility of use in the case of smaller agricultural farms up to 10 ha | +++ | ++ | + |
Difficulty of data processing | + | + | +++ |
Advantages | Disadvantages |
---|---|
Possibility of eliminating ground inspections and time-consuming and costly field measurements | High cost of thermal cameras in comparison to optic and multispectral ones |
Possibility of detecting dynamic changes in the factual state of land, i.e., manner of land use, tree successions, etc., including in hardly accessible locations | Difficulty in processing multispectral and thermal data |
Material useful at the stage of elaborating field studies, designing and presenting the results | The value of spectral indexes or specifying humidity/temperature on the basis of thermograms is on several occasions interrupted by the impact of the atmosphere and the phenomenon of mixed pixels related to the radiation of the soil surface |
UAV high-resolution imaging as a fast and economic method for conducting monitoring of crop conditions | Decreasing the length of the conducted UAV flying time along with an increased message transmission optimisation mechanism (MTOM) parameter, which enforces obtaining various types of UAV applied for various goals, i.e., mapping or carrying out spraying |
Possibility of performing fully autonomous and repeatable UAV missions in the future | The necessity to use complex algorithms for the conversion of DN value into the value of the reflection coefficient |
Creating digital terrain and land cover models based on UAV images | The necessity to consider shades and exclusion of the land in order to obtain a plausible analysis [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cienciała, A.; Sobura, S.; Sobolewska-Mikulska, K. Optimising Land Consolidation by Implementing UAV Technology. Sustainability 2022, 14, 4412. https://doi.org/10.3390/su14084412
Cienciała A, Sobura S, Sobolewska-Mikulska K. Optimising Land Consolidation by Implementing UAV Technology. Sustainability. 2022; 14(8):4412. https://doi.org/10.3390/su14084412
Chicago/Turabian StyleCienciała, Agnieszka, Szymon Sobura, and Katarzyna Sobolewska-Mikulska. 2022. "Optimising Land Consolidation by Implementing UAV Technology" Sustainability 14, no. 8: 4412. https://doi.org/10.3390/su14084412
APA StyleCienciała, A., Sobura, S., & Sobolewska-Mikulska, K. (2022). Optimising Land Consolidation by Implementing UAV Technology. Sustainability, 14(8), 4412. https://doi.org/10.3390/su14084412