Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica
Abstract
:1. Introduction
- A multi-level decision-making hierarchy structure based on 5 main criteria and 23 sub-criteria was introduced for relevant stakeholders to provide a practical framework for evaluating existing SUMP.
- This hierarchical structure is the first study to present a fuzzy methodological framework based on the FUCOM and CoCoSo method together.
- The case study on Podgorica confirms the effectiveness of its recommended fuzzy model and provides valuable decision-making guidelines.
- Although this study primarily aims to evaluate the existing SUMP sustainability with a fuzzy model, it aims to solve the emerging SUMP-related problems with MCDM.
2. Literature Review
3. Materials and Methods
3.1. The First Stage
- MC1—IMPLEMENTATION AND ASSURANCE OF THE SUMP
- MC2—MONITORING AND EVALUATION OF THE SUMP
- MC3—STRENGTHENING AND INTEGRATION OF PLANNING SECTORS AND GOVERNANCE LEVELS
- -
- Guidelines for car and bicycle parking for new buildings in new urban plans;
- -
- Technical guidelines for pedestrian and cycling infrastructure.
- MC4—STRENGTHENING AND INTEGRATION OF PLANNING SECTORS AND GOVERNANCE LEVELS
- -
- Clinical Hospital Centre complex.
- -
- University of Montenegro.
- -
- City Cemetery, etc.
- MC5—PUBLIC PARTICIPATION AND PROMOTION OF THE SUMP ACHIEVEMENTS
3.2. The Second Stage
3.2.1. F-FUCOM
- Step 1. Determination of criteria.
- Step 2. Ranking of criteria.
- Step 3. Comparison of criteria using triangular fuzzy numbers.
- Step 4. Calculating optimum fuzzy weights.
3.2.2. F-CoCoSo Method
- Step 1. Create the fuzzy decision matrix ().
- Step 2. Create normalized fuzzy decision matrix ().
- Step 3. Calculate the sum of comparability arrays () and the sum of power weights () of the comparability arrays.
- Step 4. Calculate three fuzzy evaluation scores ().
- Step 5. Obtain the net assessment scores.
- Step 6. Calculate crips evaluation scores.
3.3. The Third Stage
- Sensitivity analysis based on the variation of the criteria.
- Sensitivity analysis based on the row reversing feature.
- Sensitivity analysis based on different sorting methodologies.
3.3.1. Sensitivity Analysis Based on the Variation of Criterion Weight
3.3.2. Sensitivity Analysis Based on the Row Reversing Feature
3.3.3. Sensitivity Analysis of Ranking Stability Based on Different Ranking Methodologies
4. Case Study—SUMP Podgorica
- Phase I—Determination of criteria weights using the F-FUCOM model
- Model 1—Determination of local weights of MC1, MC2, MC3, MC4, and MC5.
- Model 2—Determination of local weights in MC1.
- Model 3—Determination of local weights in MC2.
- Model 4—Determination of local weights in MC3.
- Model 5—Determination of local weights in MC4.
- Model 6—Determination of local weights in MC5.
Model 1 | ||
s.t. | s.t. |
- Phase II—Evaluation of alternatives using the F-CoCoSo model
5. Sensitivity Analysis
5.1. Sensitivity Analysis Based on Variation of Criteria Weight
5.2. Sensitivity Analysis Based on Row Reversing Feature
5.3. Sensitivity Analysis of Ranking Stability Based on Different Ranking Methodologies
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Main Criteria/Sub-Criteria | DM1 | DM2 | DM3 | DM4 | |
---|---|---|---|---|---|
Main Criteria MC1–MC5 | R C | MC1 > MC2 > MC4 > MC3 > MC5 EI, VI, FI, WI, WI | MC1 > MC3 > MC4 > MC2 > MC5 EI, AI, VI, FI, FI | MC1 > MC3 > MC4 > MC2 > MC5 EI, VI, VI, FI, WI | MC3 > MC4 > MC1 > MC2 > MC5 EI, VI, FI, FI, FI |
MC1—Sub-Criteria C1–C4 | R C | C1 > C2 > C3 > C4 EI, VI, FI, WI | C1 > C2 > C3 > C4 EI, AI, FI, FI | C2 > C1 > C3 > C4 EI, VI, FI, WI | C2 > C1 > C3 > C4 EI, FI, FI, WI |
MC2—Sub-Criteria C5–C6 |
R C |
C5 > C6 EI, VI | C5 > C6 EI, FI | C5 > C6 EI, FI | C5 > C6 EI, VI |
MC3—Sub-Criteria C7–C15 | R C | C10 > C7 > C11 > C12 > C13 > C8 > C9 > C15 > C14 EI, VI, VI, VI, VI, FI, FI, FI, WI | C12 > C10 > C7 > C11 > C8 > C9 > C13 > C14 > C15 EI, VI, VI, VI, FI, FI, FI, FI, FI | C11 > C9 > C15 > C7 > C13 > C10 > C12 > C14 > C8 EI, AI, AI, VI, VI, FI, WI, WI, WI | C10 > C7 > C13 > C15 > C9 > C11 > C14 > C8 > C12 EI, AI, AI, AI, VI, VI, FI, WI, WI |
MC4—Sub-Criteria C16–C19 | R C | C18 > C19 > C16 > C17 EI, EI, FI, WI | C16 > C18 > C17 > C19 EI, VI, FI, WI | C16 > C17 > C18 > C19 EI, VI, VI, VI | C16 > C17 > C18 > C19 EI, VI, VI, VI |
MC5—Sub-Criteria C20–C23 | R C | C20 > C21 > C22 > C23 EI, EI, WI, WI | C22 > C20 > C21 > C23 EI, WI, WI, WI | C22 > C23 > C20 > C21 EI, VI, FI, FI | C22 > C23 > C20 > C21 EI, VI, FI, FI |
Main Criteria/Sub-Criteria | DM5 | DM6 | DM7 | DM8 | |
Main Criteria MC1–MC5 | R C | MC1 > MC3 > MC4 > MC2 > MC5 EI, VI, VI, FI, WI | MC1 > MC2 > MC5 > MC3 > MC4 EI, VI, VI, FI, WI | MC3 > MC4 > MC1 > MC2 > MC5 EI, VI, FI, FI, FI | MC1 > MC2 > MC5 > MC4 > MC3 EI, VI, VI, FI, WI |
MC1—Sub-Criteria C1–C4 | R C | C2 > C1 > C3 > C4 EI, VI, FI, WI | C2 > C1 > C3 > C4 EI, VI, FI, WI | C2 > C3 > C1 > C4 EI, VI, FI, FI | C1 > C2 > C3 > C4 EI, VI, FI, WI |
MC2—Sub-Criteria C5–C6 | R C | C5 >C6 EI, FI | C5 > C6 EI, VI | C5 > C6 EI, VI | C5 > C6 EI, AI |
MC3—Sub-Criteria C7–C15 | R C | C9 > C11 > C15 > C7 > C13 > C10 > C14 > C12 > C8 EI, AI, AI, VI, VI, FI, FI, WI, WI | C7 > C8 > C9 > C12 > C10 > C11 > C14 > C15 > C13 EI, VI, VI, VI, FI, FI, WI, WI, WI | C7 > C9 > C13 > C15 > C10 > C11 > C8 > C12 > C14 EI, AI, AI, AI, VI, VI, FI, FI, FI | C7 > C10 > C12 > C8 > C9 > C11 > C14 > C13 > C15 EI, VI, VI, FI, FI, WI, WI, WI, WI |
MC4—Sub-Criteria C16–C19 | R C | C16 > C17 > C18 > C19 EI, VI, VI, VI | C19 > C18 > C16 > C17 EI, VI, FI, FI | C18 > C16 > C17 > C19 EI, VI, FI, FI | C19 > C18 > C16 > C17 EI, VI, FI, FI |
MC5—Sub-Criteria C20–C23 | R C | C22 > C23 > C20 > C21 EI, VI, FI, FI | C20 > C21 > C22 > C23 EI, AI, FI, WI | C22 > C23 > C20 > C21 EI, VI, FI, FI | C20 > C21 > C22 > C23 EI, VI, FI, FI |
Appendix B
Model 2 | ||
s.t. | s.t. |
Model 3 | ||
s.t. | s.t. |
Model 4 | ||
s.t. | s.t. |
Model 5 | ||
s.t. | s.t. |
Model 6 | ||
s.t. | s.t. |
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Li, S.; Feng, K. Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. J. Clean. Prod. 2020, 243, 118615. [Google Scholar] [CrossRef]
- Pljakić, M.; Jovanović, D.; Matović, B.; Mićić, S. Macro-level accident modeling in Novi Sad: A spatial regression approach. Accid. Anal. Prev. 2019, 132, 105259. [Google Scholar] [CrossRef]
- da Silva, A.N.R.; da Costa, M.S.; Macedo, M.H. Multiple views of sustainable urban mobility: The case of Brazil. Transp. Policy 2008, 15, 350–360. [Google Scholar] [CrossRef]
- Kiba-Janiak, M.; Kiba-Janiak, M. Sustainable urban mobility plans: How do they work? Sustainability 2019, 11, 4605. [Google Scholar] [CrossRef] [Green Version]
- GUIDELINES. Developing and Implementing a Sustainable Urban Mobility Plan, European Platform on Sustainable Urban Mobility Plans; European Commission-Directorate-General for Mobility and Transport: Brussels, Belgium, 2014; Available online: https://www.eltis.org/mobility-plans/sump-guidelines (accessed on 10 February 2022).
- Rupprecht, S.; Brand, L.; Böhler-Baedeker, S.; Brunner, L.M. Guidelines for Developing and Implementing a Sustainable Urban Mobility Plan, 2nd ed.; Rupprecht Consult: Köln, Germany, 2019. [Google Scholar]
- Quick Facts on Participation: Actively Engaging Citizens and Stakeholders in the Development of Sustainable Urban Mobility Plans, European Platform on Sustainable Urban Mobility Plans; European Commission-Directorate-General for Mobility and Transport: Brussels, Belgium, 2016; Available online: http://www.sump-challenges.eu/file/327/download?token=ArZaJe7D (accessed on 12 February 2022).
- Quick Facts on Monitoring and Evaluation—Assessing the Impact of Measures and Evaluating Mobility Planning Processes, European Platform on Sustainable Urban Mobility Plans; European Commission-Directorate-General for Mobility and Transport: Brussels, Belgium, 2016; Available online: http://www.sump-challenges.eu/file/348/download?token=gUPQECmS (accessed on 12 February 2022).
- European Commission Communication Together towards Competitive and Resource Efficient Urban Mobility (COM(2013) 913 Final). 2013. Available online: https://ec.europa.eu/transport/themes/urban/urban-mobility/urban-mobility-package_en (accessed on 12 February 2020).
- Start For Beginner Cities-Manual on the Integration of Measures and Measure Packages in A Sump. Civitas Initiative. 2018. Available online: www.sumps-up.eu (accessed on 10 February 2022).
- European Commission. Green Paper: Towards a New Culture for Urban Mobility; 25.9.2007 COM (2007) 551 Final; Commission of The European Communities: Brussels, Belgium, 2007. [Google Scholar]
- European Commission. Freight Transport Action Plan. In Communication of 18 October 2007 from the Commission: Freight Transport Logistics COM(2007) 607; European Commission: Brussel, Belgium, 2007. [Google Scholar]
- European Commission. A Sustainable Future for Transport: Towards an Integrated, Technology-Led and User-Friendly System; Directorate-General for Energy and Transport: Brussels, Belgium, 2009. [Google Scholar]
- European Commission. White Paper: Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System; 28.3.2011 COM (2011) 144 Final; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Action Plan on Urban Mobility. Communication from the Commission to the European Parliament; The Council, the European Economic and Social Committee and the Committee of the Regions: Brussel, Belgium, 2015. [Google Scholar]
- European Commission. Communication from the commission to the European Parliament, the Council, the European economic and social committee, and the committee of the regions. In A European Strategy for Low-Emission Mobility. (SWD(2016) 244 Final}, COM(2016) 501 Final, Brussels; European Commission: Brussel, Belgium, 2016. [Google Scholar]
- Werland, S. Diffusing Sustainable Urban Mobility Planning in the EU. Sustainability 2020, 12, 8436. [Google Scholar] [CrossRef]
- Browne, D.; Ryan, L. Comparative analysis of evaluation techniques for transport policies. Environ. Impact Assess. Rev. 2011, 31, 226–233. [Google Scholar] [CrossRef]
- Santos, G.; Behrendt, H.; Maconi, L.; Shirvani, T.; Teytelboym, A. Part I: Externalities and economic policies in road transport. Res.Transp. Econ. 2010, 28, 2–45. [Google Scholar] [CrossRef]
- Bartle, C.; Calvert, T.; Clark, B.; Hüging, H.; Jain, J.; Melia, S.; Mingardo, G.; Rudolph, F.; Ricci, M.; Parkin, J.; et al. The Economic Benefits of Sustainable Urban Mobility Measures. In Independent Review of Evidence: Reviews; EVIDENCE Project: Brussels, Belgium, 2016. [Google Scholar]
- Shergold, I.; Parkhurst, G. The Economic Benefits of Sustainable Urban Mobility Measures. In Independent Review of Evidence: Method; EVIDENCE Project: Brussels, Belgium, 2016. [Google Scholar]
- Vaitkus, A.; Čygas, D.; Jasiuniene, V.; Jateikiene, L.; Andriejauskas, T.; Skrodenis, D.; Ratkevičiute, K. Traffic Calming Measures: An Evaluation of the Effect on Driving Speed. Promet Traffic Transp. 2017, 29, 275–285. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J.; Gerike, R.; Götschi, T. Reducing car dependence in the heart of Europe: Lessons from Germany, Austria, and Switzerland. Transp. Rev. 2017, 37, 4–28. [Google Scholar] [CrossRef]
- Brown, V.; Moodie, M.; Carter, R. Evidence for associations between traffic calming and safety and active transport or obesity: A scoping review. J. Transp. Health 2017, 7, 23–37. [Google Scholar] [CrossRef]
- Burinskienė, M.; Gaučė, K.; Damidavičius, J. Successful sustainable mobility measures selection. In Proceedings of the 10th International Conference “Environmental Engineering”, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
- Sustainable Urban Mobility Plan for the Capital City of Podgorica, Podgorica, Montenegro. 2020. Available online: https://podgorica.me/storage/18052/5fe1dc7cbefa6_SUMP-PG-final-ENG-okt.pdf (accessed on 10 February 2022).
- Vujadinović, R.; Jovanović, J.Š.; Plevnik, A.; Mladenovič, L.; Rye, T. Key Challenges in the Status Analysis for the Sustainable Urban Mobility Plan in Podgorica, Montenegro. Sustainability 2021, 13, 1037. [Google Scholar] [CrossRef]
- Hüging, H.; Glensor, K.; Lah, O. Need for a holistic assessment of urban mobility measures—Review of existing methods and design of a simplified approach. Transp. Res. Procedia 2014, 4, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Stanujkic, D.; Popovic, G.; Zavadskas, E.K.; Karabasevic, D.; Binkyte-Veliene, A. Assessment of Progress towards Achieving Sustainable Development Goals of the “Agenda 2030” by Using the CoCoSo and the Shannon Entropy Methods: The Case of the EU Countries. Sustainability 2020, 12, 5717. [Google Scholar] [CrossRef]
- Zapolskytė, S.; Trépanier, M.; Burinskienė, M.; Survilė, O. Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities. Sustainability 2022, 14, 715. [Google Scholar] [CrossRef]
- Garcia-Ayllon, S.; Hontoria, E.; Munier, N. The Contribution of MCDM to SUMP: The Case of Spanish Cities during 2006–2021. Int. J. Environ. Res. Public. Health 2021, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ania, A.; Rivero Gutiérrez, L.; De Vicente Oliva, M. A Multiple Criteria Decision Analysis of Sustainable Urban Public Transport Systems. Mathematics 2021, 9, 1844. [Google Scholar] [CrossRef]
- Ruiz Bargueño, D.; Salomon, V.A.P.; Marins, F.A.S.; Palominos, P.; Marrone, L.A. State of the art review on the analytic hierarchy process and urban mobility. Mathematics 2021, 9, 3179. [Google Scholar] [CrossRef]
- Parezanovic, T.; Bojkovic, N.; Petrovic, M.; Pejcic-Tarle, S. Evaluation of Sustainable Mobility Measures Using Fuzzy COPRAS Method. J. Sustain. Bus. Manag. Solut. Emerg. Econ. 2016, 21, 53–62. [Google Scholar] [CrossRef]
- Podvezko, V.; Sivilevičius, H. The use of AHP and rank correlation methods for determining the significance of the interaction between the elements of a transport system having a strong influence on traffic safety. Transport 2013, 28, 389–403. [Google Scholar] [CrossRef]
- Hickman, R.; Saxena, S.; Banister, D.; Ashiru, O. Examining transport future with scenario analysis and MCA. Transp. Res. 2012, 46, 560–575. [Google Scholar] [CrossRef]
- Barauskas, A.; Mateckis, K.J.; Palevičius, V.; Antuchevičiene, J. Ranking conceptual locations for a park-and-ride parking lot using EDAS method. Građevinar 2018, 70, 975–983. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision-Making Methods and Applications—A State of the Art Survey; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of Evaluation based on Distance from Average Solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- McLean, I. The Borda and Condorcet principles: Three medieval applications. Soc. Choice Welf. 1990, 2, 99–108. [Google Scholar] [CrossRef]
- Fishburn, P. A Comparative Analyses of Group Decision Methods. Behav. Sci. 1971, 16, 538–544. [Google Scholar] [CrossRef]
- Damidavičius, J.; Burinskienė, M.; Antuchevičienė, J. Assessing Sustainable Mobility Measures Applying Multicriteria Decision Making Methods. Sustainability 2020, 12, 6067. [Google Scholar] [CrossRef]
- Morfoulaki, M.; Papathanasiou, J. Use of PROMETHEE MCDA Method for Ranking Alternative Measures of Sustainable Urban Mobility Planning. Mathematics 2021, 9, 602. [Google Scholar] [CrossRef]
- Kramar, U.; Dragan, D.; Topolšek, D. The Holistic Approach to Urban Mobility Planning with a Modified Focus Group, SWOT, and Fuzzy Analytical Hierarchical Process. Sustainability 2019, 11, 6599. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Jusoh, A.; Nor, K.M. Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature. Transport 2015, 31, 359–385. [Google Scholar] [CrossRef] [Green Version]
- Macharis, C.; Bernardini, A. Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: Time for a multi-actor approach. Transp. Policy 2015, 37, 177–186. [Google Scholar] [CrossRef]
- Prentkovskis, O.; Erceg, Ž.; Stević, Ž.; Tanackov, I.; Vasiljević, M.; Gavranović, M. A new methodology for improving service quality measurement: Delphi-FUCOM-SERVQUAL model. Symmetry 2018, 10, 757. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Esangbedo, M.O.; Bai, S.; Esangbedo, C.O. Grey SWARA-FUCOM weighting method for contractor selection MCDM problem: A case study of floating solar panel energy system installation. Energies 2019, 12, 2481. [Google Scholar] [CrossRef] [Green Version]
- Noureddine, M.; Ristic, M. Route planning for hazardous materials transportation: Multicriteria decision making approach. Decis. Mak. 2019, 2, 66–85. [Google Scholar] [CrossRef]
- Nenadić, D. Ranking dangerous sections of the road using MCDM model. Decis. Mak. 2019, 2, 115–131. [Google Scholar] [CrossRef]
- Zagradjanin, N.; Pamučar, D.; Jovanovic, K. Cloud-based multi-robot path planning in complex and crowded environment with multi-criteria decision making using full consistency method. Symmetry 2019, 11, 1241. [Google Scholar] [CrossRef] [Green Version]
- Stević, Ž.; Durmić, E.; Gajić, M.; Pamučar, D.; Puška, A. A novel multi-criteria decision-making model: Interval rough SAW method for sustainable supplier selection. Information 2019, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Pamučar, D.; Ecer, F. Prioritizing the weights of the evaluation criteria under fuzziness: The fuzzy full consistency method-FUCOM-F. Facta Univ. Ser. 2020, 18, 419–437. [Google Scholar] [CrossRef]
- Ali, Y.; Mehmood, B.; Huzaifa, M.; Yasir, U.; Khan, A.U. Development of a new hybrid multi-criteria decision-making method for a car selection scenario. Facta Univ. Ser. 2020, 18, 357–373. [Google Scholar] [CrossRef]
- Stević, Ž.; Brković, N. A novel integrated FUCOM-MARCOS model for evaluation of human resources in a transport company. Logistics 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Böyükaslan, A.; Ecer, F. Determination of drivers for investing in cryptocurrencies through a fuzzy full consistency method-Bonferroni (FUCOM-F’B) framework. Technol. Soc. 2021, 67, 101745. [Google Scholar] [CrossRef]
- Ecer, F. An analysis of the factors affecting wind farm site selection through FUCOM subjective weighting method. Pamukkale Univ. J. Eng. Sci. 2021, 27, 24–34. [Google Scholar] [CrossRef]
- Ecer, F. Sustainable supplier selection: FUCOM subjective weighting method based MAIRCA approach. J. Econ. Adm. Sci. Fac. 2021, 8, 26–47. [Google Scholar] [CrossRef]
- Pamučar, D.; Ecer, F.; Deveci, M. Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Sci. Total Environ. 2021, 788, 147763. [Google Scholar] [CrossRef]
- Ong, M.C.; Leong, Y.T.; Wan, Y.K.; Chew, I.M.L. Multi-objective optimization of integrated water system by FUCOM-VIKOR approach. Process Integr. Optim. Sustain. 2021, 5, 43–62. [Google Scholar] [CrossRef]
- Blagojević, A.; Kasalica, S.; Stević, Ž.; Tričković, G.; Pavelkić, V. Evaluation of safety degree at railway crossings in order to achieve sustainable traffic management: A novel integrated fuzzy MCDM model. Sustainability 2021, 13, 832. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Chatterjee, P.; Yazdani, M. A structured framework for sustainable supplier selection using a combined BWM-CoCoSo model. In Proceedings of the International Scientific Conference in Business, Management and Economics Engineering, Vilnius, Lithuania, 9–10 May 2019. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Wen, Z.; Liao, H.; Banaitis, A.; Turskis, Z. A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. J. Civ. Eng. Manag. 2019, 25, 858–874. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.K.; Stević, Ž.; Chatterjee, P.; Yazdani, M. An integrated methodology for evaluation of electric vehicles under sustainable automotive environment. In Advanced Multi-Criteria Decision-Making for Addressing Complex Sustainability Issues; Chatterjee, I.P., Yazdani, M., Chakraborty, S., Panchal, D., Bhattacharyya, S., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 41–62. [Google Scholar]
- Wen, Z.; Liao, H.; Mardani, A.; Al-Barakati, A. A Hesitant Fuzzy Linguistic Combined Compromise Solution Method for Multiple Criteria-Decision Making. In International Conference on Management Science and Engineering Management; Xu, J., Ahmed, S., Cooke, F., Duca, G., Eds.; Springer: Cham, Switzerland, 2019; pp. 813–821. [Google Scholar]
- Wen, Z.; Liao, H.; Zavadskas, E.K.; Al-Barakati, A. Selection third-party logistics service providers in supply chain finance by a hesitant fuzzy linguistic combined compromise solution method. Econ. Res. Ekon. Istraživanja 2019, 32, 4033–4058. [Google Scholar] [CrossRef]
- Karaşan, A.; Bolturk, E. Solid waste disposal site selection by using neutrosophic combined compromise solution method. In Proceedings of the 11th Conference of the International Fuzzy Systems As-sociation and the European Society for Fuzzy Logic and Technology EUSFLAT, Prague, Czech Republic, 9–13 September 2019. [Google Scholar]
- Erceg, Ž.; Starčević, V.; Pamučar, D.; Mitrović, G.; Stević, Ž.; Žikić, S. A new model for stock management in order to rationalize costs: ABC-FUCOM-interval rough CoCoSo model. Symmetry 2019, 11, 1527. [Google Scholar] [CrossRef] [Green Version]
- Maghsoodi, A.I.; Soudian, S.; Martínez, L.; Herrera-Viedma, E.; Zavadskas, E.K. A phase change material selection using the interval-valued target-based BWM-CoCo-MULTIMOORA approach: A case-study on interior building applications. Appl. Soft Comput. 2020, 95, 106508. [Google Scholar] [CrossRef]
- Peng, X.; Smarandache, F. A decision-making framework for China’s rare earth industry security evaluation by neutrosophic soft CoCoSo method. J. Intell. Fuzzy Syst. 2020, 1–15. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, W.; Rani, P.; Alrasheedi, M. Internet of Things (IoT) adoption barriers for the circular economy using Pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector. Technol. Forecast. Soc. Change 2021, 171, 120951. [Google Scholar] [CrossRef]
- Peng, X.; Huang, H. Fuzzy decision-making method based on CoCoSo with CRITIC for financial risk evaluation. Technol. Econ. Dev. Econ. 2020, 26, 695–724. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Rani, P.; Mishra, A.R. A novel Pythagorean fuzzy combined compromise solution framework for the assessment of medical waste treatment technology. J. Clean. Prod. 2021, 292, 126047. [Google Scholar] [CrossRef]
- Deveci, M.; Pamučar, D.; Gokasar, I. Fuzzy power heronian function based CoCoSo method for the advantage prioritization of autonomous vehicles in real-time traffic management. Sustain. Cities Soc. 2021, 69, 102846. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Pamučar, D.; Ecer, F.; Chatterjee, P. An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socio Econ. Plan. Sci. 2021, 78, 101052. [Google Scholar] [CrossRef]
- Ulutaş, A.; Popovic, G.; Radanov, P.; Stanujkic, D.; Karabasevic, D. A new hybrid fuzzy PSI-PIPRECIA-CoCoSo MCDM based approach to solving the transportation company selection problem. Technol. Econ. Dev. Econ. 2021, 27, 1227–1249. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Zhao, H. Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl. Based Syst. 2017, 121, 23–31. [Google Scholar] [CrossRef]
- Kharwar, P.K.; Verma, R.K.; Singh, A. Neural Network Modeling and Combined Compromise Solution (CoCoSo) Method for Optimization of Drilling Performances in Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2020, 1–28. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Zavadskas, E.K.; Turskis, Z. A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2018, 57, 2501–2519. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, X.; Luo, Z. Pythagorean Fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 2019, 53, 3813–3847. [Google Scholar] [CrossRef]
- Wen, Z.; Liao, H.; Ren, R.; Bai, C.; Zavadskas, E.K.; Antucheviciene, J.; Al-Barakati, A. Cold Chain Logistics Management of Medicine with an Integrated Multi-Criteria Decision-Making Method. Int. J. Environ. Res. Public Health 2019, 16, 4843. [Google Scholar] [CrossRef] [Green Version]
- Stević, Ž.; Stjepanović, Ž.; Božičković, Z.; Das, D.; Stanujkić, D. Assessment of conditions for implementing information technology in a warehouse system: A novel fuzzy PIPRECIA method. Symmetry 2018, 10, 586. [Google Scholar] [CrossRef] [Green Version]
- Bakır, M.; Akan, Ş.; Kıracı, K.; Karabasevic, D.; Stanujkic, D.; Popovic, G. Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets. J. Econ. Forecast. Inst. Econ. Forecast. 2020, 23, 149–172. [Google Scholar]
- Božanić, D.; Milić, A.; Tešić, D.; Sałabun, W.; Pamučar, D. D Numbers–FUCOM–Fuzzy RAFSI model for selecting the group of construction machines for enabling mobility. Facta Univ. Ser. 2021, 19, 447–471. [Google Scholar] [CrossRef]
- Mukhametzyanov, I.; Pamučar, D. A Sensitivity Analysis in MCDM Problems: A Statistical Approach. Dec. Making Appl. Manag. Eng. 2018, 1, 51–80. [Google Scholar] [CrossRef]
- Pamučar, D.; Božanić, D.; Ranđelović, A. Multi-Criteria Decision-Making. An Example of Sensitivity Analysis. Serb. J. Manag. 2017, 12, 1–27. [Google Scholar] [CrossRef] [Green Version]
Linguistic Variables | TFN |
---|---|
Equally important (EI) | (1, 1, 1) |
Weakly important (WI) | (2/3, 1, 3/2) |
Fairly important (FI) | (3/2,2, 5/2) |
Very important (VI) | (5/2,3,7/2) |
Absolutely important (AI) | (7/2, 4, 9/2) |
Linguistic Variables | TFN |
---|---|
Absolutely less significant (ALS) | (0.222, 0.250, 0.286) |
Dominantly less significant (DLS) | (0.250, 0.286, 0.333) |
Much less significant (MLS) | (0.286, 0.333, 0.400) |
Really less significant (RLS) | (0.333, 0.400, 0.500) |
Less significant (LS) | (0.400, 0.500, 0.667) |
Moderately less significant (MoLS) | (0.500, 0.667, 1.000) |
Weakly less significant (WLS) | (0.667, 1.000, 1.000) |
Main Criteria/Sub-Criteria | DM1 | |
---|---|---|
Main Criteria (MC1–MC5) | R C | MC1 > MC2 > MC4 > MC3 > MC5 EI, VI, FI, WI, WI |
MC1—Sub-Criteria (C1–C4) | R C | C1 > C2 > C3 > C4 EI, VI, FI, WI |
MC2—Sub-Criteria (C5–C6) | R C | C5 > C6 EI, VI |
MC3—Sub-Criteria (C7–C15) | R C | C10 > C7 > C11 > C12 > C13 > C8 > C9 > C15 > C14 EI, VI, VI, VI, VI, FI, FI, FI, WI |
MC4—Sub-Criteria (C16–C19) | R C | C18 > C19 > C16 > C17 EI, EI, FI, WI |
MC5—Sub-Criteria (C20–C23) | R C | C20 > C21 > C22 > C23 EI, EI, WI, WI |
R—Rank; C—Comparisons |
MC1–MC5 | DM1 | DM2 | DM3 | DM4 |
---|---|---|---|---|
MC1 | (0.224, 0.265, 0.265) | (0.330, 0.320, 0.370) | (0.235, 0.297, 0.297) | (0.111, 0.194, 0.200) |
MC2 | (0.066, 0.100, 0.105) | (0.128, 0.208, 0.208) | (0.093, 0.169, 0.169) | (0.095, 0.184, 0.184) |
MC3 | (0.141, 0.248, 0.248) | (0.076, 0.099, 0.102) | (0.078, 0.104, 0.104) | (0.256, 0.350, 0.350) |
MC4 | (0.084, 0.150, 0.177) | (0.088, 0.132, 0.155) | (0.066, 0.107, 0.118) | (0.088, 0.119, 0.119) |
MC5 | (0.094, 0.284, 0.401) | (0.109, 0.234, 0.258) | (0.143, 0.388, 0.437) | (0.086, 0.225, 0.225) |
0.004 | 0.002 | 0.002 | 0.004 | |
MC1–MC5 | DM5 | DM6 | DM7 | DM8 |
MC1 | (0.235, 0.297, 0.297) | (0.261, 0.328, 0.376) | (0.111, 0.194, 0.200) | (0.255, 0.207, 0.297) |
MC2 | (0.093, 0.169, 0.169) | (0.097, 0.097, 0.120) | (0.095, 0.184, 0.184) | (0.077, 0.104, 0.104) |
MC3 | (0.078, 0.104, 0.104) | (0.088, 0.088, 0.202) | (0.256, 0.350, 0.350) | (0.143, 0.388, 0.437) |
MC4 | (0.066, 0.107, 0.118) | (0.164, 0.397, 0.464) | (0.088, 0.119, 0.119) | (0.093, 0.169, 0.169) |
MC5 | (0.143, 0.388, 0.437) | (0.085, 0.097, 0.129) | (0.086, 0.225, 0.225) | (0.066, 0.107, 0.118) |
0.002 | 0.003 | 0.004 | 0.003 |
Main Criteria | Sub-Criteria | Local Weights | Global Weights | Rank |
---|---|---|---|---|
MC1 (0.286) | C1 | 0.202 | 0.0578 | 6 |
C2 | 0.247 | 0.0706 | 4 | |
C3 | 0.189 | 0.0541 | 7 | |
C4 | 0.362 | 0.1035 | 2 | |
MC2 (0.149) | C5 | 0.724 | 0.1079 | 1 |
C6 | 0.276 | 0.0411 | 13 | |
MC3 (0.191) | C7 | 0.078 | 0.0149 | 21 |
C8 | 0.100 | 0.0191 | 17 | |
C9 | 0.091 | 0.0174 | 18 | |
C10 | 0.225 | 0.0430 | 12 | |
C11 | 0.080 | 0.0153 | 20 | |
C12 | 0.078 | 0.0149 | 21 | |
C13 | 0.068 | 0.0130 | 23 | |
C14 | 0.199 | 0.0380 | 14 | |
C15 | 0.083 | 0.0158 | 19 | |
MC4 (0.152) | C16 | 0.299 | 0.0454 | 9 |
C17 | 0.213 | 0.0324 | 15 | |
C18 | 0.192 | 0.0292 | 16 | |
C19 | 0.296 | 0.0450 | 11 | |
MC5 (0.222) | C20 | 0.266 | 0.0591 | 5 |
C21 | 0.203 | 0.0451 | 10 | |
C22 | 0.325 | 0.0722 | 3 | |
C23 | 0.206 | 0.0457 | 8 |
Criteria | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
MC1 | WLS, WLS, WLS, MoLS, MoLS, LS, LS, WLS | MoLS, LS, LS, RLS, LS, LS, RLS, MoLS | LS, RLS, RLS, MLS, MLS, LS, LS, MoLS | MoLS, LS, LS, LS, LS, RLS, RLS, RLS | MLS, MLS, DLS, RLS, DLS, DLS, DLS, ALS |
MC2 | MoLS, MoLS, MLS, WLS, LS, RLS, MoLS, RLS | LS, RLS, RLS, RLS, LS, MLS, RLS, MLS | MoLS, LS, LS, RLS, RLS, RLS, MLS, MLS | MoLS, LS, MoLS, MoLS, LS, LS, MoLS, LS | DLS, DLS, ALS, ALS, MLS, ALS, DLS, DLS |
MC3 | MoLS, RLS, LS, LS, MoLS, LS, WLS, LS | RLS, LS, LS, MoLS, MoLS, LS, RLS, RLS | MLS, LS, RLS, LS, LS, MoLS, LS, LS | LS, RLS, RLS, RLS, MoLS, LS, MoLS, LS | DLS, RLS, LS, MLS, RLS, DLS, MLS, DLS |
MC4 | WLS, WLS, WLS, MoLS, WLS, MoLS, MoLS, MoLS | WoLS, LS, LS, RLS, RLS, LS, LS, LS | MLS, LS, RLS, LS, LS, MoLS, MoLS, LS | MoLS, RLS, RLS, RLS, RLS, RLS, LS, MoLS | ALS, RLS, MLS, MLS, MLS, DLS, DLS, RLS |
MC5 | WLS, WLS, MoLS, WLS, LS, MoLS, MoLS, LS | RLS, RLS, MoLS, LS, LS, RLS, MLS, RLS | LS, RLS, RLS, RLS, MLS, LS, LS, MoLS | MLS, LS, LS, MoLS, MoLS, LS, MoLS, MLS | DLS, RLS, ALS, DLS, ALS, DLS, DLS, LS |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
MC1 | (0.559, 0.792, 0.917) | (0.408, 0.517, 0.709) | (0.367, 0.496, 0.600) | (0.387, 0.483, 0.646) | (0.266, 0.308, 0.365) |
MC2 | (0.439, 0.579, 0.758) | (0.338, 0.408, 0.542) | (0.359, 0.442, 0.579) | (0.450, 0.584, 0.834) | (0.244, 0.278, 0.324) |
MC3 | (0.450, 0.529, 0.771) | (0.400, 0.504, 0.688) | (0.389, 0.488, 0.654) | (0.400, 0.504, 0.688) | (0.299, 0.353, 0.433) |
MC4 | (0.584, 0.834, 1.000) | (0.446, 0.583, 0.750) | (0.438, 0.508, 0.729) | (0.383, 0.479, 0.646) | (0.281, 0.328, 0.394) |
MC5 | (0.475, 0.813, 0.918) | (0.365, 0.450, 0.592) | (0.373, 0.463, 0.613) | (0.409, 0.438, 0.600) | (0.272, 0.318, 0.384) |
(0.3100, 0.6974, 0.9180) | (4.3300, 4.6820, 4.9170) |
(0.2402, 0.4762, 0.6888) | (4.1130, 4.3590, 4.7560) |
(0.2324, 0.4643, 0.6587) | (4.0950, 4.3420, 4.7250) |
(0.2449, 0.4747, 0.7006) | (4.1400, 4.3600, 4.7650) |
(0.1660, 0.3064, 0.3985) | (3.8180, 4.0100, 4.4460) |
(0.1720, 0.2226, 0.2690) | (3.0019, 5.4287, 6.8195) | (0.7952, 0.9220, 1.000) |
(0.1614, 0.2000, 0.2510) | (2.5245, 4.0111, 5.3964) | (0.7460, 0.8287, 0.9331) |
(0.1604, 0.1988, 0.2482) | (2.4726, 3.9351, 5.2068) | (0.7415, 0.8236, 0.9227) |
(0.1626, 0.2000, 0.2520) | (2.5598, 4.0020, 5.4694) | (0.7514, 0.8285, 0.9367) |
(0.1477, 0.1786, 0.2234) | (2.0000, 2.8963, 3.5656) | (0.6828, 0.7397, 0.8303) |
Ranking | |||||
---|---|---|---|---|---|
A1 | 0.2212 | 5.0834 | 0.9057 | 3.0762 | 1 |
A2 | 0.2042 | 3.9773 | 0.8359 | 2.5513 | 3 |
A3 | 0.2025 | 3.8715 | 0.8293 | 2.5007 | 4 |
A4 | 0.2048 | 4.0104 | 0.8389 | 2.5680 | 2 |
A5 | 0.1832 | 2.8206 | 0.7509 | 1.9810 | 5 |
MC1 | MC2 | MC3 | MC4 | MC5 | |
---|---|---|---|---|---|
Original | (0.2070, 0.2740, 0.2810) | (0.0920, 0.1460, 0.1510) | (0.1230, 0.1800, 0.2040) | (0.0890, 0.1470, 0.1600) | (0.0980, 0.2190, 0.2490) |
S1 | (0.1976, 0.2603, 0.2670) | (0.0920, 0.1488, 0.1540) | (0.1230, 0.1834, 0.2080) | (0.0890, 0.1498, 0.1631) | (0.0980, 0.2231, 0.2539) |
S2 | (0.1867, 0.2343, 0.2403) | (0.0944, 0.1540, 0.1596) | (0.1262, 0.1899, 0.2156) | (0.0913, 0.1550, 0.1691) | (0.1005, 0.2310, 0.2631) |
S3 | (0.1767, 0.2108, 0.2162) | (0.0955, 0.1587, 0.1646) | (0.1277, 0.1957, 0.2224) | (0.0924, 0.1598, 0.1744) | (0.1018, 0.2381, 0.2714) |
S4 | (0.1667, 0.1898, 0.1946) | (0.0967, 0.1629, 0.1691) | (0.1293, 0.2009, 0.2285) | (0.0935, 0.1641, 0.1792) | (0.1030, 0.2444, 0.2789) |
S5 | (0.1567, 0.1708, 0.1751) | (0.0978, 0.1668, 0.1732) | (0.1308, 0.2056, 0.2340) | (0.0947, 0.1679, 0.1836) | (0.1042, 0.2501, 0.2857) |
S6 | (0.1467, 0.1537, 0.1576) | (0.0990, 0.1702, 0.1769) | (0.1324, 0.2098, 0.2390) | (0.0958, 0.1714, 0.1875) | (0.1055, 0.2553, 0.2917) |
S7 | (0.1367, 0.1383, 0.1419) | (0.1002, 0.1733, 0.1802) | (0.1339, 0.2136, 0.2435) | (0.0969, 0.1745, 0.1910) | (0.1067, 0.2599, 0.2972) |
S8 | (0.1267, 0.1245, 0.1277) | (0.1013, 0.1761, 0.1832) | (0.1355, 0.2171, 0.2475) | (0.0980, 0.1773, 0.1941) | (0.1079, 0.2641, 0.3021) |
S9 | (0.1167, 0.1121, 0.1149) | (0.1025, 0.1786, 0.1859) | (0.1370, 0.2202, 0.2511) | (0.0991, 0.1798, 0.1970) | (0.1092, 0.2679, 0.3065) |
S10 | (0.1067, 0.1008, 0.1034) | (0.1036, 0.1808, 0.1883) | (0.1386, 0.2229, 0.2544) | (0.1003, 0.1821, 0.1995) | (0.1104, 0.2712, 0.3105) |
S11 | (0.0966, 0.0908, 0.0931) | (0.1048, 0.1828, 0.1905) | (0.1401, 0.2254, 0.2573) | (0.1014, 0.1841, 0.2018) | (0.1116, 0.2743, 0.3141) |
S12 | (0.0866, 0.0817, 0.0838) | (0.1060, 0.1847, 0.1924) | (0.1417, 0.2277, 0.2600) | (0.1025, 0.1859, 0.2039) | (0.1129, 0.2770, 0.3173) |
S13 | (0.0767, 0.0735, 0.0754) | (0.1071, 0.1863, 0.1942) | (0.1432, 0.2297, 0.2623) | (0.1036, 0.1876, 0.2058) | (0.1141, 0.2795, 0.3202) |
S14 | (0.0667, 0.0662, 0.0679) | (0.1083, 0.1878, 0.1958) | (0.1448, 0.2315, 0.2645) | (0.1048, 0.1891, 0.2074) | (0.1153, 0.2817, 0.3228) |
S15 | (0.0567, 0.0595, 0.0611) | (0.1094, 0.1891, 0.1972) | (0.1463, 0.2332, 0.2664) | (0.1059, 0.1904, 0.2089) | (0.1166, 0.2837, 0.3252) |
S16 | (0.0467, 0.0536, 0.0550) | (0.1106, 0.1903, 0.1985) | (0.1479, 0.2346, 0.2681) | (0.1070, 0.1916, 0.2103) | (0.1178, 0.2855, 0.3273) |
S17 | (0.0367, 0.0482, 0.0495) | (0.1118, 0.1914, 0.1996) | (0.1494, 0.2360, 0.2697) | (0.1081, 0.1927, 0.2115) | (0.1191, 0.2871, 0.3292) |
S18 | (0.0267, 0.0434, 0.0445) | (0.1129, 0.1924, 0.2007) | (0.1510, 0.2372, 0.2711) | (0.1092, 0.1937, 0.2126) | (0.1203, 0.2886, 0.3309) |
S19 | (0.0166, 0.0391, 0.0401) | (0.1141, 0.1932, 0.2016) | (0.1525, 0.2382, 0.2724) | (0.1104, 0.1946, 0.2136) | (0.1215, 0.2899, 0.3324) |
S20 | (0.0066, 0.0352, 0.0361) | (0.1152, 0.1940, 0.2024) | (0.1541, 0.2392, 0.2735) | (0.1115, 0.1954, 0.2145) | (0.1228, 0.2910, 0.3338) |
F-CoCoSo | F-ARAS | F-TOPSIS | F-COPRAS | F-MOORA | |
---|---|---|---|---|---|
F-CoCoSo | 1 | 0.900 | 0.900 | 0.900 | 1.000 |
F-ARAS | 1 | 0.800 | 0.800 | 0.900 | |
F-TOPSIS | 1 | 1.000 | 0.900 | ||
F-COPRAS | 1 | 0.900 | |||
F-MOORA | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, G.; Damjanović, M.; Matović, B.; Vujadinović, R. Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica. Sustainability 2022, 14, 4972. https://doi.org/10.3390/su14094972
Demir G, Damjanović M, Matović B, Vujadinović R. Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica. Sustainability. 2022; 14(9):4972. https://doi.org/10.3390/su14094972
Chicago/Turabian StyleDemir, Gülay, Milanko Damjanović, Boško Matović, and Radoje Vujadinović. 2022. "Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica" Sustainability 14, no. 9: 4972. https://doi.org/10.3390/su14094972
APA StyleDemir, G., Damjanović, M., Matović, B., & Vujadinović, R. (2022). Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica. Sustainability, 14(9), 4972. https://doi.org/10.3390/su14094972