Emergency Road Network Determination for Seoul Metropolitan Area
Abstract
:1. Introduction
2. Emergency Road Network Determination Method
2.1. Definition of Emergency Road Network
2.2. Methodology
3. Review of Relevant Theories
3.1. SDRI
3.2. Network Analysis
3.3. Traffic Assignment through Simulation
4. Emergency Road Network Determination
4.1. Quantitative Evaluation Based on SDRI
4.2. Network Analysis
4.3. Travel Pattern and Travel Time Changes Due to Bridge Blocking
4.4. Emergency Road Network Determination
5. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsnih, R.; Stopher, P.R. Review of procedures associated with devising emergency evacuation plans. Transp. Res. Rec. 2004, 1865, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. Study on the Disaster Prevention Road Network System through the Japan Case. Int. J. Highw. Eng. 2013, 15, 5–8. [Google Scholar]
- Mimura, N.; Yasuhara, K.; Kawagoe, S.; Yokoki, H.; Kazama, S. Damage from the Great East Japan Earthquake and Tsunami—A quick report. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 803–818. [Google Scholar] [CrossRef] [Green Version]
- Norio, O.; Ye, T.; Kajitani, Y.; Shi, P.; Tatano, H. The 2011 eastern Japan great earthquake disaster: Overview and comments. Int. J. Disaster Risk Sci. 2011, 2, 34–42. [Google Scholar] [CrossRef] [Green Version]
- E Costa, C.A.B.; Oliveira, C.S.; Vieira, V. Prioritization of bridges and tunnels in earthquake risk mitigation using multicriteria decision analysis: Application to Lisbon. Omega 2008, 36, 442–450. [Google Scholar]
- Yücel, E.; Salman, F.S.; Arsik, I. Improving post-disaster road network accessibility by strengthening links against failures. Eur. J. Oper. Res. 2018, 269, 406–422. [Google Scholar] [CrossRef]
- Do, M.; Jung, H. Enhancing road network resilience by considering the performance loss and asset value. Sustainability 2018, 10, 4188. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, H.; Hong, R.; Liu, H.; You, W. Mapping knowledge structure and research trends of emergency evacuation studies. Saf. Sci. 2020, 121, 348–361. [Google Scholar] [CrossRef]
- Matherly, D.; Langdon, N.; Wolshon, B.; Murray-Tuite, P.; Renne, J.; Thomas, R.; Reinhardt, K. A Guide to Regional Transportation Planning for Disasters, Emergencies and Significant Events; Transportation Research Board: Washington, DC, USA, 2014. [Google Scholar]
- British Columbia. Disaster Response Transportation Planning Guide for Road Transportation. 2018. Available online: https://www2.gov.bc.ca/gov/content/transportation/transportation-infrastructure/engineering-standards-guidelines/traffic-engineering-safety/disaster-response-transporation (accessed on 6 March 2021).
- MLIT (Ministry of Land, Infrastructure, Transport and Tourism). MLIT Work Plan. 2007. Available online: http://www.bousai.go.jp/kaigirep/chuobou/20/pdf/kokudo.pdf (accessed on 6 March 2021). (In Japanese).
- Chung, Y.; Lee, J.; Lee, H.; Ahn, H.; Park, T. A Preliminary Study on Selection Criteria of Disaster Operation Routes Considering Disaster Types and Roadway Characteristics; The Korea Transport Institute: Sejong, Korea, 2015; pp. 1–208. [Google Scholar]
- Meteorological Agency. History of earthquakes on the Korean Peninsula; Meteorological Agency: Seoul, Korea, 2019. (In Korean) [Google Scholar]
- Kastumoto, M. Seismic intensity IV range, seismic magnitude, and seismic intensity and acceleration correspondence. Q. J. Seismol. 1971, 36, 89–96. (In Japaneses) [Google Scholar]
- Do, M.; Noh, Y. Comparative analysis of informational evacuation guidance by lane-based routing. Int. J. Urban Sci. 2016, 20, 60–76. [Google Scholar] [CrossRef]
- Zou, Y.; Zou, S.; Niu, C. The optimization of emergency evacuation from nuclear accidents in China. Sustainability 2018, 10, 2737. [Google Scholar] [CrossRef] [Green Version]
- Shahparvari, S.; Abbasi, B. Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study. Transp. Res. Part A Policy Pract. 2017, 104, 32–49. [Google Scholar] [CrossRef]
- Kim, J.; Do., M. Risk and Resiliency Analysis for Selecting Emergency Road Network in the Event of a Disaster. Int. J. Highw. Eng. 2019, 21, 149–159. (In Korean) [Google Scholar] [CrossRef]
- Mohaymany, A.S.; Nikoo, N. Designing Large-Scale Disaster Response Routes Network in Mitigating Earthquake Risk Using a Multi-Objective Stochastic Approach. KSCE J. Civ. Eng. 2020, 24, 3050–3063. [Google Scholar] [CrossRef]
- Nikoo, N.; Babaei, M.; Mohaymany, A.S. Emergency transportation network design problem: Identification and evaluation of disaster response routes. Int. J. Disaster Risk Reduct. 2018, 27, 7–20. [Google Scholar] [CrossRef]
- Edrissi, A.; Nourinejad, M.; Roorda, M.J. Transportation network reliability in emergency response. Transp. Res. Part E Logist. Transp. Rev. 2015, 80, 56–73. [Google Scholar] [CrossRef]
- Yoon, D.K.; Kang, J.E.; Brody, S.D. A measurement of community disaster resilience in Korea. J. Environ. Plan. Manag. 2016, 59, 436–460. [Google Scholar] [CrossRef]
- Crucitti, G.; Tesfamariam, S. Earthquake disaster risk index for Canadian cities using Bayesian belief networks. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2012, 6, 128–140. [Google Scholar]
- Barbat, A.H.; Carreño, M.L.; Pujades, L.G.; Lantada, N.; Cardona, O.D.; Marulanda, M.C. Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct. Infrastruct. Eng. 2010, 6, 17–38. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Ma, R. Application of method of entropy proportion to urban earthquake disaster risk index. J. Earthq. Eng. Eng. Vib. 2010, 30, 93–97. [Google Scholar]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Simpson, D.M.; Katirai, M. Indicator Issues and Proposed Framework for a Disaster Preparedness Index (DPi); University of Louisville: Louisville, KY, USA, 2006; pp. 1–47. [Google Scholar]
- Rossi, R.J.; Gilmartin, K.J. Social indicators of youth development and educational performance: A programmatic statement. Soc. Indic. Res. 1980, 7, 157–191. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Porta, S. Centrality in networks of urban streets. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 015113. [Google Scholar] [CrossRef] [PubMed]
- Caliper Corporation. TransCAD, version 6.0r2; User’s Guide; Caliper Corporation: Newton, MA, USA, 2012. [Google Scholar]
- Park, J. An Assessment of Seismic Disaster Risk for the Seoul Metropolitan City. Master Thesis, University of Seoul, Seoul, Korea, 2012. (In Korean). [Google Scholar]
- Misran, M.F.R.; Roslin, E.N.; Mohd Nur, N. AHP-consensus judgement on transitional decision-making: With a discussion on the relation towards open innovation. J. Open Innov. Technol. Mark. Complex. 2020, 6, 63. [Google Scholar] [CrossRef]
- Park, J.; Kim, E.; Shin, K. Developing an evaluation framework for selecting optimal medical devices. J. Open Innov. Technol. Mark. Complex. 2019, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Aguarón, J.; Moreno-Jiménez, J.M. The geometric consistency index: Approximated thresholds. Eur. J. Oper. Res. 2003, 147, 137–145. [Google Scholar] [CrossRef]
- Raharjo, H.; Endah, D. Evaluating relationship of consistency ratio and number of alternatives on rank reversal in the AHP. Qual. Eng. 2006, 18, 39–46. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.; Li, H.; Zhang, B.; Lv, J. Research on geographical environment unit division based on the method of natural breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 3, 47–50. [Google Scholar] [CrossRef] [Green Version]
Item | Data Type | Units | Statistics | Grade | |||||
---|---|---|---|---|---|---|---|---|---|
No. of Data | Avg. | SD | Min. | Max. | Ratings | Remarks | |||
Point | Scores | 11,518 | 0.20 | 0.13 | 0.00 | 1.25 | 3rd | Hard/medium/soft layer | |
Polygon | Scores | 25 | 1.06 | 0.39 | 0.11 | 1.67 | 5th | Statistical methods | |
Polygon | Population/hr | 424 | 25,814 | 12,993 | 4426 | 113,520 | 5th | Statistical methods | |
Link | veh/day | - | 79,220 | 49,037 | 12,055 | 254,555 | 5th | Statistical methods | |
Point | Ea | 382 | - | - | - | - | 2nd | Existence/No existence | |
Ea | 145 | - | - | - | - | 2nd | |||
Point | Ea | 616,134 | - | - | - | - | 5th | Statistical methods | |
Service years | 30.08 | 15.73 | 1.00 | 120.00 | 5th | Statistical methods | |||
No. of stories | 3.28 | 3.12 | 1.00 | 69.00 | 3rd | Low/middle/high -rise building | |||
Polygon | % | 424 | 0.24 | 0.06 | 0.05 | 0.85 | 5th | Statistical methods | |
Polygon | - | - | - | - | - | - | 3rd | Within X min from the facility (X: 5 min, 10 min, 15 min) | |
- | - | - | - | - | - | 3rd | |||
Population | 1515 | 7672 | 36,476 | - | 1184,848 | 2nd | Enough/Not enough | ||
No. of firefighters/10,000 population | 25 | 7.99 | 2.98 | 4.64 | 18.47 | 3rd | Statistical methods | ||
Links | km | 416 | - | - | - | - | 2nd | Existence/No existence | |
860 | - | - | - | - | 2nd |
Level 1 | Level 2 | Level 3 | W | |||
---|---|---|---|---|---|---|
Items | Items | Items | ||||
Risk | 29% | Soft soil layer | 41% | - | - | 11.8% |
Seismic vibration | 59% | - | - | 17.2% | ||
Exposure | 21% | Population | 35% | - | - | 7.4% |
Traffic volume | 31% | - | - | 6.6% | ||
Road infrastructure | 34% | 54% | 3.8% | |||
46% | 3.3% | |||||
Vulnerability | 26% | Building type | 40% | 32% | 3.4% | |
27% | 2.8% | |||||
41% | 4.2% | |||||
Disaster vulnerability | 60% | - | - | 15.5% | ||
Responsive | 24% | Emergency facilities | 28% | 50% | 3.4% | |
50% | 3.4% | |||||
Resources | 33% | 45% | 3.6% | |||
55% | 4.3% | |||||
Accessibility | 39% | 50% | 4.7% | |||
50% | 4.7% |
No | No. of Lanes | Design Speed (km/h) | Capacity Per Lane | Traffic Volume (Veh/Day) | Connectivity to BRT | SDRI Grade | Result |
---|---|---|---|---|---|---|---|
1 | 6 | 81 | 1420 | 60,785 | - | - | - |
2 | 6 | 115 | 2028 | 87,941 | - | 5 | O |
3 | 6 | 79 | 1341 | 71,255 | - | 4 | - |
4 | 6 | 79 | 1341 | 114,510 | O | 4 | O |
5 | 8 | 79 | 1341 | 91,414 | O | 5 | O |
6 | 6 | 79 | 1341 | 62,408 | - | 5 | - |
7 | 10 | 81 | 1420 | 110,278 | O | 5 | O |
8 | 4 | 81 | 1420 | 45,578 | - | 5 | - |
9 | 8 | 81 | 1420 | 105,839 | O | 5 | O |
10 | 6 | 81 | 1420 | 70,861 | - | 4 | - |
11 | 6 | 71 | 1242 | 85,226 | - | 4 | - |
12 | 12 | 81 | 1420 | 174,855 | O | 5 | O |
13 | 4 | 81 | 1420 | 74,585 | - | 4 | - |
14 | 8 | 79 | 1341 | 121,275 | - | 4 | - |
15 | 6 | 79 | 1341 | 102,786 | O | 5 | O |
16 | 6 | 98 | 2182 | 82,964 | - | 4 | - |
17 | 8 | 81 | 1420 | 96,457 | O | 5 | O |
18 | 1 | 67 | 1100 | 4750 | - | 4 | - |
19 | 6 | 81 | 1420 | 62,065 | - | 5 | - |
20 | 6 | 79 | 1341 | 70,795 | O | 5 | O |
21 | 2 | 56 | 873 | 12,380 | - | 4 | - |
22 | 6 | 81 | 1420 | 66,883 | - | 4 | - |
23 | 8 | 115 | 2028 | 101,875 | - | - | O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Chae, J.; Do, M. Emergency Road Network Determination for Seoul Metropolitan Area. Sustainability 2022, 14, 5422. https://doi.org/10.3390/su14095422
Choi S, Chae J, Do M. Emergency Road Network Determination for Seoul Metropolitan Area. Sustainability. 2022; 14(9):5422. https://doi.org/10.3390/su14095422
Chicago/Turabian StyleChoi, Seunghyun, Jonggil Chae, and Myungsik Do. 2022. "Emergency Road Network Determination for Seoul Metropolitan Area" Sustainability 14, no. 9: 5422. https://doi.org/10.3390/su14095422
APA StyleChoi, S., Chae, J., & Do, M. (2022). Emergency Road Network Determination for Seoul Metropolitan Area. Sustainability, 14(9), 5422. https://doi.org/10.3390/su14095422