Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge
Abstract
:1. Introduction
2. Computational Methodology
2.1. Flow Governing Equations: Modified Navier–Stokes Equations
2.2. Aeroacoustics Governing Equations: FW-H Acoustic Analogy
2.3. Numerical Configurations
3. Results and Discussions
3.1. Flow Characteristics near Trailing Edge
3.2. Pressure Distribution along the Airfoil Surface
3.3. Boundary Layer Velocity and Thickness Distributions
3.4. Aeroacoustics Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Darcy velocity (m/s) | |
intrinsic averaged velocity (m/s) | |
φ | porosity of material (-) |
K | permeability (-) |
CF | Forchheimer coefficient (-) |
ρ | density (kg/m3) |
μ | dynamic viscosity (N·s/m2) |
H(f) | Heaviside function (-) |
f(x, t) | control surface shape and its motion (-) |
δ(f) | Dirac delta function (-) |
c0 | speed of sound (m/s) |
p0 | acoustic pressure (Pa) |
dp | cell diameter of porous material (-) |
δ | boundary layer thickness, when the local velocity is 0.99 of the edge velocity (m) |
δ* | boundary layer displacement thickness, (-) |
θ | (m) |
edge velocity (m/s) |
Appendix A
References
- Göçmen, T.; Özerdem, B. Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines. Energy 2012, 46, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, S.; Ryi, J.; Choi, J.-S. Design optimization of wind turbine blades for reduction of airfoil self-noise. J. Mech. Sci. Technol. 2013, 27, 413–420. [Google Scholar] [CrossRef]
- Rodrigues, S.; Marta, A. On addressing wind turbine noise with after-market shape blade add-ons. Renew. Energy 2019, 140, 602–614. [Google Scholar] [CrossRef]
- Abbasi, S.; Souri, M. Reducing Aerodynamic Noise in a Rod-Airfoil Using Suction and Blowing Control Method. Int. J. Appl. Mech. 2020, 12, 2050036. [Google Scholar] [CrossRef]
- Szőke, M.; Fiscaletti, D.; Azarpeyvand, M. Influence of boundary layer flow suction on trailing edge noise generation. J. Sound Vib. 2020, 475, 115276. [Google Scholar] [CrossRef]
- Avallone, F.; van der Velden, W.C.P.; Ragni, D.; Casalino, D. Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations. J. Fluid Mech. 2018, 848, 560–591. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, C.C.; Wang, J.; Wang, Y.H.; Zhang, X.P.; Ren, L.Q. Reduction of aerodynamic noise from NACA 0018 airfoil model using bionic methods. J. Jilin Univ. 2011, 41, 1664–1668. [Google Scholar] [CrossRef]
- Mathew, J.; Singh, A.; Madsen, J.; León, C.A. Serration Design Methodology for Wind Turbine Noise Reduction. J. Phys. Conf. Ser. 2016, 753, 22019. [Google Scholar] [CrossRef]
- Bodling, A.; Sharma, A. Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bioinspir. Biomim. 2018, 14, 016013. [Google Scholar] [CrossRef] [Green Version]
- Clark, I.; Alexander, W.N.; Devenport, W.J. Bio-Inspired Finlets for the Reduction of Marine Rotor Noise. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Rosti, M.E.; Pramanik, S.; Brandt, L.; Mitra, D. The breakdown of Darcy’s law in a soft porous material. Soft Matter 2019, 16, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Takezawa, A.; Zhang, X.; Tanaka, T.; Kitamura, M. Topology optimisation of a porous unit cell in a fluid flow considering Forchheimer drag. Int. J. Comput. Fluid Dyn. 2019, 34, 50–60. [Google Scholar] [CrossRef]
- Vafai, K.; Tien, C. Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 1982, 25, 1183–1190. [Google Scholar] [CrossRef]
- Ward, J.C. Turbulent flow in porous media. J. Hydraul. Div. 1964, 90, 1–12. [Google Scholar] [CrossRef]
- Hsu, C.; Cheng, P. Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 1990, 33, 1587–1597. [Google Scholar] [CrossRef]
- Naito, H.; Fukagata, K. Numerical simulation of flow around a circular cylinder having porous surface. Phys. Fluids 2012, 24, 117102. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Singh, A.K. Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder. Int. J. Numer. Methods Fluids 2011, 65, 683–698. [Google Scholar] [CrossRef]
- Tamaro, S.; Zamponi, R.; Ragni, D.; Teruna, C.; Schram, C. Experimental investigation of turbulent coherent structures interacting with a porous airfoil. Exp. Fluids 2021, 62, 94. [Google Scholar] [CrossRef]
- Teruna, C.; Avallone, F.; Casalino, D.; Ragni, D. Numerical investigation of leading edge noise reduction on a rod-airfoil configuration using porous materials and serrations. J. Sound Vib. 2020, 494, 115880. [Google Scholar] [CrossRef]
- Zamani, M.; Sangtarash, A.; Maghrebi, M.J. Numerical Study of Porous Media Effect on the Blade Surface of Vertical Axis Wind Turbine for Enhancement of Aerodynamic Performance. Energy Convers. Manag. 2021, 245, 114598. [Google Scholar] [CrossRef]
- Bernicke, P.; Akkermans, R.; Ananthan, V.; Ewert, R.; Dierke, J.; Rossian, L. A zonal noise prediction method for trailing-edge noise with a porous model. Int. J. Heat Fluid Flow 2019, 80, 108469. [Google Scholar] [CrossRef]
- Carpio, A.R.; Martínez, R.M.; Avallone, F.; Ragni, D.; Snellen, M.; van der Zwaag, S. Experimental characterization of the turbulent boundary layer over a porous trailing edge for noise abatement. J. Sound Vib. 2018, 443, 537–558. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.Y.; Koh, S.R.; Gauger, N.R.; Meinke, M.; Schöder, W. A discrete adjoint framework for trailing-edge noise minimization via porous material. Comput. Fluids 2018, 172, 97–108. [Google Scholar] [CrossRef]
- Schulze, J.; Sesterhenn, J.L. Optimal distribution of porous media to reduce trailing edge noise. Comput. Fluids 2013, 78, 41–53. [Google Scholar] [CrossRef]
- Yoon, W.U.; Park, J.H.; Lee, J.S.; Kim, Y.Y. Topology optimization design for total sound absorption in porous media. Comput. Methods Appl. Mech. Eng. 2019, 360, 112723. [Google Scholar] [CrossRef]
- Aldheeb, M.; Asrar, W.; Sulaeman, E.; Omar, A.A. Aerodynamics of porous airfoils and wings. Acta Mech. 2018, 229, 3915–3933. [Google Scholar] [CrossRef]
- Hajian, R.; Jaworski, J.W. The steady aerodynamics of aerofoils with porosity gradients. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170266. [Google Scholar] [CrossRef]
- Ffowcs-Williams, J.E.; Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Wang, S.-S.; Gong, S.-G.; Zuo, Q.-S.; Hu, H.-Y. Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method. Eng. Anal. Bound. Elements 2019, 101, 198–213. [Google Scholar] [CrossRef]
- Kabir, H.; Aghdam, M.M. A generalized 2D Bézier-based solution for stress analysis of notched epoxy resin plates reinforced with graphene nanoplatelets. Thin-Walled Struct. 2021, 169, 108484. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Yang, C.X.; Zhang, G.H. Study on tonal noise and flow field characteristics of vertical axis wind turbine airfoils. J. Huazhong Univ. Sci. Technol. 2021, 49, 127–132. [Google Scholar] [CrossRef]
Grid Case | Chord-Wise Nodes | Span-Wise Nodes | Cells |
---|---|---|---|
1 | 125 | 10 | 17.32 × 104 |
2 | 168 | 15 | 31.43 × 104 |
3 | 310 | 15 | 103.58 × 104 |
4 | 420 | 20 | 191.40 × 104 |
5 | 310 | 31 | 219.20 × 104 |
αo | Solid | Fully Filled | Suction-Side-Filled |
---|---|---|---|
0 | −4.55 × 10−6 | 4.61 × 10−5 | 0.17253 |
2 | 0.20126 | 0.19894 | 0.19989 |
4 | 0.38778 | 0.38142 | 0.38845 |
6 | 0.56762 | 0.55526 | 0.56973 |
8 | 0.74270 | 0.73436 | 0.73925 |
10 | 0.88547 | 0.86027 | 0.87523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Liu, J.; Sun, Z.; Cao, J.; Guo, G.; Shen, W. Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge. Sustainability 2023, 15, 275. https://doi.org/10.3390/su15010275
Zhu W, Liu J, Sun Z, Cao J, Guo G, Shen W. Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge. Sustainability. 2023; 15(1):275. https://doi.org/10.3390/su15010275
Chicago/Turabian StyleZhu, Weijun, Jiaying Liu, Zhenye Sun, Jiufa Cao, Guangxing Guo, and Wenzhong Shen. 2023. "Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge" Sustainability 15, no. 1: 275. https://doi.org/10.3390/su15010275
APA StyleZhu, W., Liu, J., Sun, Z., Cao, J., Guo, G., & Shen, W. (2023). Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge. Sustainability, 15(1), 275. https://doi.org/10.3390/su15010275