Analyzing Express Revenue Spatial Association Network’s Characteristics and Effects: A Case Study of 31 Provinces in China
Abstract
:1. Introduction
2. Literature Review
2.1. Express Industry Research Status
2.2. Research Status of Social Network Analysis Methods
2.3. Space Measurement Method Research Status
2.4. Literature Analysis
3. Materials and Methods
3.1. Data Source and Network Composition
3.2. Network Structure Parameter Indicator
3.3. Empirical Model
3.3.1. Space Automatic Inspection Model
3.3.2. Space Panel Model Settings
3.4. Variable Description
4. China Provincial Express Revenue Space Reconciliation Network Structure Characteristics
4.1. Analysis of the Features of the Overall Network Structure
4.2. Individual Network Analysis
4.3. Cohesive Subgroup Analysis
5. Empirical Results and Analysis
5.1. Examination of Express Income Space Correlation Test
5.2. Analysis of Empirical Results
5.2.1. The Causal Relationship between Human Capital Input and Express Income
5.2.2. The Moderating Relationship between Network Structure Parameters and Express Revenue
5.3. Stability Analysis and Inspection
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.; Wang, Y.H.; Zhang, S.W.; Liang, X. Analysis on development problems and paths of express industry in China. China Mkt. 2021, 25, 50–51. [Google Scholar]
- Zhao, Y.Y.; Chen, L.M. Analysis on the contribution of express delivery industry to service industry under the background of “double cycle”. Tim. Econ. Trade 2022, 19, 151–155. [Google Scholar]
- Li, M.T.; Mao, C.H. Research on the cooperation benefit effect of coupling between express industry and manufacturing industry in China. J. Commer. Econ. 2022, 4, 181–184. [Google Scholar]
- Yang, X.Y.; Lin, T.S. Differences of express service in Henan Province. Transp. Res. 2020, 6, 116–126. [Google Scholar]
- Li, M.G. Efficiency evaluation and Influencing factors analysis of provincial Express delivery industry: Based on DEA-ToBIT model. Logist. Sci. Technol. 2019, 2, 81–85, 95. [Google Scholar]
- Yang, M.M. An empirical analysis of the impact of express delivery industry on China’s domestic trade. Contemp. Econ. 2018, 12, 18–19. [Google Scholar]
- Li, L.L.; Su, Y.S.; Liu, J. Spatialization of Social Networks: A Case Study of Social geographic Networks in Shenzhen Media Industry. Hum. Geogr. 2013, 28, 34–40. [Google Scholar]
- Chen, L.X. The Characteristics of Global production Service Trade Network and its Impact on the Division of Labor in Global Value Chain: A social network analysis perspective. Int. Bus. 2017, 04, 60–72. [Google Scholar]
- Wang, Z.S.; Zhou, Y.X.; Zhao, N. Spatial Correlation Network and Driving Effect of Carbon Emission Intensity in China’s Construction Industry. Buildings 2022, 12, 201. [Google Scholar] [CrossRef]
- Li, J.; Tian, W.; Xiao, L.I. Spatial correlation and influencing factors of agricultural investment growth in China. Stat. Decis. 2020, 36, 59–63. [Google Scholar]
- Wang, Y.Y.; Sun, Z.W.; Feng, Y. Spatial pattern and influencing factors of express business volume in China. Logist. Technol. 2017, 36, 10–14. [Google Scholar]
- Guo, M.D.; Li, H. Spatial econometric analysis of influencing factors of China’s express industry. Packag. Eng. 2019, 40, 196–202. [Google Scholar]
- Wang, L.Z.; Yao, S.Y.; Jia, Y.R. Analysis of factors influencing the development scale of express industry based on panel data. China Econ. Trade Her. 2020, 6, 34–36. [Google Scholar]
- Liao, Y.J.; Li, P.; Huang, W. Research on the Impact of GNI on Express Delivery Volume in China. J. Econ. Pub. Fin. 2020, 6, 3. [Google Scholar]
- Li, Y.M.; Xi, Q.Q.; Wu, Y.C. Research on spatial-temporal characteristics of agglomeration and development of express industry in China. J. Ind. Technol. Econ. 2017, 36, 99–105. [Google Scholar]
- Zhang, J.Y.; Lan, H.J. Analysis of factors influencing the differentiated development of urban express industry—A case study of Shandong province. Logist. Eng. Manag. 2021, 43, 1–5. [Google Scholar]
- Song, F.; Wang, L.H. Research on influencing factors of express industry in shandong province based on grey correlation analysis. Logist. Sci. Technol. 2015, 38, 56–59. [Google Scholar]
- Huang, F. Analysis on influencing factors of the development of China’s express industry based on B2C model. China Collect. Econ. 2016, 22, 16–17. [Google Scholar]
- Li, Y.J.; Wu, Q.T.; Zhang, Y.L.; Wu, K.M.; Zhang, H.G.; Jin, S.Q. Research on Spatial Structure and Formation Mechanism of E-commerce Express logistics network in Three urban agglomerations of China. Sci. Geogr. Sin. 2021, 41, 1398–1408. [Google Scholar]
- Ji, Y.J.; Zhang, Y.Y. Spatial correlation network and new mechanism of regional coordinated development for manufacturing upgrading in China. J. Shandong Univ. Technol. Soc. Sci. Ed. 2020, 36, 5–14. [Google Scholar]
- Wouter, J.C.; Cesar, D.; Peter, D.L. Integrating World Cities into Production Networks: Global Networks. Commod. Chains World Cities 2010, 10, 92–113. [Google Scholar]
- Tang, C.H.; Ma, X.G. Spatial Pattern and Structure of urban Networked logistics connections in China: Based on the data of express outlets. Prog. Geog. 2020, 39, 1809–1821. [Google Scholar] [CrossRef]
- Zhou, J.P.; Liu, C.J.; Xu, W.X. Logistics Network Structure and Self-organization Effect of Express Delivery Enterprises in the context of E-commerce: A Case study of ZTO Express. Econ. Geog. 2021, 41, 103–112. [Google Scholar]
- Li, J.; Wang, Z.Z. Network structure and proximity mechanism of Yangtze River Delta urban Agglomeration: Based on the perspective of express industry connection. Areal Res. Dev. 2021, 40, 58–63. [Google Scholar]
- Liu, G.W. Measurement and path Analysis of the impact of logistics technology innovation on the logistics industry: Based on the inter-provincial spatial Durbin panel data model from 2000 to 2015. China Bus. Mkt. 2018, 32, 38–46. [Google Scholar]
- Zhong, C.B.; Zhu, Z.H. The Influence of Provincial Social Capital on Logistics industry Agglomeration in the Yangtze River Economic Belt: An empirical analysis based on Spatial Durbin model. J. Changzhou Univ. Soc. Sci. Ed. 2019, 20, 44–53. [Google Scholar]
- Li, Z.Q.; Zhou, Q.Y.; Wang, Y. Impact of industrial policies on logistics industry agglomeration in the Yangtze River Economic Belt: An Empirical analysis based on spatial Durbin Model and Panel threshold Model. J. ShaoYang Univ. Nat. Sci. 2022, 19, 82–88. [Google Scholar]
- Wei, L.H.; Yang, X.B.; Gao, X.J. Does fiscal capacity affect the provision of public services?—Spatial test based on fiscal decentralization and urbanization regulation. Inq. Econ. Issues 2020, 12, 16–31. [Google Scholar]
- Yu, B.B.; Su, Y.M. How does land finance affect land use efficiency? Dynamic spatial Durbin model test from the perspective of scale and technology. Geog. Res. 2022, 41, 527–545. [Google Scholar]
- Wang, D.F.; Dong, Q.L. Spatial Structure Evolution and Influencing factors of urban logistics development in China. J. Beijing JiaoTong Univ. Soc. Sci. Ed. 2019, 18, 125–139. [Google Scholar]
- Sun, C.X.; Pei, X.Z.; Liu, C.J. Spatial network characteristics and driving mechanism of urban logistics innovation in China. Geog. Res. 2021, 40, 1354–1371. [Google Scholar]
- Li, M. The evolution and influence mechanism of industrial association network: Based on the analysis of 12 annual input-output tables in Beijing. Ind. Econ. Rev. 2016, 7, 50–66. [Google Scholar]
- Ren, H.M.; Ye, M.Q. Network structure characteristics and spatial pattern evolution of banking industry in Shanghai. Econ. Geogr. 2018, 38, 147–157. [Google Scholar]
- He, X.Y.; Zhang, M.Z. Research on the influence of cross-regional innovation cooperation network construction on innovation performance: A case study of Yangtze River Delta. Innov. Sci. Technol. 2021, 21, 42–51. [Google Scholar]
Threshold Value | 0.974 | 0.976 | 0.978 | 0.980 | 0.982 | 0.984 | 0.986 | 0.988 |
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2012 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 23 |
2016 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 25 |
2020 | 28 | 28 | 28 | 27 | 27 | 25 | 24 | 24 |
Variable Name | Symbol | Meaning and Unit | Expected Symbol |
---|---|---|---|
Human capital investment in express delivery industry | PSE | Postal workers (persons) | + |
Point degree center degree | PDC | The number of provinces directly linked to it | + |
Limit system | LS | The ability to use structural holes | − |
Effective size | ES | The non-redundant factor of the structural hole | + |
industrial structure | PTI | Tertiary industry output/GDP | + |
Level of urbanization | PUP | Urban population/total population | + |
Communication level | PC | Number of telephones and mobile phones per 100 inhabitants | + |
Variables | Mean Value | SD | Min | Max |
---|---|---|---|---|
EI | 4.1208 | 0.4338 | 2.6051 | 5.7388 |
PSE | 4.3304 | 0.1509 | 2.9238 | 5.2228 |
PDC | 8.8674 | 34.3529 | 0.0000 | 22.0000 |
LS | 0.4792 | 0.0855 | 0.1660 | 1.1250 |
ES | 0.4158 | 0.0758 | 0.0000 | 0.9377 |
PTI | 1.6747 | 0.0063 | 1.4905 | 1.9238 |
PUP | 1.7580 | 0.0096 | 1.3593 | 1.9523 |
PC | 2.0603 | 0.0094 | 1.8555 | 2.3581 |
Province | 2012 | 2016 | 2020 | Average of Three-Year Values |
---|---|---|---|---|
Beijing | 4 (19) | 6 (18) | 0 (29) | 3.3 |
Tianjin | 13 (1) | 11 (9) | 22 (1) | 15.3 |
Hebei | 4 (19) | 14 (1) | 20 (8) | 12.7 |
Shanxi | 0 (28) | 5 (21) | 21 (2) | 8.7 |
Inner Mongolia | 11 (4) | 5 (21) | 19 (13) | 11.7 |
Liaoning | 8 (10) | 12 (5) | 15 (19) | 11.7 |
Jilin | 9 (8) | 11 (9) | 20 (8) | 13.3 |
Heilongjiang | 3 (21) | 10 (12) | 21 (2) | 11.3 |
Shanghai | 6 (15) | 10 (12) | 21 (2) | 12.3 |
Jiangsu | 9 (8) | 13 (3) | 19 (13) | 13.7 |
Zhejiang | 1 (25) | 12 (5) | 20 (8) | 11.0 |
Anhui | 10 (6) | 13 (3) | 21 (2) | 14.7 |
Fujian | 10 (6) | 2 (24) | 19 (13) | 10.3 |
Jiangxi | 8 (10) | 7 (17) | 18 (16) | 11.0 |
Shandong | 8 (10) | 1 (27) | 20 (8) | 9.7 |
Henan | 12 (3) | 1 (27) | 21 (2) | 11.3 |
Hubei | 2 (23) | 9 (15) | 16 (18) | 9.0 |
Hunan | 0 (28) | 12 (5) | 18 (16) | 10.0 |
Guangdong | 8 (10) | 14 (1) | 12 (21) | 11.3 |
Guangxi | 5 (17) | 8 (16) | 12 (21) | 8.3 |
Hainan | 0 (28) | 1 (27) | 0 (29) | 0.3 |
Chongqing | 1 (25) | 6 (18) | 5 (25) | 4.0 |
Sichuan | 11 (4) | 11 (9) | 6 (24) | 9.3 |
Guizhou | 3 (21) | 6 (18) | 20 (8) | 9.7 |
Yunnan | 1 (25) | 5 (21) | 3 (26) | 3.0 |
Tibet | 13 (1) | 2 (24) | 1 (27) | 5.3 |
Shaanxi | 2 (23) | 10 (12) | 15 (19) | 9.0 |
Gansu | 6 (15) | 12 (5) | 9 (23) | 9.0 |
Qinghai | 7 (14) | 1 (27) | 21 (2) | 9.7 |
Ningxia | 0 (28) | 0 (31) | 1 (27) | 0.3 |
Xinjiang | 5 (17) | 2 (24) | 0 (29) | 2.3 |
The average | 5.81 | 7.48 | 14.06 | 9.1 |
Province | 2012 | 2016 | 2020 | |||
---|---|---|---|---|---|---|
Limit System | Efficient Scale | Limit System | Efficient Scale | Limit System | Efficient Scale | |
Beijing | 0.588 | 3.006 | 0.493 | 1.027 | 1.000 | 1.000 |
Tianjin | 0.262 | 6.176 | 0.301 | 4.042 | 0.166 | 5.280 |
Hebei | 0.648 | 1.019 | 0.245 | 6.505 | 0.181 | 3.679 |
Shanxi | 1.000 | 1.000 | 0.528 | 2.680 | 0.173 | 5.190 |
Inner Mongolia | 0.296 | 5.696 | 0.551 | 1.684 | 0.189 | 5.283 |
Liaoning | 0.384 | 3.248 | 0.280 | 4.275 | 0.234 | 3.196 |
Jilin | 0.354 | 3.234 | 0.301 | 4.532 | 0.181 | 3.769 |
Heilongjiang | 0.766 | 1.013 | 0.327 | 2.682 | 0.174 | 4.559 |
Shanghai | 0.480 | 2.453 | 0.322 | 3.933 | 0.174 | 4.204 |
Jiangsu | 0.353 | 3.432 | 0.262 | 4.760 | 0.190 | 3.211 |
Zhejiang | 1.125 | 1.000 | 0.280 | 4.267 | 0.181 | 3.592 |
Anhui | 0.324 | 3.755 | 0.261 | 5.184 | 0.174 | 4.205 |
Fujian | 0.327 | 3.941 | 0.840 | 1.672 | 0.190 | 3.798 |
Jiangxi | 0.394 | 1.697 | 0.434 | 2.018 | 0.199 | 3.095 |
Shandong | 0.394 | 1.697 | 1.123 | 1.006 | 0.181 | 3.681 |
Henan | 0.280 | 5.185 | 1.125 | 1.001 | 0.174 | 4.205 |
Hubei | 0.840 | 1.670 | 0.350 | 3.618 | 0.220 | 3.426 |
Hunan | 1.000 | 1.000 | 0.281 | 5.034 | 0.199 | 2.368 |
Guangdong | 0.383 | 3.467 | 0.245 | 6.238 | 0.284 | 1.531 |
Guangxi | 0.545 | 2.020 | 0.392 | 2.150 | 0.284 | 1.841 |
Hainan | 1.000 | 1.000 | 1.123 | 1.005 | 1.000 | 1.000 |
Chongqing | 1.122 | 1.007 | 0.493 | 1.018 | 0.537 | 2.362 |
Sichuan | 0.297 | 5.358 | 0.298 | 5.032 | 0.467 | 3.302 |
Guizhou | 0.705 | 2.007 | 0.469 | 3.018 | 0.181 | 3.958 |
Yunnan | 1.122 | 1.007 | 0.543 | 2.345 | 0.705 | 2.012 |
Tibet | 0.260 | 5.756 | 0.926 | 1.010 | 1.123 | 1.005 |
Shaanxi | 0.925 | 1.009 | 0.326 | 3.939 | 0.233 | 3.558 |
Gansu | 0.482 | 2.166 | 0.281 | 5.033 | 0.359 | 2.037 |
Qinghai | 0.423 | 3.272 | 1.124 | 1.002 | 0.173 | 5.183 |
Ningxia | 1.000 | 1.000 | 1.000 | 1.000 | 1.121 | 1.010 |
Xinjiang | 0.551 | 1.684 | 0.840 | 1.670 | 1.000 | 1.000 |
Category | 2012 | 2016 | 2020 |
---|---|---|---|
First subgroup | Beijing, Shanghai, Gansu, Sichuan, Inner Mongolia, Xinjiang, Heilongjiang | Beijing, Tianjin, Hebei, Guangdong, Guangxi, Liaoning, Jiangsu, Heilongjiang, Shanghai, Zhejiang, Anhui, Shandong | Beijing, Xinjiang, Yunnan, Xizang, Hainan |
Second subgroup | Shanxi, Hunan, Chongqing, Zhejiang, Ningxia, Yunnan, Hubei, Hainan | Qinghai, Sichuan, Guizhou, Xizang, Yunnan | Sichuan, Chongqing, Ningxia |
Third subgroup | Anhui, Jiangxi, Hebei, Xizang, Tianjin, Fujian, Qinghai, Henan, Shandong | Jilin, Gansu, Inner Mongolia, Hubei, Chongqing, Shanxi, Shaanxi, Hunan, Jiangxi | Guangxi, Hebei, Guangdong, Tianjin, Fujian, Jiangxi, Anhui, Shanghai, Henan, Hunan, Zhejiang, Heilongjiang, Liaoning, Jiangsu, Shandong |
Fourth subgroup | Guangxi, Jiangsu, Guangdong, Liaoning, Jilin, Shaanxi, Guizhou | Hainan, Fujian, Henan, Ningxia, Xinjiang | Inner Mongolia, Jilin, Shanxi, Hubei, Gansu, Qinghai, Shaanxi, Guizhou |
Year | Moran’s I | Z | Year | Moran’s I | Z |
---|---|---|---|---|---|
2012 | 0.267 *** | 3.775 | 2017 | 0.330 *** | 4.576 |
2013 | 0.315 *** | 4.357 | 2018 | 0.343 *** | 4.743 |
2014 | 0.309 *** | 4.286 | 2019 | 0.351 *** | 4.848 |
2015 | 0.324 *** | 4.478 | 2020 | 0.363 *** | 4.994 |
2016 | 0.331 *** | 4.576 |
Inspection Methods | Statistical Magnitude | p Value | Analysis of Inspection Results |
---|---|---|---|
Hausman test | 51.16 | 0.000 | Reject the null hypothesis and choose the fixed effect model |
LM space lag test | 43.0413 | 0.000 | In addition to the robust LM space lag test, the null hypothesis was rejected, and SDM was considered. Rejecting the null hypothesis, SDM cannot degrade SEM or SAR analysis of inspection results |
LM space error test | 15.7721 | 0.000 | |
Robust LM space lag test | 28.7693 | 0.000 | |
Robust LM space error test | 1.5001 | 0.221 | |
LR space lag test | 122.0552 | 0.000 | Reject the null hypothesis and choose the fixed effect model In addition to the robust LM space lag test, the null hypothesis was rejected, and SDM was considered. |
LR space error test | 145.2366 | 0.000 | |
Wald spatial lag test | 146.7897 | 0.000 | Rejecting the null hypothesis, SDM cannot degrade SEM or SAR |
Wald spatial error test | 148.5016 | 0.000 |
Variables | PDC (1) | LS (2) | ES (3) | ||||
---|---|---|---|---|---|---|---|
Column (1a) | Column (1b) | Column (1c) | Column (2a) | Column (2b) | Column (3a) | Column (3b) | |
PSE | 0.394 | 0.395 | 0.275 | 0.393 | 0.596 | 0.395 | 0.335 |
(5.544) *** | (5.581) *** | (3.555) *** | (5.542) *** | (6.303) *** | (5.565) *** | (4.320) *** | |
PDC | - | 0.003 | −0.084 | - | - | - | - |
(1.108) | (−3.328) *** | ||||||
LS | - | - | - | −0.038 | 1.336 | - | - |
(−0.790) | (3.093) *** | ||||||
ES | - | - | - | - | - | −0.031 | −0.917 |
(−0.650) | (−1.880) * | ||||||
PSE * PDC | - | - | 0.020 | ||||
(3.385) *** | |||||||
PSE * LS | - | - | - | - | −0.323 | ||
(−3.159) *** | |||||||
PSE * ES | - | - | - | - | - | - | 0.203 |
(1.794) * | |||||||
PTI | 0.817 | 0.836 | 0.798 | 0.836 | 0.836 | 0.795 | 0.829 |
(2.946) *** | (3.018) *** | (2.956) *** | (3.008) *** | (3.073) *** | (2.868) *** | (3.013) *** | |
PUP | 1.374 | 1.361 | 1.440 | 1.373 | 1.444 | 1.339 | 1.359 |
(6.166) *** | (6.089) *** | (6.597) *** | (6.163) *** | (6.606) *** | (5.972) *** | (6.110) *** | |
PC | 1.293 | 1.298 | 1.216 | 1.288 | 1.186 | 1.333 | 1.268 |
(5.380) *** | (5.378) *** | (5.156) *** | (5.348) *** | (4.997) *** | (5.505) *** | (5.247) *** | |
W * PSE | 1.223 | 1.191 | 0.986 | 1.209 | 1.813 | 1.306 | 1.105 |
(5.907) *** | (5.402) *** | (4.166) *** | (5.507) *** | (5.532) *** | (5.977) *** | (4.538) *** | |
W * PDC | - | −0.002 | −0.228 | ||||
(−0.264) | (−2.664) *** | ||||||
W * LS | - | 0.037 | 3.959 | ||||
(0.245) | (2.488) ** | ||||||
W * ES | - | −0.162 | −3.652 | ||||
(−1.048) | (−2.032) ** | ||||||
W * PSE * PDC | - | 0.050 | |||||
(2.568) ** | |||||||
W * PSE * LS | - | −0.905 | |||||
(−2.446) ** | |||||||
W * PSE * ES | - | 0.799 | |||||
(1.930) * | |||||||
W * PTI | −5.685 | −5.669 | −5.536 | −5.696 | −5.554 | −5.700 | −5.454 |
(−5.571) *** | (−5.571) *** | (−5.583) *** | (−5.589) *** | (−5.568) *** | (−5.599) *** | (−5.381) *** | |
W * PUP | −3.117 | −3.018 | −2.598 | −3.072 | −2.724 | −3.327 | −3.177 |
(−2.895) *** | (−2.780) *** | (−2.440) ** | (−2.851) *** | (−2.570) ** | (−3.050) *** | (−2.934) *** | |
W * PC | 3.004 | 2.933 | 2.557 | 2.987 | 2.682 | 3.134 | 2.858 |
(4.048) *** | (3.938) *** | (3.478) *** | (4.028) *** | (3.665) *** | (4.182) *** | (3.804) *** | |
W * dep.var | 0.528 | 0.531 | 0.474 | 0.527 | 0.477 | 0.527 | 0.499 |
(7.004) *** | (7.078) *** | (5.985) *** | (6.983) *** | (6.038) *** | (6.971) *** | (6.444) *** | |
R2 | 0.913 | 0.913 | 0.918 | 0.913 | 0.917 | 0.913 | 0.915 |
Variables | PDC (1) | LS (2) | ES (3) | ||||
---|---|---|---|---|---|---|---|
Column (1a) | Column (1b) | Column (1c) | Column (2a) | Column (2b) | Column (3a) | Column (3b) | |
PSE | 0.513 | 0.514 | 0.370 | 0.511 | 0.760 | 0.510 | 0.431 |
(6.263) *** | (6.293) *** | (4.160) *** | (6.255) *** | (6.971) *** | (6.245) *** | (4.819) *** | |
PDC | - | 0.003 | −0.102 | - | - | - | - |
(0.997) | (−3.514) *** | ||||||
LS | - | - | - | −0.021 | 1.648 | - | - |
(−0.366) | (3.302) *** | ||||||
ES | - | - | - | - | - | −0.051 | −1.262 |
(−0.907) | (−2.242) ** | ||||||
PSE * PDC | - | - | 0.024 | - | - | - | - |
(3.539) *** | |||||||
PSE * LS | - | - | - | - | −0.391 | - | |
(−3.313) *** | |||||||
PSE * ES | - | - | - | - | - | - | 0.278 |
(2.128) ** | |||||||
PTI | 0.421 | 0.442 | 0.398 | 0.435 | 0.430 | 0.407 | 0.446 |
(1.326) | (1.389) | (1.292) | (1.366) | (1.379) | (1.282) | (1.414) | |
PUP | 1.571 | 1.566 | 1.671 | 1.571 | 1.658 | 1.547 | 1.569 |
(6.115) *** | (6.072) *** | (6.667) *** | (6.117) *** | (6.574) *** | (5.988) *** | (6.122) *** | |
PC | 1.048 | 1.043 | 0.931 | 1.044 | 0.917 | 1.076 | 0.994 |
(3.790) *** | (3.75) *** | (3.440) *** | (3.764) *** | (3.356) *** | (3.863) *** | (3.575) *** | |
W * PSE | 1.258 | 1.205 | 0.905 | 1.243 | 2.120 | 1.323 | 1.099 |
(5.315) *** | (4.768) *** | (3.335) *** | (4.957) *** | (5.598) *** | (5.313) *** | (3.921) *** | |
W * PDC | - | 0.001 | −0.334 | - | - | ||
(0.113) | (−3.388) *** | ||||||
W * LS | - | - | - | 0.026 | 5.415 | ||
(0.146) | (2.946) *** | ||||||
W * ES | - | - | - | - | - | −0.103 | −4.647 |
(−0.58) | (−2.244) ** | ||||||
W * PSE * PDC | - | - | 0.074 | - | - | - | |
(3.332) *** | |||||||
W * PSE * LS | - | - | - | - | −1.248 | - | |
(−2.919) *** | |||||||
W * PSE * ES | - | - | - | - | - | - | 1.040 |
(2.178) ** | |||||||
W * PTI | −4.599 | −4.579 | −4.476 | −4.600 | −4.490 | −4.614 | −4.322 |
(−3.902) *** | (−3.891) *** | (−3.925) *** | (−3.907) *** | (−3.896) *** | (−3.926) *** | (−3.695) *** | |
W * PUP | −3.218 | −3.076 | −2.502 | −3.192 | −2.752 | −3.437 | −3.263 |
(−2.585) *** | (−2.448) ** | (−2.039) ** | (−2.562) ** | (−2.245) ** | (−2.729) *** | (−2.607) *** | |
W * PC | 2.799 | 2.717 | 2.166 | 2.773 | 2.402 | 2.909 | 2.574 |
(3.322) *** | (3.206) *** | (2.599) *** | (3.293) *** | (2.882) *** | (3.422) *** | (3.009) *** | |
W * dep.var | 0.606 | 0.605 | 0.528 | 0.612 | 0.528 | 0.616 | 0.563 |
(8.93) *** | (8.908) *** | (7.046) *** | (9.117) *** | (7.01) *** | (9.228) *** | (7.826) *** | |
R2 | 0.919 | 0.919 | 0.924 | 0.919 | 0.923 | 0.920 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, J.; Xu, F. Analyzing Express Revenue Spatial Association Network’s Characteristics and Effects: A Case Study of 31 Provinces in China. Sustainability 2023, 15, 276. https://doi.org/10.3390/su15010276
Wang G, Yang J, Xu F. Analyzing Express Revenue Spatial Association Network’s Characteristics and Effects: A Case Study of 31 Provinces in China. Sustainability. 2023; 15(1):276. https://doi.org/10.3390/su15010276
Chicago/Turabian StyleWang, Guipu, Jianyu Yang, and Fangtang Xu. 2023. "Analyzing Express Revenue Spatial Association Network’s Characteristics and Effects: A Case Study of 31 Provinces in China" Sustainability 15, no. 1: 276. https://doi.org/10.3390/su15010276
APA StyleWang, G., Yang, J., & Xu, F. (2023). Analyzing Express Revenue Spatial Association Network’s Characteristics and Effects: A Case Study of 31 Provinces in China. Sustainability, 15(1), 276. https://doi.org/10.3390/su15010276