Potential Application of Blockchain Technology in Eco-Industrial Park Development
Abstract
:1. Introduction
2. Eco-Industrial Park
2.1. Eco-Industrial Park Framework
2.2. Development of Eco-Industrial Parks
3. Industry 4.0 Technology
3.1. Industrial Revolution 4.0
3.2. Fundamental Principles of Blockchain
3.3. Blockchain Applications in Various Industries
4. The Potential Application of Blockchain Technology on EIP Development
4.1. Combination of Industry 4.0 and Blockchain Technology
4.2. Blockchain Fit Assessment Framework
- Each operation-transformation or transportation, defines a new state as its outcome.
- Each state defines a set of values for the tracked indicators for the operation outputs.
- Typically, such a set would include the price (or monetary value) of the streams, cost (combining the costs of the main and the auxiliary inputs); Embodied Footprints (e.g., GHG or Water). Other quantities may be tracked, most notably any residual exergy potential or contents of valuable components (e.g., N or P).
4.3. Blockchain-Based EIP Data Management Platform Concept
4.4. Blockchain-Based EIP Data Management Platform Illustration Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, H.; Ohnishi, S.; Fujita, T.; Geng, Y.; Fujii, M.; Dong, L. Achieving Carbon Emission Reduction through Industrial & Urban Symbiosis: A Case of Kawasaki. Energy 2014, 64, 277–286. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanization and Industrialization Impact of CO2 Emissions in China. J. Clean Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Guan, Y.; Huang, G.; Liu, L.; Zhai, M.; Zheng, B. Dynamic Analysis of Industrial Solid Waste Metabolism at Aggregated and Disaggregated Levels. J. Clean Prod. 2019, 221, 817–827. [Google Scholar] [CrossRef]
- Luzi, A.; Marilungo, E.; Germani, M. Development of a Methodology to Analyze Energy and Resources Consumption along the Product Value Chain. In Proceedings of the Procedia CIRP; Elsevier: Cambridge, UK, 2015; Volume 33, pp. 145–150. [Google Scholar]
- Minelgaitė, A.; Liobikienė, G. Waste Problem in European Union and Its Influence on Waste Management Behaviours. Sci. Total Environ. 2019, 667, 86–93. [Google Scholar] [CrossRef]
- Haraguchi, N.; Martorano, B.; Sanfilippo, M. What Factors Drive Successful Industrialization? Evidence and Implications for Developing Countries. Struct. Change Econ. Dyn. 2019, 49, 266–276. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Azevedo, S.G.; Matias, J.C.O. A Comprehensive Review of Industrial Symbiosis. J. Clean Prod. 2020, 247. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization UNIDO; Work Bank Group. GIZ—An International Framework for Eco-Industrial Parks. Available online: https://openknowledge.worldbank.org/handle/10986/35110 (accessed on 21 October 2022).
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 30 October 2022).
- Muftic, S.; Sanchez, I. Overview and Analysis of the Concept and Applications of Virtual Currencies. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC105207 (accessed on 30 October 2022).
- United Nations Industrial Development Organization UNIDO; World Bank Group; GIZ; Ministry of Trade, Industry and Energy. A Practitioner’s Handbook for Eco-Industrial Parks. Available online: https://openknowledge.worldbank.org/handle/10986/30458 (accessed on 22 October 2022).
- Lowe, E.A.; Evans, L.K. Industrial Ecology and Industrial Ecosystems. J. Clean Prod. 1995, 3, 47–53. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy, Annual Review of Energy and Environmen. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, E.J.; Steininger, K.W. Implementing Nature’s Lesson: The Industrial Recycling Network Enhancing Regional Development. J. Clean Prod. 1997, 5, 47–56. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Karimi, I.A.; Kraft, M. An Ontology Framework towards Decentralized Information Management for Eco-Industrial Parks. Comput. Chem. Eng. 2018, 118, 49–63. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization UNIDO; World Bank Group; GIZ; Ministry of Trade, Industry and Energy. A Practitioner’s Handbook for Eco-Industrial Parks: Toolbox. Available online: https://openknowledge.worldbank.org/handle/10986/31456 (accessed on 22 October 2022).
- Kastner, C.A.; Lau, R.; Kraft, M. Quantitative Tools for Cultivating Symbiosis in Industrial Parks; a Literature Review. Appl. Energy 2015, 155, 599–612. [Google Scholar] [CrossRef]
- Azevedo, J.; Ferreira, I.; Dias, R.; Ascenço, C.; Magalhães, B.; Henriques, J.; Iten, M.; Cunha, F. Industrial Symbiosis Implementation Potential—An Applied Assessment Tool for Companies. Sustainability 2021, 13, 1420. [Google Scholar] [CrossRef]
- Lawal, M.; Wan Alwi, S.R.; Manan, Z.A.; Ho, W.S. Industrial Symbiosis Tools—A Review. J. Clean Prod. 2021, 280, 124327. [Google Scholar] [CrossRef]
- Boix, M.; Montastruc, L.; Azzaro-Pantel, C.; Domenech, S. Optimization Methods Applied to the Design of Eco-Industrial Parks: A Literature Review. J. Clean Prod. 2015, 87, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, E.; Zio, E.; Farel, R. A Methodological Framework for Eco-Industrial Park Design and Optimization. J. Clean Prod. 2016, 126, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Venegas, G.; Vera-Hofmann, G.; Díaz-Alvarado, F.A. Design of Sustainable and Resilient Eco-Industrial Parks: Planning the Flows Integration Network through Multi-Objective Optimization. J. Clean Prod. 2020, 243, 118610. [Google Scholar] [CrossRef]
- Misrol, M.A.; Alwi, S.R.W.; Lim, J.S.; Manan, Z.A. Multi-Objective Optimization of an Integrated Energy-Water-Waste Nexus for Eco-Industrial Park. Chem. Eng. Trans. 2021, 89, 349–354. [Google Scholar] [CrossRef]
- Ramos, M.A.; Rocafull, M.; Boix, M.; Aussel, D.; Montastruc, L.; Domenech, S. Utility Network Optimization in Eco-Industrial Parks by a Multi-Leader Follower Game Methodology. Comput. Chem. Eng. 2018, 112, 132–153. [Google Scholar] [CrossRef] [Green Version]
- Leong, Y.T.; Lee, J.Y.; Tan, R.R.; Foo, J.J.; Chew, I.M.L. Multi-Objective Optimization for Resource Network Synthesis in Eco-Industrial Parks Using an Integrated Analytic Hierarchy Process. J. Clean Prod. 2017, 143, 1268–1283. [Google Scholar] [CrossRef]
- Jayakrishna, K.; Vibha, M.; Jain, S.; Kulatunga, A.K. Fostering Systematic Eco-Innovation in an Industrial Symbiosis Environment Using DEMATEL. Int. J. Ind. Syst. Engineering 2020, 34, 20–42. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Ruiz-Puente, C. Bringing Facilitated Industrial Symbiosis and Game Theory Together to Strengthen Waste Exchange in Industrial Parks. Sci. Total Environ. 2021, 771, 145400. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Duque-Hernández, J.; Díaz-Posada, N. Facilitating Business Collaborations for Industrial Symbiosis: The Pilot Experience of the Sustainable Industrial Network Program in Colombia. Sustainability 2018, 10, 3637. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Corder, G.D.; Giurco, D.P. Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid. J. Ind. Ecol. 2015, 19, 141–153. [Google Scholar] [CrossRef]
- Walls, J.L.; Paquin, R.L. Organizational Perspectives of Industrial Symbiosis: A Review and Synthesis. Organ Env. 2015, 28, 32–53. [Google Scholar] [CrossRef]
- Shrivastava, A.; Murali Krishna, K.; Lal Rinawa, M.; Soni, M.; Ramkumar, G.; Jaiswal, S. Inclusion of IoT, ML, and Blockchain Technologies in Next Generation Industry 4.0 Environment. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Patrick Lemay Advantages of Industrial IoT For Manufacturers: The 5 Key Benefits of IIoT. Available online: https://tulip.co/blog/benefits-of-industrial-iot/ (accessed on 27 November 2022).
- James, C.; William, H.S.; Susan, L. Donegan Blockchain Technology: Opportunities and Risks. Available online: https://legislature.vermont.gov/assets/Legislative-Reports/blockchain-technology-report-final.pdf (accessed on 26 October 2022).
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A View of Cloud Computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Mattila, J.; On, B.R. The Blockchain Phenomenon-The Disruptive Potential of Distributed Consensus Architectures. Available online: https://brie.berkeley.edu/sites/default/files/juri-mattila-.pdf (accessed on 26 October 2022).
- Sikorski, J.J.; Haughton, J.; Kraft, M. Blockchain Technology in the Chemical Industry: Machine-to-Machine Electricity Market. Appl. Energy 2017, 195, 234–246. [Google Scholar] [CrossRef]
- Back, A. Hashcash-A Denial of Service Counter-Measure. Available online: http://www.hashcash.org/hashcash.pdf (accessed on 25 October 2022).
- Pilkington, M. Blockchain Technology: Principles and Applications. Res. Handb. Digit. Transform. 2015, 11, 1–39. [Google Scholar]
- Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401. [Google Scholar] [CrossRef] [Green Version]
- Amy Castor A (Short) Guide to Blockchain Consensus Protocols. Available online: https://www.coindesk.com/markets/2017/03/04/a-short-guide-to-blockchain-consensus-protocols/ (accessed on 25 October 2022).
- Mazieres, D. The Stellar Consensus Protocol: A Federated Model for Internet-Level Consensus. Available online: http://www.scs.stanford.edu/17au-cs244b/notes/scp.pdf (accessed on 26 October 2022).
- JB Buntinx What Is Proof of Elapsed Time? Available online: https://themerkle.com/what-is-proof-of-elapsed-time/ (accessed on 30 October 2022).
- Da Silva, T.B.; de Morais, E.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Alberti, A.M. Blockchain and Industry 4.0: Overview, Convergence, and Analysis. In Blockchain Technology for Industry 4.0: Secure, Decentralized, Distributed and Trusted Industry Environment; da Rosa Righi, R., Alberti, A.M., Singh, M., Eds.; Springer: Singapore, 2020; pp. 27–58. ISBN 978-981-15-1137-0. [Google Scholar]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly: Springfield, MO, USA, 2015; ISBN 9781491920497. [Google Scholar]
- Grewal-Carr, V.; Marshall, S. Blockchain Enigma. Paradox. Opportunity. Available online: https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/Innovation/deloitte-uk-blockchain-full-report.pdf (accessed on 30 October 2022).
- Hancock, M.; Vaizey, E. Distributed Ledger Technology: Beyond Block Chain. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf (accessed on 25 October 2022).
- Guo, Y.; Liang, C. Blockchain Application and Outlook in the Banking Industry. J. Financ. Innov. 2016, 2, 1–24. [Google Scholar]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain Technology in the Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Mattila, J.; Seppälä, T.; Naucler, C.; Stahl, R.; Tikkanen, M.; Bådenlid, A.; Seppälä, J. Industrial Blockchain Platforms: An Exercise in Use Case Development in the Energy Industry. Available online: https://www.etla.fi/wp-content/uploads/ETLA-Working-Papers-43.pdf (accessed on 14 December 2022).
- Capper, T.; Gorbatcheva, A.; Mustafa, M.A.; Bahloul, M.; Schwidtal, J.M.; Chitchyan, R.; Andoni, M.; Robu, V.; Montakhabi, M.; Scott, I.J.; et al. Peer-to-Peer, Community Self-Consumption, and Transactive Energy: A Systematic Literature Review of Local Energy Market Models. Renew. Sustain. Energy Rev. 2022, 162, 112403. [Google Scholar] [CrossRef]
- Moret, F.; Tosatto, A.; Baroche, T.; Pinson, P. Loss Allocation in Joint Transmission and Distribution Peer-to-Peer Markets. IEEE Trans. Power Syst. 2021, 36, 1833–1842. [Google Scholar] [CrossRef]
- Chakraborty, S.; Baarslag, T.; Kaisers, M. Automated Peer-to-Peer Negotiation for Energy Contract Settlements in Residential Cooperatives. Appl. Energy 2020, 259, 114173. [Google Scholar] [CrossRef] [Green Version]
- Khorasany, M.; Mishra, Y.; Ledwich, G. A Decentralized Bilateral Energy Trading System for Peer-to-Peer Electricity Markets. IEEE Trans. Ind. Electron. 2020, 67, 4646–4657. [Google Scholar] [CrossRef] [Green Version]
- Sorin, E.; Bobo, L.; Pinson, P. Consensus-Based Approach to Peer-to-Peer Electricity Markets with Product Differentiation. IEEE Trans. Power Syst. 2019, 34, 994–1004. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Crisostomiy, E. Distribution Loss Allocation in Peer-to-Peer Energy Trading in a Network of Microgrids. In Proceedings of the IEEE Power and Energy Society General Meeting, Montreal, QC, Canada, 2–6 August 2020. [Google Scholar]
- Yu, V.F.; Le, T.H.A.; Gupta, J.N.D. Sustainable Microgrid Design with Multiple Demand Areas and Peer-to-Peer Energy Trading Involving Seasonal Factors and Uncertainties. Renew. Sustain. Energy Rev. 2022, 161, 112342. [Google Scholar] [CrossRef]
- Maxeiner, L.S.; Martini, J.-P.; Sandner, P. FSBC Working Paper Blockchain in the Chemical Industry. Available online: http://explore-ip.com/2017_Blockchain-Technology-in-Manufacturing.pdf (accessed on 14 December 2022).
- Aoun, A.; Ilinca, A.; Ghandour, M.; Ibrahim, H. A Review of Industry 4.0 Characteristics and Challenges, with Potential Improvements Using Blockchain Technology. Comput. Ind. Eng. 2021, 162, 107746. [Google Scholar] [CrossRef]
- Qahtan, S.; Yatim, K.; Zulzalil, H.; Osman, M.H.; Zaidan, A.A.; Alsattar, H.A. Review of Healthcare Industry 4.0 Application-Based Blockchain in Terms of Security and Privacy Development Attributes: Comprehensive Taxonomy, Open Issues and Challenges and Recommended Solution. J. Netw. Comput. Appl. 2023, 209, 103529. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the Future of Sustainable Supply Chain Management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Ada, N.; Ethirajan, M.; Kumar, A.; Vimal, K.E.K.; Nadeem, S.P.; Kazancoglu, Y.; Kandasamy, J. Blockchain Technology for Enhancing Traceability and Efficiency in Automobile Supply Chain—A Case Study. Sustainability 2021, 13, 13667. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Jiang, P.; Xu, K.; Liu, Q.; Zhou, X.; Liu, C. Blockchain-Empowered Sustainable Manufacturing and Product Lifecycle Management in Industry 4.0: A Survey. Renew. Sustain. Energy Rev. 2020, 132, 110112. [Google Scholar] [CrossRef]
- Espinoza Pérez, A.T.; Rossit, D.A.; Tohmé, F.; Vásquez, Ó.C. Mass Customized/Personalized Manufacturing in Industry 4.0 and Blockchain: Research Challenges, Main Problems, and the Design of an Information Architecture. Inf. Fusion 2022, 79, 44–57. [Google Scholar] [CrossRef]
- Qian, Y.; Jiang, Y.; Chen, J.; Zhang, Y.; Song, J.; Zhou, M.; Pustišek, M. Towards Decentralized IoT Security Enhancement: A Blockchain Approach. Comput. Electr. Eng. 2018, 72, 266–273. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Ni, Y.; Gu, L.; Zhu, H. Blockchain for the IoT and Industrial IoT: A Review. Internet Things 2019, 10, 100081. [Google Scholar] [CrossRef]
- Pan, M.; Sikorski, J.; Kastner, C.A.; Akroyd, J.; Mosbach, S.; Lau, R.; Kraft, M. Applying Industry 4.0 to the Jurong Island Eco-Industrial Park. Energy Procedia 2015, 75, 1536–1541. [Google Scholar] [CrossRef] [Green Version]
- Mustapha Zaouini Nine Challenges of Industry 4.0. Available online: https://iiot-world.com/connected-industry/nine-challenges-of-industry-4-0/ (accessed on 27 November 2022).
- Hiroshi Watanabe Can Blockchain Protect Internet-of-Things? Available online: https://arxiv.org/ftp/arxiv/papers/1807/1807.06357.pdf (accessed on 27 November 2022).
- Baru, S.; Udgirkar, V.; Mishra, D. Blockchain in Public Sector Transforming Government Services through Exponential Technologies. Available online: https://www2.deloitte.com/content/dam/Deloitte/in/Documents/public-sector/in-ps-blockchain-noexp.pdf (accessed on 30 October 2022).
- Deloitte Blockchain Fit Assessement Framework. Available online: https://www2.deloitte.com/content/dam/Deloitte/in/Documents/industries/in-convergence-blockchain-fitment-noexp.pdf (accessed on 30 October 2022).
- Gai, L.; Varbanov, P.S.; van Fan, Y.; Klemeš, J.J.; Romanenko, S.V. Trade-Offs between the Recovery, Exergy Demand and Economy in the Recycling of Multiple Resources. Resour. Conserv. Recycl. 2021, 167, 105428. [Google Scholar] [CrossRef]
- Kröhling, D.E.; Mione, F.; Hernández, F.; Martínez, E.C. A Peer-to-Peer Market for Utility Exchanges in Eco-Industrial Parks Using Automated Negotiations. Expert Syst. Appl. 2022, 191, 116211. [Google Scholar] [CrossRef]
- Haag, S.; Anderl, R. Digital Twin—Proof of Concept. Manuf. Lett. 2018, 15, 64–66. [Google Scholar] [CrossRef]
- Nielsen, C.P.; da Silva, E.R.; Yu, F. Digital Twins and Blockchain—Proof of Concept. Procedia CIRP 2020, 93, 251–255. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, J.; He, T.; Wei, S.; Hu, C. TEBDS: A Trusted Execution Environment-and-Blockchain-Supported IoT Data Sharing System. Future Gener. Comput. Syst. 2022, 140, 321–330. [Google Scholar] [CrossRef]
Algorithms | Definition/Usage/Aim | Ref |
---|---|---|
Proof of Work (PoW) | To add a new block to the existing blockchain, validators or miners compete to generate a hash output that begins with a string of zeros in the most significant spots. | [37] |
Proof of Stake (PoS) | A PoS network eliminates the need for computing power and uses a random selection mechanism to choose who will mine a block. | [38] |
Practical Byzantine Fault Tolerance (PBFT) | A group of Byzantine generals (or nodes in a blockchain environment) must develop a unified strategy, which presents a difficulty. | [39] |
Delegated Proof of Stake (DPoS) | In DPoS, delegates and witnesses for the validation are selected using a decentralized voting system. | [40] |
Federated Byzantine Agreement (FBA) | Each participant relies on a small selection of validators they agree on as being reliable. | [41] |
Proof of Authority (PoAu) | To generate a block with PoAu, a member or members of the network need to be granted exclusive access to the blockchain. | [40] |
Proof of Elapsed Time (PoET) | The purpose of the algorithm is to provide an energy-efficient, scalable, and fair consensus mechanism that can handle thousands of nodes. | [42] |
Proof of Burn (PoB) | With PoB, validator nodes are required to pay in cryptocurrency for the privilege of validating blocks, an idea that seeks to mimic PoW’s validation cost. | [40] |
Proof of Capacity (PoC) | Proof-of-concept and its variations, proof-of-space, and proof-of-storage. Force validator nodes to allocate disc space to maximize their potential for creating the next block and receiving its reward. | [40] |
Proof of Activity (PoAc) | PoAc combines PoW and PoS mechanisms into a single protocol. | [40] |
Sector | Application |
---|---|
Energy | P2P marketplaces for rooftop solar energy are enabled by smart metering and blockchain. Carbon emissions should be tracked and traded in a transparent and auditable manner. |
Health | Keeping medical records to eliminate inconsistencies and repetitive data handling. |
Mobility | Dealer management solutions that allow for safe data transfer and communication to facilitate leasing tracking. Electric vehicles pay directly to charging stations. |
Insurance | Digital insurance contracts that are fully automated and implemented on the blockchain. |
Manufacturing | Machine-to-machine transactions. License management for three-dimensional printing. |
Logistics | Better ownership, identity, and data management for all players worldwide. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Termizi, S.N.A.; Wan Alwi, S.R.; Manan, Z.A.; Varbanov, P.S. Potential Application of Blockchain Technology in Eco-Industrial Park Development. Sustainability 2023, 15, 52. https://doi.org/10.3390/su15010052
Ahmad Termizi SNA, Wan Alwi SR, Manan ZA, Varbanov PS. Potential Application of Blockchain Technology in Eco-Industrial Park Development. Sustainability. 2023; 15(1):52. https://doi.org/10.3390/su15010052
Chicago/Turabian StyleAhmad Termizi, Siti Nor Azreen, Sharifah Rafidah Wan Alwi, Zainuddin Abd Manan, and Petar Sabev Varbanov. 2023. "Potential Application of Blockchain Technology in Eco-Industrial Park Development" Sustainability 15, no. 1: 52. https://doi.org/10.3390/su15010052
APA StyleAhmad Termizi, S. N. A., Wan Alwi, S. R., Manan, Z. A., & Varbanov, P. S. (2023). Potential Application of Blockchain Technology in Eco-Industrial Park Development. Sustainability, 15(1), 52. https://doi.org/10.3390/su15010052