Effects of an Episodic Storm-Induced Flooding Event on the Biogeochemistry of a Shallow, Highly Turbid, Semi-Enclosed Embayment (Laizhou Bay, Bohai Sea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis
2.2. Satellite Datasets
3. Results and Discussion
3.1. Rainfall Distribution Characterization
3.2. The Pulse of Terrestrial Runoff in the Mouth of the Xiaoqing River
3.3. Changes in the Physicochemical Factors after Storm-Induced Flooding
3.3.1. Physicochemical Conditions in August 2017
3.3.2. Physicochemical Changes after the Flooding Event
3.3.3. Satellite-Obtained Changes in TSS after Storm-Induced Flooding
3.3.4. Satellite-Obtained Changes in Chl-a after Storm-Induced Flooding
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tandon, N.F.; Zhang, X.; Sobel, A.H. Understanding the Dynamics of Future Changes in Extreme Precipitation Intensity. Geophys. Res. Lett. 2018, 45, 2870–2878. [Google Scholar]
- Ingram, W. Extreme precipitation: Increases all round. Nat. Clim. Change 2016, 6, 443–444. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Zhou, T.; Dai, A.; Han, Z. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- He, L.; Hao, X.; Li, H.; Han, T. How do extreme summer precipitation events over Eastern China subregions change? Geophys. Res. Lett. 2021, 48, e2020GL091849. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, D.; Li, J.; Chen, D.; Chang, Y.; Li, J.; Qin, R. Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. Clim. Dynam. 2020, 54, 2713–2730. [Google Scholar] [CrossRef] [Green Version]
- Aleshina, M.A.; Semenov, V.A.; Chernokulsky, A.V. A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data. Environ. Res. Lett. 2021, 16, 105004. [Google Scholar] [CrossRef]
- Tan, X.; Wu, X.; Liu, B. Global changes in the spatial extents of precipitation extremes. Environ. Res. Lett. 2021, 16, 54017. [Google Scholar] [CrossRef]
- Wetz, M.S.; Yoskowitz, D.W. An ‘extreme future’ for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Mar. Pollut. Bull. 2013, 69, 7–18. [Google Scholar]
- Wang, X.; Li, H.; Jiao, J.J.; Barry, D.A.; Li, L.; Luo, X.; Wang, C.; Wan, L.; Wang, X.; Jiang, X.; et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Sci. Rep. 2015, 5, 8814. [Google Scholar]
- Li, X.; Chi, W.; Tian, H.; Zhang, Y.; Zhu, Z. Probabilistic ecological risk assessment of heavy metals in western Laizhou Bay, Shandong Province, China. PLoS ONE 2019, 14, e213011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, W.; Gao, X. Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: Comparison among typical marine sediment quality indices. PLoS ONE 2014, 9, e94145. [Google Scholar] [CrossRef] [PubMed]
- You, Z.J.; Chen, C. Coastal Dynamics and Sediment Resuspension in Laizhou Bay. In Sediment Dynamics of Chinese Muddy Coasts and Estuaries: Physics, Biology, and Their Interactions; Wang, X.H., Ed.; Academic Press: Oxford, UK, 2019; pp. 123–142. [Google Scholar]
- Zhang, J.; Zhang, M.; Zhang, S.; Xu, Q.; Liu, X.; Zhang, Z. Nutrient distribution and structure affect the behavior and speciation of arsenic in coastal waters: A case study in southwestern coast of the Laizhou Bay, China. Mar. Pollut. Bull. 2019, 146, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Gao, X.; Zhang, Y.; Xing, Q.; Tosi, L.; Qin, S. Geochemical characteristics of phosphorus in surface sediments of two major Chinese mariculture areas: The Laizhou Bay and the coastal waters of the Zhangzi Island. Mar. Pollut. Bull. 2014, 83, 343–351. [Google Scholar] [CrossRef]
- Yu, S.; Pang, Y.; Wang, Y.; Li, J.; Qin, S. Spatial variation of microbial communities in sediments along the environmental gradients from Xiaoqing River to Laizhou Bay. Mar. Pollut. Bull. 2017, 120, 90–98. [Google Scholar] [CrossRef]
- Kelly, S.; Doyle, B.; de Eyto, E.; Dillane, M.; McGinnity, P.; Poole, R.; White, M.; Jennings, E. Impacts of a record-breaking storm on physical and biogeochemical regimes along a catchment-to-coast continuum. PLoS ONE 2020, 15, e235963. [Google Scholar] [CrossRef]
- Jiang, B.; Meng, L.; Xing, Q. Monitoring of Flood Disaster Footprints based on Remote Sensing: Shouguang Floods of 2018, Southern Laizhou Bay. Environ. Impact Assess. 2019, 41, 83–87. (In Chinese) [Google Scholar]
- Moon, J.; Park, Y.; Ryu, J.; Choi, J.; Ahn, J.; Min, J.; Son, Y.; Lee, S.; Han, H.; Ahn, Y. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010–2011. Ocean. Sci. J. 2012, 47, 261–277. [Google Scholar] [CrossRef]
- Yang, Q.; Du, L.B.; Liu, X.Y.; Hu, L.B.; Chen, S.G.; Liu, Y.; Wang, Z.Y.; Wang, Z.J.; Zhou, Y. Evaluation of ocean color products from Korean Geostationary Ocean Color Imager (GOCI) in Jiaozhou Bay and Qingdao coastal area. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Beijing, China, 18 December 2014. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X. Comparison of inversion of Chlorophyll concentration in the Bohai Bay based on GOCI Data. Mar. Pollut. Bull. 2017, 19, 62–74. [Google Scholar]
- Min, J.E.; Choi, J.K.; Park, Y.J.; Ryu, J.H. Retrieval of suspended sediment concentration in the coastal waters of yellow sea from Geostationary Ocean Color Imager (GOCI). In Proceedings of the International Symposium of Remote Sensing, Beijing, China, 22–26 April 2013; pp. 809–812. [Google Scholar]
- Huang, X.; Zhu, J.; Han, B.; Jamet, C.; Tian, Z.; Zhao, Y.; Li, J.; Li, T. Evaluation of Four Atmospheric Correction Algorithms for GOCI Images over the Yellow Sea. Remote Sens. 2019, 11, 1631. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Yu, Q.; Wang, Y.; Gao, S. Identification, extraction and interpretation of multi-period variations of coastal suspended sediment concentration based on unevenly spaced observations. Mar. Geol. 2022, 445, 106732. [Google Scholar] [CrossRef]
- Han, X.; Wang, J. Using Social Media to Mine and Analyze Public Sentiment during a Disaster: A Case Study of the 2018 Shouguang City Flood in China. ISPRS Int. J. Geo-Inf. 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Geng, S.; Zhou, Q.; Li, M.; Song, D.; Wen, Y. Spatial–temporal differences in disaster perception and response among new media users and the influence factors: A case study of the Shouguang Flood in Shandong province. Nat. Hazards 2021, 2241–2262. [Google Scholar] [CrossRef]
- Zhen, X.; Liu, L.; Wang, X.; Zhong, G.; Tang, J. Fates and ecological effects of current-use pesticides (CUPs) in a typical river-estuarine system of Laizhou Bay, North China. Environ. Pollut. 2019, 252, 573–579. [Google Scholar] [CrossRef]
- Luo, X.; Lin, S.; Yang, J.; Shen, J.; Fan, Y.; Zhang, L. Benthic habitat quality assessment based on biological indices in Xiaoqing River estuary and its adjacent sea of Laizhou Bay, China. J. Ocean. Univ. China 2017, 16, 537–546. [Google Scholar] [CrossRef]
- Heydebreck, F.; Tang, J.; Xie, Z.; Ebinghaus, R. Alternative and Legacy Perfluoroalkyl Substances: Differences between European and Chinese River/Estuary Systems. Environ. Sci. Technol. 2015, 49, 8386–8395. [Google Scholar] [CrossRef]
- Jiang, T.; Skyllberg, U.; Björn, E.; Green, N.W.; Tang, J.; Wang, D.; Gao, J.; Li, C. Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Environ. Pollut. 2017, 223, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Wu, Y.; Chen, Z.; Hong, H. Phosphorus export during storm events from a human perturbed watershed, southeast China: Implications for coastal ecology. Estuar. Coast. Shelf Sci. 2015, 166, 178–188. [Google Scholar] [CrossRef]
- Voynova, Y.G.; Brix, H.; Petersen, W.; Weigelt-Krenz, S.; Scharfe, M. Extreme flood impact on estuarine and coastal biogeochemistry: The 2013 Elbe flood. Biogeosciences 2017, 14, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Herbeck, L.S.; Unger, D.; Krumme, U.; Liu, S.M.; Jennerjahn, T.C. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar. Coast. Shelf Sci. 2011, 93, 375–388. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Ma, W.; Sun, X.; Zhang, H. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management. Sci. Total Environ. 2015, 521–522, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Hunter, H.M.; Walton, R.S. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia. J. Hydrol. 2008, 356, 131–146. [Google Scholar] [CrossRef]
- Chi, W.; Zhang, X.; Zhang, W.; Bao, X.; Liu, Y.; Xiong, C.; Liu, J.; Zhang, Y. Impact of tidally induced residual circulations on chemical oxygen demand (COD) distribution in Laizhou Bay, China. Mar. Pollut. Bull. 2020, 151, 110811. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, D.; Song, X.; Ma, Y.; Wang, Y.; Liu, A.; Cheng, L.; He, J.; Sun, S. Response of phytoplankton assemblages to nitrogen reduction in the Laizhou Bay, China. Mar. Pollut. Bull. 2018, 136, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, Y.; Song, X.; Gong, X.; Liu, Y.; Zhou, Q.; Wang, Z.; Xia, C. Temporal and spatial distribution of semicarbazide in western Laizhou Bay. Mar. Pollut. Bull. 2016, 112, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, B.; Xin, M.; Zhang, W.; Li, C.; Xie, L.; Sun, X. Nutrient Distributions in the Laizhou Bay in Spring and Summer of 2015. Adv. Mar. Sci. 2017, 35, 258–266. [Google Scholar]
- Gao, H.; Wu, D.; Bai, J.; Shi, J.; Li, Z.; Jiang, W. Distributions of Environmental Parameters in Laizhou Bay in Summer, 2000. J. Ocean. U. China 2003, 33, 185–191. [Google Scholar]
- Song, D.; Gao, Z.; Zhang, H.; Xu, F.; Zheng, X.; Ai, J.; Hu, X.; Huang, G.; Zhang, H. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China. Mar. Pollut. Bull. 2017, 125, 242–249. [Google Scholar] [CrossRef]
- Gao, X.; Song, J. Dissolved oxygen and O2 flux across the water–air interface of the Changjiang Estuary in May 2003. J. Mar. Syst. 2008, 74, 343–350. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Yang, X. The transportation and deposition of suspended sediment and its dynamic mechanism analysis based on Landsat images in the Laizhou Bay. Acta. Oceanol. Sin. 2013, 35, 43–53. (In Chinese) [Google Scholar]
- Qiu, Z.; Xiao, C.; Perrie, W.; Sun, D.; Wang, S.; Shen, H.; Yang, D.; He, Y. Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary. J. Geophys. Res. Oceans 2017, 122, 276–290. [Google Scholar] [CrossRef]
- Ji, J.; Wang, Y.; Wang, X.; Wang, Y.; Teng, Y. A numerical study of the transport process of Yellow River sediment in summer. Mar. Sci. 2016, 40, 118–127. (In Chinese) [Google Scholar]
- Li, P.; Ke, Y.; Bai, J.; Zhang, S.; Chen, M.; Zhou, D. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data. Mar. Pollut. Bull. 2019, 149, 110518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qiu, Z.; Sun, D.; Wang, S.; He, Y. Seasonal and Interannual Variability of Satellite-Derived Chlorophyll-a (2000–2012) in the Bohai Sea, China. Remote Sens. 2017, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Krom, M.D.; Lin, J.; Cheng, P.; Chen, N. Effects of a Storm on the Transformation and Export of Phosphorus Through a Subtropical River-Turbid Estuary Continuum Revealed by Continuous Observation. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG006786. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Toor, G.S. Stormwater runoff driven phosphorus transport in an urban residential catchment: Implications for protecting water quality in urban watersheds. Sci. Rep. 2018, 8, 11681. [Google Scholar] [CrossRef] [Green Version]
- Geyer, N.; Huettel, M.; Wetz, M. Biogeochemistry of a River-Dominated Estuary Influenced by Drought and Storms. Estuar. Coast. 2018, 41, 2009–2023. [Google Scholar] [CrossRef]
- Sadro, S.; Melack, J.M. The Effect of an Extreme Rain Event on the Biogeochemistry and Ecosystem Metabolism of an Oligotrophic High-Elevation Lake. Arct. Antarct. Alp. Res. 2012, 44, 222–231. [Google Scholar] [CrossRef]
- Cooney, E.M.; McKinney, P.; Sterner, R.; Small, G.E.; Minor, E.C. Tale of Two Storms: Impact of Extreme Rain Events on the Biogeochemistry of Lake Superior. J. Geophys. Res. Biogeosci. 2018, 123, 1719–1731. [Google Scholar] [CrossRef]
Variable | Unit | August 2017 (Non-Flooding) | August 2018 (Flooding) | ||
---|---|---|---|---|---|
Whole Bay | Within the Freshwater Plume | Whole Bay | Within the Freshwater Plume | ||
Salinity | psu | 29.59 ± 1.61 | 28.04 ± 1.60 | 27.25 ± 5.07 | 19.82 ± 4.31 |
DO | mg/L | 7.48 ± 0.27 | 7.22 ± 0.10 | 7.43 ± 0.52 | 7.48 ± 0.20 |
pH | 8.13 ± 0.03 | 8.12 ± 0.03 | 8.04 ± 0.04 | 8.04 ± 0.02 | |
COD | mg/L | 1.16 ± 0.50 | 1.61 ± 0.14 | 1.25 ± 048 | 1.85 ± 0.20 |
TN | mg/L | 0.53 ± 0.12 | 0.61 ± 0.15 | 0.93 ± 0.48 | 1.27 ± 0.32 |
TP | mg/L | 0.017 ± 0.006 | 0.021 ± 0.005 | 0.020 ± 0.015 | 0.041 ± 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Xing, Q.; Gao, X.; Ji, D.; Qu, F.; Wang, X.; Ji, L. Effects of an Episodic Storm-Induced Flooding Event on the Biogeochemistry of a Shallow, Highly Turbid, Semi-Enclosed Embayment (Laizhou Bay, Bohai Sea). Sustainability 2023, 15, 563. https://doi.org/10.3390/su15010563
Meng L, Xing Q, Gao X, Ji D, Qu F, Wang X, Ji L. Effects of an Episodic Storm-Induced Flooding Event on the Biogeochemistry of a Shallow, Highly Turbid, Semi-Enclosed Embayment (Laizhou Bay, Bohai Sea). Sustainability. 2023; 15(1):563. https://doi.org/10.3390/su15010563
Chicago/Turabian StyleMeng, Ling, Qianguo Xing, Xuelu Gao, Diansheng Ji, Fanzhu Qu, Xiaoqing Wang, and Ling Ji. 2023. "Effects of an Episodic Storm-Induced Flooding Event on the Biogeochemistry of a Shallow, Highly Turbid, Semi-Enclosed Embayment (Laizhou Bay, Bohai Sea)" Sustainability 15, no. 1: 563. https://doi.org/10.3390/su15010563
APA StyleMeng, L., Xing, Q., Gao, X., Ji, D., Qu, F., Wang, X., & Ji, L. (2023). Effects of an Episodic Storm-Induced Flooding Event on the Biogeochemistry of a Shallow, Highly Turbid, Semi-Enclosed Embayment (Laizhou Bay, Bohai Sea). Sustainability, 15(1), 563. https://doi.org/10.3390/su15010563