Cotton Spinning Waste as a Microporous Activated Carbon: Application to Remove Sulfur Compounds in a Tunisian Refinery Company
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Activated Carbon
2.3. Characterization Methods
2.3.1. Morphologies of ACs
2.3.2. Textural Characterization
2.4. Fourier Transform Infrared Spectra (FTIR)
2.5. Adsorption Experiment
2.5.1. Bed Adsorption
2.5.2. Batch Adsorption
2.5.3. Determination of COD
2.6. Kinetic Models
2.7. Adsorption Isotherm Studies
3. Results and Discussion
3.1. Activated Carbon Characterization
3.2. The Results of Fixed-Bed Adsorption
3.3. Adsorption Kinetics
3.4. Modeling of Adsorption Isotherm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Speight, J.G. Handbook of Petroleum Refining; Taylor & Francis G: Boca Raton, FL, USA, 2017; Available online: https://www.crcpress.com/Handbook-of-Petroleum-Refining/Speight/p/book/9781466591608 (accessed on 20 July 2022).
- Panizza, M. Fine Chemical Industry, Pulp and Paper Industry, Petrochemical Industry and Pharmaceutical Industry. In Electrochemical Water and Wastewater Treatment; Elsevier Inc.: Genoa, Italy, 2018; pp. 335–364. Available online: https://www.sciencedirect.com/science/article/pii/B9780128131602000134 (accessed on 15 July 2022).
- Noor Ul Huda, K.; Shimizu, K.; Gong, X.; Takagi, S. Numerical investigation of COD reduction in compact bioreactor with bubble plumes. Chem. Eng. Sci. 2018, 185, 1–17. [Google Scholar] [CrossRef]
- Abdulredha, M.M.; Aslina, H.S.; Luqman, C.A. Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arab. J. Chem. 2020, 13, 3403–3428. [Google Scholar] [CrossRef]
- De Oliveira, C.P.M.; Viana, M.M.; Amaral, M.C.S. Coupling photocatalytic degradation using a green TiO2 catalyst to membrane bioreactor for petroleum refinery wastewater reclamation. J. Water Process Eng. 2020, 34, 101093. [Google Scholar] [CrossRef]
- Mohammadi, L.; Rahdar, A.; Bazrafshan, E.; Dahmardeh, H.; Susan, M.; Hasan, A.B.; Kyzas, G.Z. Petroleum Hydrocarbon Removal from Wastewaters: A Review. Processes 2020, 8, 447. [Google Scholar] [CrossRef]
- Coppock, R.W.; Christian, R.G. Chapter 50—Petroleum. In Veterinary Toxicology, 3rd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 659–673. Available online: http://www.sciencedirect.com/science/article/pii/B9780128114100000507 (accessed on 20 July 2022).
- Han, Y.; Zhang, Y.; Xu, C.; Hsu, C.S. Molecular characterization of sulfur-containing compounds in petroleum. Fuel 2018, 221, 144–158. [Google Scholar] [CrossRef]
- Pérez, R.M.; Cabrera, G.; Gómez, J.M.; Ábalos, A.; Cantero, D. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. J. Hazard. Mater. 2010, 182, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Al-Malack, M.H. Performance of a crossflow membrane bioreactor (CF–MBR) when treating refinery wastewater. Desalination 2006, 191, 16–26. [Google Scholar] [CrossRef]
- Razavi, S.M.R.; Miri, T. A real petroleum refinery wastewater treatment using hollow fiber membrane bioreactor (HF-MBR). J. Water Process Eng. 2015, 8, 136–141. [Google Scholar] [CrossRef]
- Abass, O.K.; Fang, F.; Zhuo, M.; Zhang, K. Integrated interrogation of causes of membrane fouling in a pilot-scale anoxic-oxic membrane bioreactor treating oil refinery wastewater. Sci. Total Environ. 2018, 642, 77–89. [Google Scholar] [CrossRef]
- Munirasu, S.; Haija, M.A.; Banat, F. Use of membrane technology for oil field and refinery produced water treatment—A review. Process Saf. Environ. Prot. 2016, 100, 183–202. [Google Scholar] [CrossRef]
- Sari Erkan, H.; Bakaraki Turan, N.; Önkal Engin, G. Chapter Five—Membrane Bioreactors for Wastewater Treatment. In Comprehensive Analytical Chemistry; Chormey, D.S., Bakırdere, S., Turan, N.B., Engin, G.Ö., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 81, pp. 151–200. Available online: http://www.sciencedirect.com/science/article/pii/S0166526X18300035 (accessed on 20 July 2022).
- Yan, L.; Ma, H.; Wang, B.; Wang, Y.; Chen, Y. Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode. Desalination 2011, 276, 397–402. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Al-Lobaney, A.; Makhlouf, S. Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manag. 2009, 91, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, Y.; Li, J.; Ma, H.; Liu, H.; Li, T.; Zhang, Y. Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 2014, 341, 87–93. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Alhaija, M.A.; Al-Zuhair, S. Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J. Environ. Chem. Eng. 2014, 2, 56–62. [Google Scholar] [CrossRef]
- Zhu, X.; Ni, J.; Xing, X.; Li, H.; Jiang, Y. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochim. Acta 2011, 56, 1270–1274. [Google Scholar] [CrossRef]
- Krstić, V.; Urošević, T.; Pešovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Li, B.; Sun, K.; Guo, Y.; Tian, J.; Xue, Y.; Sun, D. Adsorption kinetics of phenol from water on Fe/AC. Fuel 2013, 110, 99–106. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kazemi, H.; Mirbagheri, S.A.; Rockaway, T.D. An optimized biological approach for treatment of petroleum refinery wastewater. J. Environ. Chem. Eng. 2016, 4, 3401–3408. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Li, M.; Yang, Y.; He, W.; Yan, G.; Guo, S. An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics. Biochem. Eng. J. 2016, 105, 44–51. [Google Scholar] [CrossRef]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef]
- Ma, F.; Guo, J.; Zhao, L.; Chang, C.; Cui, D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour. Technol. 2009, 100, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Ahmad, I.; Azam, Z.M.; Ahmad, A.; Inam, A. Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics. Bioresour. Technol. 2002, 84, 159–163. [Google Scholar] [CrossRef]
- Louhıchı, G.; Bousselmı, L.; Ghrabı, A.; Khounı, I. Process optimization via response surface methodology in the physico-chemical treatment of vegetable oil refinery wastewater. Environ. Sci. Pollut. Res. 2018, 26, 18993–19011. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Alhaija, M.A.; Al-Zuhair, S. Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater. Environ. Sci. Pollut. Res. 2017, 24, 7511–7520. [Google Scholar] [CrossRef]
- Alvarez, J.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel 2015, 159, 810–818. [Google Scholar] [CrossRef]
- Dehghan, R.; Anbia, M. Zeolites for adsorptive desulfurization from fuels: A review. Fuel Process. Technol. 2017, 167, 99–116. [Google Scholar] [CrossRef]
- Moradi, M.; Karimzadeh, R.; Moosavi, E.S. Modified and ion exchanged clinoptilolite for the adsorptive removal of sulfur compounds in a model fuel: New adsorbents for desulfurization. Fuel 2018, 217, 467–477. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Alhaija, M.A. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem. Eng. J. 2010, 162, 997–1005. [Google Scholar] [CrossRef]
- Qingxuan, Z. COD Removal in Refinery Wastewater through Adsorption on Activated Petroleum Coke. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 19–20 February 2011; pp. 1093–1096. [Google Scholar] [CrossRef]
- Garole, D.J.; Choudhary, B.C.; Paul, D.; Borse, A.U. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ. Sci. Pollut. Res. Int. 2018, 25, 10911–10925. [Google Scholar] [CrossRef]
- Mohammad, Y.S.; Shaibu-Imodagbe, E.M.; Igboro, S.B.; Giwa, A.; Okuofu, C.A. Adsorption of Phenol from Refinery Wastewater Using Rice Husk Activated Carbon. Iran. J. Energy Environ. 2014, 5, 393–399. [Google Scholar]
- Mushrif, S.H.; Vasudevan, V.; Krishnamurthy, C.B.; Venkatesh, B. Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: A perspective. Chem. Eng. Sci. 2015, 121, 217–235. [Google Scholar] [CrossRef]
- Rout, P.K.; Nannaware, A.D.; Prakash, O.; Kalra, A.; Rajasekharan, R. Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock. Chem. Eng. Sci. 2016, 142, 318–346. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Alhaija, M.A. Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard. Mater. 2010, 173, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Juanga-Labayen, J.P.; Labayen, I.V.; Yuan, Q. A Review on Textile Recycling Practices and Challenges. Textiles 2022, 2, 174–188. [Google Scholar] [CrossRef]
- Claudio, L. Waste couture: Environmental Impact of the Clothing Industry. Environ. Health Perspect. 2007, 115, A448–A454. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, E.; Mirmohamadsadeghi, S.; Karimi, K. Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 2018, 218, 41–48. [Google Scholar] [CrossRef]
- Shen, B.; Chen, J.; Yue, S.; Li, G. A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 2015, 156, 47–53. [Google Scholar] [CrossRef]
- Kanan, M.; Wannassi, B.; Barham, A.S.; Ben Hassen, M.; Assaf, R. The Quality of Blended Cotton and Denim Waste Fibres: The Effect of Blend Ratio and Waste Category. Fibers 2022, 10, 76. [Google Scholar] [CrossRef]
- Halimi, M.T.; Hassen, M.B.; Azzouz, B.; Sakli, F. Effect of Cotton Waste and Spinning Parameters on Rotor Yarn Quality. J. Text. Inst. 2007, 98, 437–442. [Google Scholar] [CrossRef]
- Halimi, M.T.; Hassen, M.B.; Sakli, F. Cotton Waste Recycling: Quantitative and Qualitative Assessment. Resour. Conserv. Recycl. 2008, 52, 785–791. [Google Scholar] [CrossRef]
- Wanassi, B.; Azzouz, B.; Hassen, M.B. Value-Added Waste Cotton Yarn: Optimization of Recycling Process and Spinning of Reclaimed Fibers. Ind. Crops Prod. 2016, 87, 27–32. [Google Scholar] [CrossRef]
- Abidi, H.; Rana, S.; Chaouch, W.; Azouz, B.; Aissa, I.B.; Hassen, M.B.; Fangueiro, R. Accelerated Weathering of Textile Waste Nonwovens Used as Sustainable Agricultural Mulching. J. Ind. Text. 2019, 50, 1079–1110. [Google Scholar] [CrossRef] [Green Version]
- USEPA (United States Environmental Protection Agency). Facts and Figures about Materials, Waste and Recycling 2021. Textiles: Material-Specific Data, Summary Table and Graph. Available online: https://www.epa.gov/facts-and-figures-about-materialswaste-and-recycling/textiles-material-specific-data#TextilesTableandGraph (accessed on 15 January 2022).
- Triki, A.; Wanassi, B.; Hassen, M.; Arous, M.; Kallel, A. Dieletric Analysis of Unsaturated Polyester Composite Reinforced with Recycled Cotton Textile Residues. Int. J. Appl. Res. Text. 2019, 44–50. Available online: http://atctex.org/ijartex/index.php?mayor=magazine&id=50 (accessed on 22 July 2022).
- Temmink, R.; Baghaei, B.; Skrifvars, M. Development of Biocomposites from Denim Waste and Thermoset Bio-Resins for Structural Applications. Compos. Part A Appl. Sci. Manuf. 2018, 106, 59–69. [Google Scholar] [CrossRef]
- Zhao, Q.; Ye, Z.; Zheng, J. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl. Surface Sci. 2014, 299, 86–91. [Google Scholar] [CrossRef]
- Sartova, K.; Omurzak, E.; Kambarova, G.; Dzhumaev, I.; Borkoev, B.; Abdullaeva, Z. Activated carbon obtained from the cotton processing wastes. Diam. Relat. Mater. 2019, 91, 90–97. [Google Scholar] [CrossRef]
- Wanassi, B.; Hariz, I.B.; Ghimbeu, C.M.; Vaulot, C.; Hassen, M.B.; Jeguirim, M. Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: Kinetic and equilibrium studies. Environ. Sci. Pollut. Res. 2017, 24, 10041–10055. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, T.; Yuan, Z.; Zhang, D.; Sun, Z.; Huang, Y.X.; Chen, W.; Tian, D.; Deng, H.; Zhou, Y. Fabrication of cotton textile waste-based magnetic activated carbon using FeCl3 activation by the Box-Behnken design: Optimization and characteristics. RSC Adv. 2018, 8, 38081–38090. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhou, Y.; Sun, Z.; Zhang, D.; Huang, Y.; Gu, S.; Chen, W. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon. Chemosphere 2020, 241, 125120. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Ma, X.; Tang, Q.; Li, Y. Modeling of the electrocoagulation process: A study on the mass transfer of electrolysis and hydrolysis products. Chem. Eng. Sci. 2017, 165, 165–176. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Surkatti, R.; Al-Zuhair, S. Petroleum refinery wastewater treatment: A pilot scale study. J. Water Process Eng. 2016, 14, 71–76. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of so Called Adsorption of Soluble Substances. K. Sven. Vet. Akad. Handl. 1998, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckkay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Kumar, D.B.; Smail, K. Étude cinétique et thermodynamique de l’adsorption d’un colorant basique sur la sciure de Bois. Revue des Sciences de l’Eau J. Water Sci. 2011, 24, 131–144. [Google Scholar]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Adsorption in Solution. Z. Phys. Chem. 1906, 57, 384–470. [Google Scholar]
- Dubinin, M.M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.-M.; Crini, G. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. J. Hazard. Mater. 2008, 157, 34–46. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
pH | 12.9 |
Conductivity (ms·cm−1) | 126.7 |
Sulfide (mg·L−1) | 3476 |
NaOH (wt%) | 7.5 |
SBET (m²·g−1) | Vt (cm3·g−1) | VDR (cm3·g−1) | VMES (cm3·g−1) | |
---|---|---|---|---|
HOAC | 1230 | 1.20 | 0.51 | 0.62 |
HNAC | 842 | 1.03 | 0.48 | 0.59 |
KAC | 915 | 1.08 | 0.49 | 0.60 |
Flow Rate (L/h) | Dosage Rate (mg/L) | CODHNAC (mg/L) | CODHOAC (mg/L) | CODKAC (mg/L) |
---|---|---|---|---|
1 | 5 | 1585 | 1180 | 1870 |
1 | 10 | 644 | 485 | 778 |
1 | 15 | 252 | 183 | 304 |
1 | 25 | 60 | 4 | 68 |
2 | 5 | 1841 | 1375 | 2202 |
2 | 10 | 756 | 560 | 907 |
2 | 15 | 348 | 255 | 420 |
2 | 25 | 89 | 65 | 108 |
3 | 5 | 2105 | 1563 | 2515 |
3 | 10 | 912 | 674 | 1084 |
3 | 15 | 420 | 311 | 524 |
3 | 25 | 114 | 82 | 134 |
4 | 5 | 2340 | 1735 | 2811 |
4 | 10 | 1140 | 844 | 1352 |
4 | 15 | 530 | 375 | 621 |
4 | 25 | 135 | 105 | 163 |
Kinetic Model | Model Parameters | R² | |
---|---|---|---|
Pseudo-first-order | qe (mg·g−1) | K1 (min−1) | 0.94 |
120 | 0.003 | ||
Pseudo-second-order | qe (mg·g−1) | K2 (L·mg−1·min−1) | 0.99 |
135 | 11.10−4 | ||
Intraparticular diffusion | Kid (mg·g−1·min−0.5) | C | 0.91 |
11.20 | 0.13 |
Model | n | KL | qm (mg·g−1) | R² |
---|---|---|---|---|
Langmuir | 0.84 | 0.02 | 168.4 | 0.98 |
Freundlich | 0.84 | 0.01 | 17 | 0.96 |
Dubinin–Radushkevich | E0.16 | - | - | 0.79 |
Tóth | 0.14 | 5.95 × 10−6 | 115 | 0.89 |
Sips | 0.79 | 0.01 | 241 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannassi, B.; Kanan, M.; Hariz, I.B.; Assaf, R.; Abusaq, Z.; Ben Hassen, M.; Aljazzar, S.; Zahran, S.; Khouj, M.T.; Barham, A.S. Cotton Spinning Waste as a Microporous Activated Carbon: Application to Remove Sulfur Compounds in a Tunisian Refinery Company. Sustainability 2023, 15, 654. https://doi.org/10.3390/su15010654
Wannassi B, Kanan M, Hariz IB, Assaf R, Abusaq Z, Ben Hassen M, Aljazzar S, Zahran S, Khouj MT, Barham AS. Cotton Spinning Waste as a Microporous Activated Carbon: Application to Remove Sulfur Compounds in a Tunisian Refinery Company. Sustainability. 2023; 15(1):654. https://doi.org/10.3390/su15010654
Chicago/Turabian StyleWannassi, Bechir, Mohammad Kanan, Ichrak Ben Hariz, Ramiz Assaf, Zaher Abusaq, Mohamed Ben Hassen, Salem Aljazzar, Siraj Zahran, Mohammed T. Khouj, and Ahmad S. Barham. 2023. "Cotton Spinning Waste as a Microporous Activated Carbon: Application to Remove Sulfur Compounds in a Tunisian Refinery Company" Sustainability 15, no. 1: 654. https://doi.org/10.3390/su15010654
APA StyleWannassi, B., Kanan, M., Hariz, I. B., Assaf, R., Abusaq, Z., Ben Hassen, M., Aljazzar, S., Zahran, S., Khouj, M. T., & Barham, A. S. (2023). Cotton Spinning Waste as a Microporous Activated Carbon: Application to Remove Sulfur Compounds in a Tunisian Refinery Company. Sustainability, 15(1), 654. https://doi.org/10.3390/su15010654