Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardy, R.; Rubens, A. Weighing Externalities of Economic Recovery Projects: An Alternative to Green Taxonomies that is Fairer and More Realistic. Bus. Ethics Leadersh. 2022, 6, 23–34. [Google Scholar] [CrossRef]
- Kolosok, S.; Bilan, Y.; Vasylieva, T.; Wojciechowski, A.; Morawski, M. A scoping review of renewable energy, sustainability and the environment. Energies 2021, 14, 4490. [Google Scholar] [CrossRef]
- Vasylieva, T.; Pavlyk, V.; Bilan, Y.; Mentel, G.; Rabe, M. Assessment of energy efficiency gaps: The case for Ukraine. Energies 2021, 14, 1323. [Google Scholar] [CrossRef]
- Sedmíková, E.; Vasylieva, T.; Tiutiunyk, I.; Navickas, M. Energy consumption in assessment of shadow economy. Eur. J. Interdiscip. Stud. 2021, 13, 47–64. [Google Scholar] [CrossRef]
- Lyulyov, O.; Vakulenko, I.; Pimonenko, T.; Kwilinski, A.; Dzwigol, H.; Dzwigol-Barosz, M. Comprehensive assessment of smart grids: Is there a universal approach? Energies 2021, 14, 3497. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Dzwigol, H.; Vakulenko, I.; Pimonenko, T. Integrative smart grids’ assessment system. Energies 2022, 15, 545. [Google Scholar] [CrossRef]
- Karakasis, V.P. The impact of “policy paradigms” on energy security issues in protracted conflict environments: The case of Cyprus. SocioEcon. Chall. 2017, 1, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Navickas, V.; Petroke, I.; Baciuliene, V.; Vasylieva, T. The impact of the sharing economy as an ecosystem on the tourism sector. J. Tour. Serv. 2021, 12, 66–88. [Google Scholar] [CrossRef]
- Yiu, L.; Saner, R.; Bardy, R. Collective Action on Public Goods for Sustainable Development: Ethics in Action. Bus. Ethics Leadersh. 2020, 4, 14–27. [Google Scholar] [CrossRef]
- Kuzior, A.; Kwilinski, A.; Hroznyi, I. The factorial-reflexive approach to diagnosing the executors’ and contractors’ attitude to achieving the objectives by energy supplying companies. Energies 2021, 14, 2572. [Google Scholar] [CrossRef]
- Hakobyan, N.; Dabaghyan, A.; Khachatryan, A. Strategies of Post-War Anomie’s Overcoming in the Fields of Social Interactions and Business. Bus. Ethics Leadersh. 2022, 6, 105–112. [Google Scholar] [CrossRef]
- Kuzior, A.; Postrzednik-Lotko, K.A.; Postrzednik, S. Limiting of carbon dioxide emissions through rational management of pro-ecological activities in the context of CSR assumptions. Energies 2022, 15, 1825. [Google Scholar] [CrossRef]
- Polyakov, M.; Khanin, I.; Bilozubenko, V.; Korneyev, M.; Shevchenko, G. Factors of uneven progress of the European Union countries towards a circular economy. Probl. Perspect. Manag. 2021, 19, 332–344. [Google Scholar] [CrossRef]
- Colson, R.S. Kasnodon Ukraine: History/Culture/Presumptions and Helping Developing Nations Move Forward. SocioEcon. Chall. 2021, 5, 92–97. [Google Scholar] [CrossRef]
- Marcel, D.T.A. Electricity Consumption and Economic Growth Nexus in the Republic of Benin. SocioEcon. Chall. 2019, 3, 63–69. [Google Scholar] [CrossRef]
- El Amri, A.; Boutti, R.; Oulfarsi, S.; Rodhain, F.; Bouzahir, B. Carbon financial markets underlying climate risk management, pricing and forecasting: Fundamental analysis. Financ. Mark. Inst. Risks 2020, 4, 31–44. [Google Scholar] [CrossRef]
- El Amri, A.; Oulfarsi, S.; Boutti, R.; Sahib Eddine, A.; Hmioui, A. Carbon Financial Markets Underlying Climate Change Mitigation, Pricing and Challenges: Technical Analysis. Financ. Mark. Inst. Risks 2021, 5, 5–17. [Google Scholar] [CrossRef]
- Pavlyk, V. Assessment of green investment impact on the energy efficiency gap of the national economy. Financ. Mark. Inst. Risks 2020, 4, 117–123. [Google Scholar] [CrossRef]
- Tvaronavičienė, M. Clusters, innovations and energy efficiency: If relationship could be traced. Mark. Manag. Innov. 2017, 2, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Matvieieva Yu Hamida, H.B. Modeling and Forecasting Energy Efficiency Impact on Human Health. Health Econ. Manag. Rev. 2022, 3, 78–85. [Google Scholar] [CrossRef]
- Simakhova, A.; Dluhopolskyi, O.; Kozlovskyi, S.; Butenko, V.; Saienko, V. Healthcare sector in European countries: Assessment of capacity under COVID-19 pandemic. Probl. Perspect. Manag. 2022, 20, 22–32. [Google Scholar] [CrossRef]
- Dluhopolskyi, O.; Brych, V.; Borysiak, O.; Fedirko, M.; Dziubanovska, N. Modeling the environmental and economic effect of value added created in the energy service market. Polityka Energ. Energy Policy J. 2021, 24, 153–168. [Google Scholar] [CrossRef]
- Sotnyk, I.; Shvets, I.; Momotiuk, L.; Chortok, Y. Management of renewable energy innovative development in Ukrainian households: Problems of financial support. Mark. Manag. Innov. 2018, 4, 150–160. [Google Scholar] [CrossRef]
- Borysiak, O.; Wołowiec, T.; Gliszczyński, G.; Brych, V.; Dluhopolskyi, O. Smart transition to climate management of the green energy transmission chain. Sustainability 2022, 14, 11449. [Google Scholar] [CrossRef]
- Brych, V.; Zatonatska, T.; Dluhopolskyi, O.; Borysiak, O.; Vakun, O. Estimating the efficiency of the green energy services’ marketing management based on segmentation. Mark. Manag. Innov. 2021, 3, 188–198. [Google Scholar] [CrossRef]
- Masharsky, A.; Azarenkova, G.; Oryekhova, K.; Yavorsky, S. Anti-crisis financial management on energy enterprises as a precondition of innovative conversion of the energy industry: Case of Ukraine. Mark. Manag. Innov. 2018, 3, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Štreimikienė, D.; Samusevych, Y.; Bilan, Y.; Vysochyna, A.; Sergi, B.S. Multiplexing efficiency of environmental taxes in ensuring environmental, energy, and economic security. Environ. Sci. Pollut. Res. 2022, 29, 7917–7935. [Google Scholar] [CrossRef] [PubMed]
- Samusevych, Y.; Marousek, J.; Kuzmenko, O.; Streimikis, J.; Vysochyna, A. Environmental taxes in ensuring national security: A structural optimization model. J. Int. Stud. 2021, 14, 292–312. [Google Scholar] [CrossRef]
- Bogacki, S.; Martyniuk, V. Selected tax problems of administrative enforcement of taxes and local fees. Teka Comm. Leg. Sci. Pol. Acad. Sci. Branch Lub. 2022, 15, 15–27. [Google Scholar] [CrossRef]
- De Borger, B.; Proost, S. Vertical and horizontal tax competition in the transport sector Reflets Perspect. Vie Économique 2004, XLIII, 45–64. [Google Scholar] [CrossRef]
- Barros, V.; Cruz, C.O.; Júdice, T.; Sarmento, J.M. Is taxation being effectively used to promote public transport in Europe? Transp. Policy 2021, 114, 215–224. [Google Scholar] [CrossRef]
- Duncan, D.; Li, D.; Graham, J.D. Tax rate design and support for mileage user-fees. Transp. Policy 2020, 93, 17–26. [Google Scholar] [CrossRef]
- Mayeres, I. The efficiency effects of transport policies in the presence of externalities and distortionary taxes. J. Transp. Econ. Policy 2000, 34, 233–259. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Database on Policy Instruments for the Environment. Available online: https://pinedatabase.oecd.org/Default.aspx (accessed on 1 December 2022).
- Vasylieva, T.; Jurgilewicz, O.; Poliakh, S.; Tvaronavičienė, M.; Hydzik, P. Problems of measuring country’s financial security. J. Int. Stud. 2020, 13, 329–346. [Google Scholar] [CrossRef]
- World Development Indicators. The World Bank DataBank. Available online: https://databank.worldbank.org/source/world-development-indicators# (accessed on 1 December 2022).
Country | The Name of the Tax | Tax Base | Tax Rates |
---|---|---|---|
Czech Republic | Road tax | Vehicle type and weight | In Czech crowns per year |
Finland | Car tax | Cost of the vehicle/Emissions from the vehicle | In % of the cost/In euros |
Transport tax | Vehicle type and weight | In euros for 1 day per 100 kg of vehicle weight | |
France | Annual tax on company cars | The amount of carbon dioxide emissions from the car | In euros for 1 g of CO2 emissions per 1 km |
Ireland | Tax on vehicles | Type of vehicle | In euros per year |
Vehicle registration tax | The cost of the vehicle | In % of the cost | |
Israel | Vehicle registration or use tax | Cost and age of the vehicle | In new Israeli shekels per car |
Portugal | Vehicle turnover tax | Type of vehicle | In euros per year |
Slovakia | Transport tax | Vehicle type and weight | In euros per year |
Romania | Annual transport tax | Volume of engine cylinders | In Romanian lei for 500 cm3 |
Turkey | Vehicle ownership tax | Type, age and volume of engine cylinders | In euros per year |
Country | Type | Weight | Type of Fuel | Volume of Engine Cylinders | CO2 Emissions | Cost | Age |
---|---|---|---|---|---|---|---|
Czech Republic | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Finland | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
France | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Ireland | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
Israel | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Portugal | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
Romania | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
Slovakia | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Turkey | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | 3.26 × 10−6 | 0.0000 | 0.32 | 0.752 | −0.0000 | 0.0000 |
Dummy_Type | 0.0375 *** | 0.0099 | 3.78 | 0.000 | 0.0180 | 0.0570 |
Constant | 0.2850 *** | 0.0295 | 9.64 | 0.000 | 0.2271 | 0.3430 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 14.70 | |||||
Prob > chi2 | 0.0006 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | 4.84 × 10−6 | 9.49 × 10−6 | 0.51 | 0.610 | −0.0000 | 0.0000 |
Dummy_Weight | 0.0272 ** | 0.0122 | 2.22 | 0.027 | 0.0031 | 0.0513 |
Constant | 0.2998 *** | 0.0237 | 12.65 | 0.000 | 0.2534 | 0.3463 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 6.09 | |||||
Prob > chi2 | 0.0477 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | 1.89 × 10−6 | 0.0000 | 0.18 | 0.854 | −0.0000 | 0.0000 |
Dummy_Fuel | 0.0168 | 0.0167 | 1.01 | 0.314 | −0.0159 | 0.0496 |
Constant | 0.3092 *** | 0.0265 | 11.67 | 0.000 | 0.2572 | 0.3611 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 1.01 | |||||
Prob > chi2 | 0.6021 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | 1.34 × 10−6 | 0.0000 | 0.13 | 0.900 | −0.0000 | 0.0000 |
Dummy_Capacity | 0.0134 | 0.0210 | 0.64 | 0.522 | −0.0277 | 0.0546 |
Constant | 0.3024 *** | 0.0400 | 7.56 | 0.000 | 0.2240 | 0.3808 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 0.63 | |||||
Prob > chi2 | 0.7300 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | −4.77 × 10−7 | 0.0000 | −0.04 | 0.966 | −0.0000 | 0.0000 |
Dummy_Emissions | 0.0186 | 0.0196 | 0.95 | 0.343 | −0.0198 | 0.0571 |
Constant | 0.3065 *** | 0.0216 | 14.17 | 0.000 | 0.2641 | 0.3489 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 1.90 | |||||
Prob > chi2 | 0.3874 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | 9.11 × 10−7 | 0.0000 | 0.09 | 0.929 | −0.0000 | 0.0000 |
Dummy_Price | −0.0807 *** | 0.0104 | −7.75 | 0.000 | −0.1011 | −0.0603 |
Constant | 0.3204 *** | 0.0269 | 11.88 | 0.000 | 0.2675 | 0.3738 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 68.31 | |||||
Prob > chi2 | 0.0000 |
Variable | Coefficient | Std. Error | t-Value | p-Value | Lower 95% | Higher 95% |
---|---|---|---|---|---|---|
ETR | 0.0000 *** | 7.02 × 10−6 | 3.19 | 0.001 | 8.62 × 10−6 | 0.0000 |
Dummy_Age | −0.0955 *** | 0.0244 | −3.91 | 0.000 | −0.1434 | −0.0475 |
Constant | 0.3170 *** | 0.0271 | 11.69 | 0.000 | 0.2639 | 0.3702 |
Model-adequacy parameters | ||||||
Wald chi2(2) | 39.45 | |||||
Prob > chi2 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samusevych, Y.; Lyeonov, S.; Artyukhov, A.; Martyniuk, V.; Tenytska, I.; Wyrwisz, J.; Wojciechowska, K. Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth. Sustainability 2023, 15, 831. https://doi.org/10.3390/su15010831
Samusevych Y, Lyeonov S, Artyukhov A, Martyniuk V, Tenytska I, Wyrwisz J, Wojciechowska K. Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth. Sustainability. 2023; 15(1):831. https://doi.org/10.3390/su15010831
Chicago/Turabian StyleSamusevych, Yaryna, Serhiy Lyeonov, Artem Artyukhov, Volodymyr Martyniuk, Iryna Tenytska, Joanna Wyrwisz, and Krystyna Wojciechowska. 2023. "Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth" Sustainability 15, no. 1: 831. https://doi.org/10.3390/su15010831
APA StyleSamusevych, Y., Lyeonov, S., Artyukhov, A., Martyniuk, V., Tenytska, I., Wyrwisz, J., & Wojciechowska, K. (2023). Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth. Sustainability, 15(1), 831. https://doi.org/10.3390/su15010831