Grafting Technology with Locally Selected Eggplant Rootstocks for Improvement in Tomato Performance
Abstract
:1. Introduction
2. Materials and Methods
- Control (without grafting)
- Gelatik varieties of eggplant as a rootstocks
- Line of EG 203 of eggplant as a rootstock
- Takokak of eggplant as a rootstock
3. Results and Discussion
3.1. Dynamics of Disease Incidence
3.2. Generative Stages
3.3. Production of Tomatoes
3.4. Fruit Characteristics
3.5. Fruit Contents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source | Sum of Square | df | Mean Square | F | p > F |
---|---|---|---|---|---|
Model | 77,831.555 a | 72 | 1,080.994 | 431.469 | 0.000 |
Grafted | 28,289.112 | 3 | 9,429.704 | 3,763.783 | 0.000 |
Variety | 8,124.325 | 2 | 4,062.163 | 1,621.376 | 0.000 |
Grafted × Variety | 12,819.812 | 6 | 2,136.635 | 852.819 | 0.000 |
Grafted × Time | 3,185.523 | 15 | 212.368 | 84.765 | 0.000 |
Variety × Time | 1,049.399 | 10 | 104.940 | 41.886 | 0.000 |
Grafted × Variety × Time | 1,657.151 | 30 | 55.238 | 22.048 | 0.000 |
Error | 360.775 | 144 | 2.505 | ||
Total | 78,192.330 | 216 |
Source | Sum of Squares | df | Mean Square | F | p > F |
---|---|---|---|---|---|
Flowering age (DAT) | |||||
Replication | 21.0555556 | 2 | 10.52777778 | 4.606629834 | |
Varieties | 202.8888889 | 11 | 18.44444444 | 8.070718232 | 1.9 × 10−5 |
Error | 50.2777778 | 22 | 2.28535354 | ||
Total | 274.2222222 | 35 | 7.83492064 | ||
Number of Flower (Flower/plant) | |||||
Replication | 3,712.38889 | 2 | 1,856.194444 | 4.99122693 | |
Varieties | 29,080.88889 | 11 | 2,643.717172 | 7.10884164 | 5.2 × 10−5 |
Error | 8,181.61111 | 22 | 371.891414 | ||
Total | 40,974.88889 | 35 | 1,170.711111 | ||
Number Fruit Set (%) | |||||
Replication | 1.722222222 | 2 | 0.861111111 | 0.187671987 | |
Varieties | 10,158.30556 | 11 | 923.4823232 | 201.2652724 | 2.0 × 10−19 |
Error | 100.9444444 | 22 | 4.588383838 | ||
Total | 10,260.97222 | 35 | 293.1706349 |
Source | Sum of Squares | df | Mean Square | F | p > F |
---|---|---|---|---|---|
Time to early age (DAT) | |||||
Replication | 40.05555556 | 2 | 20.02777778 | 1.636269858 | |
Varieties | 636.2222222 | 11 | 57.83838384 | 4.725397153 | 0.000962 |
Error | 269.2777778 | 22 | 12.23989899 | ||
Total | 945.5555556 | 35 | 27.01587302 | ||
Number of fruit/plant | |||||
Replication | 1497.625817 | 2 | 748.8129083 | 3.894014193 | |
Varieties | 48612.3982 | 11 | 4419.308927 | 22.98151046 | 1.5 × 10−9 |
Error | 4230.565983 | 22 | 192.2984538 | ||
Total | 54340.59 | 35 | 1552.588286 | ||
Weight of fruit (g/plant) | |||||
Replication | 7513428.222 | 2 | 3756714.111 | 6.3483301 | |
Varieties | 162789261.2 | 11 | 14799023.75 | 25.00831448 | 6.7 × 10−10 |
Error | 13018811.11 | 22 | 591764.1414 | ||
Total | 183321500.6 | 35 | 5237757.159 | ||
Yield (t∙ha−1) | |||||
Replication | 29.20621667 | 2 | 14.60310833 | 2.793267704 | |
Varieties | 5526.696408 | 11 | 502.4269462 | 96.10371509 | 5.8 × 10−16 |
Error | 115.01525 | 22 | 5.227965909 | ||
Total | 5670.917875 | 35 | 162.026225 |
Source | Sum of Squares | df | Mean Square | F | p > F |
---|---|---|---|---|---|
Length of fruit (cm) | |||||
Replication | 46.87262222 | 11 | 4.261147475 | 45.51857117 | |
Varieties | 1.152438889 | 2 | 0.576219444 | 6.1553105 | 0.00753243 |
Error | 2.059494444 | 22 | 0.093613384 | ||
Total | 50.08455556 | 35 | 1.430987302 | ||
Diameter of fruit (cm) | |||||
Replication | 14.89008889 | 11 | 1.353644444 | 81.7849656 | |
Varieties | 0.320205556 | 2 | 0.160102778 | 9.673145874 | 0.000967937 |
Error | 0.364127778 | 22 | 0.016551263 | ||
Total | 15.57442222 | 35 | 0.444983492 | ||
Weight of fruit (g) | |||||
Replication | 2.451805556 | 2 | 1.225902778 | 0.158506513 | |
Varieties | 15242.14576 | 11 | 1385.649615 | 179.1614247 | 7.1 × 10−19 |
Error | 170.1498611 | 22 | 7.734084596 | ||
Total | 15414.74743 | 35 | 440.4213552 |
Source | Sum of Squares | df | Mean Square | F | p > F |
---|---|---|---|---|---|
Vitamin C content | |||||
Replication | 0.000682722 | 2 | 0.000341361 | 0.208282038 | |
Varieties | 2.046082536 | 11 | 0.186007503 | 113.4927811 | 9.7 × 10−17 |
Error | 0.036056611 | 22 | 0.001638937 | ||
Total | 2.08282187 | 35 | 0.059509196 | ||
TSS (Brix) | |||||
Replication | 0.166666667 | 2 | 0.083333333 | 3.14285714 | |
Varieties | 33.5625 | 11 | 3.051136364 | 115.071429 | 8.4 × 10−17 |
Error | 0.583333333 | 22 | 0.026515152 | ||
Total | 34.3125 | 35 | 0.980357143 | ||
Hardness | |||||
Replication | 4.270555556 | 2 | 2.135277778 | 0.189933355 | |
Varieties | 285.6830556 | 11 | 25.97118687 | 2.310141894 | 0.045541 |
Error | 247.3294444 | 22 | 11.24224747 | ||
Total | 537.2830556 | 35 | 15.35094444 | ||
Water content | |||||
Replication | 2.246666667 | 2 | 1.123333333 | 1.816266536 | |
Varieties | 28.00666667 | 11 | 2.546060606 | 4.116609505 | 0.002307 |
Error | 13.60666667 | 22 | 0.618484848 | ||
Total | 43.86 | 35 | 1.253142857 | ||
Colour intensity (L) | |||||
Replication | 3.401666667 | 2 | 1.700833333 | 1.514197073 | |
Varieties | 228.5941667 | 11 | 20.78128788 | 18.5009105 | 1.2 × 10−8 |
Error | 24.71166667 | 22 | 1.123257576 | ||
Total | 256.7075 | 35 | 7.3345 | ||
Colour intensity (a+) | |||||
Replication | 8.523888889 | 2 | 4.261944444 | 1.040658778 | |
Varieties | 382.3947222 | 11 | 34.76315657 | 8.488281467 | 1.3 × 10−5 |
Error | 90.09944444 | 22 | 4.095429293 | ||
Total | 481.0180556 | 35 | 13.74337302 | ||
Colour intensity (b+) | |||||
Replication | 15.36347222 | 2 | 7.681736111 | 4.876608621 | |
Varieties | 631.3407639 | 11 | 57.3946149 | 36.43591367 | 1.5 × 10−11 |
Error | 34.65486111 | 22 | 1.57522096 | ||
Total | 681.3590972 | 35 | 19.46740278 | ||
Lycopene levels | |||||
Replication | 0.000193898 | 2 | 9.6949 × 10−5 | 1.926509837 | |
Varieties | 0.267789301 | 11 | 0.024344482 | 483.7572456 | 1.4 × 10−23 |
Error | 0.001107123 | 22 | 5.0324 × 10−5 | ||
Total | 0.269090322 | 35 | 0.007688295 |
References
- Wijaya, A.F.; Kuntariningsih, A.; Sarwono, S.; Suryono, A. Malnutrition mitigation and community empowerment through the sustainable food reserve programme in Indonesia. Dev. Pract. 2021, 31, 37–48. [Google Scholar] [CrossRef]
- Wijaya, A.F.; Kuntariningsih, A.; Sarwono, S.; Suryono, A. Role and contribution of vegetables in mitigating malnutrition through a sustainable food reserve program. Int. J. Veg. Sci. 2021, 27, 65–75. [Google Scholar] [CrossRef]
- Gatahi, D.M. Challenges and Opportunities in Tomato Production Chain and Sustainable Standards. Int. J. Hortic. Sci. Technol. 2020, 7, 235–262. [Google Scholar]
- Garrido, J.; Luque-Romero, J. Integrated pest management in mediterranean greenhouses. European Crop Protection; Cajamar: Almeria, Spain, 2014. [Google Scholar]
- Mariyono, J.; Kompas, T.; Grafton, R.Q. Shifting from Green Revolution to environmentally sound policies: Technological change in Indonesian rice agriculture. J. Asia Pac. Econ. 2010, 15, 128–147. [Google Scholar] [CrossRef]
- Mariyono, J. Socially inefficient use of pesticides due to negative externalities: A case of Indonesian rice agriculture. Int. J. Ecol. Dev. 2009, 13, 93–107. [Google Scholar]
- De la Pena, R.; Hughes, J. Improving vegetable productivity in a variable and changing climate. SAT eJournal 2007, 4, 1–22. [Google Scholar]
- Schreinemachers, P.; Afari-Sefa, V.; Heng, C.H.; Dung, P.T.M.; Praneetvatakul, S.; Srinivasan, R. Safe and sustainable crop protection in Southeast Asia: Status, challenges and policy options. Env. Sci. Policy 2015, 54, 357–366. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Plant Propagation: Principles and Practices; Prentice Hall: New York, NY, USA, 2001. [Google Scholar]
- Midmore, D.J.; Roan, Y.; Wu, M. Management Practices To Improve Lowland Subtropical Summer Tomato Production: Yields, Economic Returns And Risk. Exp. Agric. 1997, 33, 125–137. [Google Scholar] [CrossRef]
- Schwarz, D.; Oztekin, G.; Tuzel, Y.; Brucknera, B.; Krumbeina, A. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Sci. Hort. 2013, 149, 70–79. [Google Scholar] [CrossRef]
- Petran, J.A. Interspecific Grafting of Tomato (Solanum lycopersicum) onto Wild Eggplant (Solanum torvum) for Increased Environmental Tolerances. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, September 2013. [Google Scholar]
- Kariada, K.; Aribawa, I. Grafting of tomato with eggplant rootstock at Panyabangan Village Payangan subdistrict of Gianyar Bali. In Proceedings of the 2nd International Conference on Sustainable Agriculture and Food Security: A Comprehensive Approach, Jatinangor, Indonesia, 12–13 October 2015. [Google Scholar]
- Sánchez-Rodríguez, E.; Ruiz, J.M.; Ferreres, F.; Moreno, D.A. Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem. 2012, 134, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Rahmatian, A.; Motjaba, D.; Reza, S. Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Hortic. Environ. Biotechnol. 2014, 55, 115–119. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Hassell, R.; Levi, A.; King, S.R.; Zhang, W. Grafting effects on vegetable quality. HortScience 2008, 43, 1670–1672. [Google Scholar] [CrossRef]
- Vrcek, I.V.; Samobor, V.; Bojic, M.; Medicsaric, M.; Vukobratovic, M.; Erhatic, R.; Horvat, D.; Matotan, Z. The effect of grafting on the antioxidant properties of tomato (Solanum lycopersicum L.). Span. J. Agric. Res. 2011, 9, 844–851. [Google Scholar] [CrossRef]
- Yassin, H.; Hussen, S. Review on role of grafting on yield and quality of selected fruit vegetables. Glob. J. Sci Front Res. 2015, 15, 1–17. [Google Scholar]
- Achim, G.; Botu, I. Results in walnut propagation using different methods. Acta Hortic. 2001, 544, 503–509. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Vahdati, K. Improved success of Persian walnut grafting under environmentally controlled conditions. Int. J. Fruit Sci. 2007, 6, 3–12. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hort. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Som, P.B.; Madhava, S.R. Evaluation of tomato varieties for pest and disease adaptation and productivity in Botswana. Int. J. Agric. Food Res. 2013, 2, 20–29. [Google Scholar]
- Nur Fitriana, Y.A.; Fitri, A.S. Analisis Kadar Vitamin C pada Buah Jeruk Menggunakan Metode Titrasi Iodometri (Analysis of Vooooitamin C Levels in Citrus Fruits Using the Iodometric Titration Method). Sainteks 2020, 17, 27–32. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, S.K.; Le Maguer, M. Lycopene in Tomatoes and Tomato Pulp Fractions. Ital. J. Food Sci. 1996, 8, 107–113. [Google Scholar]
- Regina, A.; Maimunah; dan Yovita, L. Penentuan Aktivitas Antioksidan, Kadar Fenolat Total dan Likopen pada Buah Tomat (Solanum lycopersicum L.). J. Sains Dan Teknol. Farm. 2008, 13, 31–37. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agriculture Research, 2nd ed.; John Wiley Sons: Los Banos, Philippines, 1984. [Google Scholar]
- Suhartiningsih. Penyakit Layu Bakteri Masih Ancam Petani Tomat. 2015. Available online: https://ugm.ac.id/id/berita/10002-penyakit.layu.bakteri.masih.ancam.petani.tomat (accessed on 28 March 2021).
- Manickam, R.; Chen, J.-R.; Sotelo-Cardona, P.; Kenyon, L.; Srinivasan, R. Evaluation of Different Bacterial Wilt Resistant Eggplant Rootstocks for Grafting Tomato. Plants 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.G.; Everts, K.L. Races and inoculum density of Fusarium oxysporum f. sp. niveum in commercial watermelon fields in Maryland and Delaware. Plant Dis. 2003, 87, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Oztekin, G.B.; Tuzel, Y. Effects of Grafting on Organic Seedling Quality and Tomato Production in Greenhouse. Tekirdağ Ziraat Fakültesi Dergisi 2017, 41–47. [Google Scholar]
- Azis, A.A.H.; Al Omran, R.A.; Alqardaeai, T.; Razzak, A.H.; Khadejah, A.; Saad, M.; Obiad, A. Tomato grafting impacts on yield and fruit quality under water stress conditions. J. Exp. Biol. Agric. Sci. 2017, 5, 137–5147. [Google Scholar]
- Melnyk, C.W.; Meyerowitz, E.M. Plant grafting. Cur. Bio. 2015, 25, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.P. Cultivation of grafted plants, I. Current status, grafting methods and benefits. HortScience 1994, 29, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Turhan, A.; Ozmen, N.; Serbeci, M.; Seniz, V. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic. Sci. 2011, 38, 142–149. [Google Scholar] [CrossRef]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hort. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Qi, H.; Li, T.; Liu, Y. Effects of grafting on photosynthesis characteristics, yield, and sugar content in melon. J. Shenyang Agric. Univ. 2006, 37, 155–158. [Google Scholar]
- Salam, M.A.; Masum, A.S.M.H.; Chowdhury, S.S.; Dhar, M.; Saddeque, A.; Islam, M.R. Growth and yield of watermelon as influenced by grafting. J. Biol. Sci. 2002, 2, 298–299. [Google Scholar]
- Murti, R.H.; Kurniawati, T.; Nasrullah. Pola pewarisan karakter buah tomat (Pattern of inheritance of tomato characters). Zuriat J. 2004, 15, 140–149. [Google Scholar]
- Ambarwati, E.; Maya, G.A.P.; Trinowati, S.; Murti, R.H. Mutu buah tomat dua galur harapan keturunan “GM3” dengan Gondol Putih. (Fruit quality of two tomato lines “GM3” with Gondol Putih). In Proceedings of the Seminar Nasional Hasil Penelitian Pertanian dan Perikanan “Peranan Penelitian Bidang Pertanian dan Perikanan dalam Mewujudkan Kedaulatan Pangan untuk Kesejahteraan Petani dan Masyarakat” (National Seminar on Agriculture and Fisheries Research Results on The Role of Research in Agriculture and Fisheries in Achieving Food Sovereignty for the Welfare of Farmers and Communities), Yogyakarta, Indonesia, 1–2 September 2012. [Google Scholar]
- Musa, I.; Rafii, M.Y.; Ahmad, K.; Ramlee, S.I.; Md Hatta, M.A.; Oladosu, Y.; Muhammad, I.; Chukwu, S.C.; Mat Sulaiman, N.N.; Ayanda, A.F.; et al. Effects of Grafting on Morphophysiological and Yield Characteristic of Eggplant (Solanum melongena L.) Grafted onto Wild Relative Rootstocks. Plants 2020, 9, 1583. [Google Scholar] [CrossRef]
- Mohammed, M.; Wilson, L.A.; Gomes, P.L. Postharvest sensory and physiochemical attributes of processing and non-processing tomato cultivar. J. Food Qual. 1999, 22, 167–182. [Google Scholar] [CrossRef]
- Tigist, M.; Tilahun, S.W.; Kebede, W. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Saiduna; Madkar, O.R. Pengaruh Suhu dan Tingkat Kematangan Buah terhadap Mutu dan Lama Simpan Tomat (Lycopersicum esculentum Mill.). J. Agroswagati 2013, 1, 43–50. [Google Scholar]
- Zhu, J.; Bie, Z.L.; Huang, Y.; Han, X.Y. Effects of different grafting methods on the grafting work efficiency and growth of cucumber seedlings. China Veg. 2006, 15, 24–25. [Google Scholar]
- Yetisir, H.; Sari, N.; Yncel, S. Rootstock resistance to Fusarium wilt and effect on water melon fruit yield and quality. Phytoparasitica 2003, 31, 163–169. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; López-Pérez, L.; Hernández, M.; López-Berenguer, C.; Fernández-García, N.; Carvajal, M. Agriculture practices for enhanced human health. Phytochem. Rev. 2008, 7, 251–260. [Google Scholar] [CrossRef]
- Fernández-García, N.; Martinez, V.; Carvajal, M. Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. J. Plant Nutr. Soil Sci. 2004, 167, 616–622. [Google Scholar] [CrossRef]
- Miguel, A.; Maroto, J.; Bautista, A.S.; Baixauli, C.; Cebolla, V.; Pascual, B.; López, S.; Guardiola, J. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci. Hort. 2004, 103, 9–17. [Google Scholar] [CrossRef]
- Di Gioia, F.; Serio, F.; Buttaro, D.; Ayala, O.; Santamaria, P. Vegetative growth, yield, and fruit quality of ‘Cuore di Bue’, an heirloom tomato, as influenced by rootstock. J. Hort. Sci. Biotechnol. 2010, 85, 477–482. [Google Scholar] [CrossRef]
- Ellenberger, J.; Bulut, A.; Blömeke, P.; Röhlen-Schmittgen, S. Novel S. pennellii × S. lycopersicum Hybrid Rootstocks for Tomato Production with Reduced Water and Nutrient Supply. Horticulturae 2021, 7, 355. [Google Scholar] [CrossRef]
- Sahid, O.T.; Murti, R.H.; Trisnowati, S. Hasil dan mutu enam galur terung (Solanum melongena L.) (Yield and quality of six eggplants (Solanum melongena L.) lines). Vegetalika 2014, 3, 45–58. [Google Scholar]
- Ryall, M.; Lipton, L. Tomatoes commodity requirements of ryie fruits handling. In Transportation and Storage of Fruit and Vegetables; The AVI Publ. Con.: West Point, CT, USA, 1972. [Google Scholar]
- Julianti, E. Pengaruh tingkat kematangan dan suhu penyimpanan terhadap mutu buah terong belanda (Effect of maturity and temperature storage on quality of Dutch eggplant) (Cyphomandra betacea). J. Hort. Indones. 2011, 2, 14–20. [Google Scholar] [CrossRef]
- Arthur, J.D.; Li, T.; Lalk, G.T.; Bi, G. High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks. Horticulturae 2021, 7, 319. [Google Scholar] [CrossRef]
- Wuryani, S.; Heti, H.; Dedik, S. Respon kualitas hasil tomat cherry (Lycopersicon cerasiforme Mill.) terhadap penggunaan teknologi sonic bloom dengan berbagai pupuk daun (Quality response of cherry tomato (Lycopersicon cerasiforme Mill.) toward use of sonic bloom technology with various foliar fertilizers). Agrivet 2014, 18, 1–5. [Google Scholar]
- Woodall, A.A.; Lee, S.W.; Weesie, R.J.; Jackson, M.J.; Britton, G. Oxidation of carotenoids by free radicals, relationship between structure and reactivity. Biochim. Biophys. Acta 1997, 1336, 33–42. [Google Scholar] [CrossRef]
- Rana, N.; Kumar, M.; Walia, A.; Sharma, S. Tomato fruit quality under protected environment and open field conditions. Int. J. Bio-Resour. Stress Manag. 2014, 5, 422–426. [Google Scholar] [CrossRef]
- Naik, S.; Hongal, S.; Harshavardhan, M.; Chandan, K.; Kumar, A.; Ashok; Kyriacou, M.; Rouphael, Y.; Kumar, P. Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse Soil. Agronomy 2021, 11, 1311. [Google Scholar] [CrossRef]
Treatment | b Flowering Period (DAT) | b Number of Flowers | b Fruit Set (%) | |||
---|---|---|---|---|---|---|
Control (non-grafted) | ||||||
Cervo variety | 27.00 | bc | 126.67 | a | 60.33 | cd |
Karina variety | 29.00 | cde | 87.33 | ab | 38.33 | a |
Timoty variety | 23.67 | a | 114.7 | a–d | 61.67 | d |
a RS Gelatik eggplant (grafted) | ||||||
Scion Cervo variety | 28.67 | cd | 156 | ef | 85.33 | i |
Scion Karina variety | 30.67 | e | 115 | a–d | 58.67 | c |
Scion Timoty variety | 27.00 | bc | 150 | def | 75.33 | f |
a RS EG203 line (grafted) | ||||||
Scion Cervo variety | 27.33 | bc | 161.7 | f | 86.33 | i |
Scion Karina variety | 33.33 | f | 83 | a | 43.00 | b |
Scion Timoty variety | 27.33 | bc | 173 | f | 73.33 | e |
a RS Takokak (grafted) | ||||||
Scion Cervo variety | 28.33 | c | 124.3 | c–e | 79.00 | g |
Scion Karina variety | 30.33 | cde | 92.3 | a–c | 41.67 | b |
Scion Timoty variety | 26.00 | b | 123 | b–e | 83.33 | h |
LSD 5% | 1.6 | 16.3 | 1.81 | |||
CV | 6.7 | 15.0 | 3.3 |
Treatment | b First Harvest (DAT) | b Number of Fruits/Plant | b Weight of Fruit (kg/Plant) | b Yield (t∙ha−1) | ||||
---|---|---|---|---|---|---|---|---|
Control (non-grafted) | ||||||||
Cervo variety | 59 | b | 76.4 | bc | 3.833 | b | 24.53 | b |
Karina variety | 56 | b | 33.7 | a | 0.901 | a | 4.46 | a |
Timoty variety | 51 | a | 70.9 | bc | 3.389 | b | 22.13 | b |
a RS Gelatik eggplant (grafted) | ||||||||
Scion Cervo variety | 60 | c | 133.8 | e | 5.913 | c | 34.27 | de |
Scion Karina variety | 65 | d | 67.8 | bc | 1.042 | a | 4.51 | a |
Scion Timoty variety | 60 | c | 113.3 | de | 5.654 | c | 29.47 | c |
a RS EG203 line (grafted) | ||||||||
Scion Cervo variety | 66 | d | 140.0 | e | 6.106 | c | 35.50 | e |
Scion Karina variety | 66 | d | 36.0 | a | 1.153 | a | 4.57 | a |
Scion Timoty variety | 60 | c | 127.3 | e | 5.472 | c | 30.12 | c |
a RS Takokak (grafted) | ||||||||
Scion Cervo variety | 64 | d | 98.7 | cd | 5.540 | c | 30.25 | cd |
Scion Karina variety | 64 | d | 38.7 | a | 0.879 | a | 4.69 | a |
Scion Timoty variety | 59 | b | 102.6 | d | 5.671 | c | 30.74 | cd |
LSD 5% | 3.1 | 11.74 | 0.651 | 3.80 | ||||
CV | 6.1 | 16.01 | 20 | 11.0 |
Treatment | b Fruit Length (cm) | b Fruit Width (cm) | b Fruit Weight (g) | |||
---|---|---|---|---|---|---|
Control (non-grafted) | ||||||
Cervo variety | 5.0 | e | 3.99 | d | 68.80 | d |
Karina variety | 2.2 | a | 2.81 | a | 20.07 | a |
Timoty variety | 3.9 | c | 2.90 | a | 53.33 | c |
a RS Gelatik eggplant (grafted) | ||||||
Cervo variety | 4.5 | d | 4.29 | e | 69.30 | d |
Karina variety | 2.3 | a | 2.81 | a | 21.33 | a |
Timoty variety | 4.03 | c | 3.85 | c | 54.10 | c |
a RS EG203 line (grafted) | ||||||
Cervo variety | 5.3 | f | 4.25 | e | 72.40 | d |
Karina variety | 2.2 | a | 2.90 | a | 22.60 | ab |
Timoty variety | 4.0 | c | 4.10 | d | 53.67 | c |
a RS Takokak (grafted) | ||||||
Cervo variety | 5.4 | f | 4.80 | f | 78.83 | e |
Karina variety | 2.7 | b | 3.20 | b | 27.33 | b |
Timoty variety | 4.0 | c | 4.10 | d | 51.50 | c |
LSD 5% | 0.2 | 0.11 | 4.80 | |||
CV | 8.1 | 3.36 | 5.60 |
Treatment | b Vit C Content (%) | b TDS (Brix) | b Fruit Hardness (mm∙g−1∙s−1) | b Water Content (%) | b Red Colour Intensity | b Lycopene Content (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | a+ | b+ | ||||||||||||||
Control (Non-grafted) | ||||||||||||||||
Cervo variety | 0.23 | ab | 3 | b | 30.33 | a | 96.7 | d | 44.0 | e | 30.5 | b | 27.8 | h | 0.18 | ab |
Karina variety | 0.27 | a | 5 | e | 31.67 | ab | 95.5 | c | 38.7 | ab | 31.6 | bc | 19.3 | b | 0.17 | a |
Timoty variety | 0.53 | a | 3 | b | 31.67 | ab | 95.8 | c | 39.7 | b | 37.1 | g | 22.7 | de | 0.31 | i |
a RS Gelatik eggplant (grafted) | ||||||||||||||||
Cervo variety | 0.22 | a | 4.5 | d | 36.00 | cde | 93.8 | a | 39.3 | ab | 35.6 | g | 20.9 | c | 0.27 | g |
Karina variety | 0.31 | a | 5 | e | 33.63 | bc | 94.6 | b | 38.5 | a | 28.1 | a | 16.6 | a | 0.21 | de |
Timoty variety | 0.93 | a | 3 | b | 38.20 | e | 93.9 | a | 41.6 | d | 36.0 | fg | 23.2 | de | 0.24 | f |
a RS EG203 line (grafted) | ||||||||||||||||
Cervo variety | 0.25 | a | 3.3 | c | 37.07 | de | 94.3 | b | 41.7 | d | 34 | ef | 24.4 | f | 0.44 | k |
Karina variety | 0.78 | a | 5 | e | 34.33 | b-d | 94.0 | a | 47.8 | f | 28.1 | a | 34.1 | i | 0.42 | j |
Timoty variety | 0.65 | a | 2.8 | a | 32.60 | ab | 95.7 | c | 40.7 | c | 33.7 | de | 22.5 | d | 0.28 | h |
a RS Takokak (grafted) | ||||||||||||||||
Cervo variety | 0.16 | a | 5 | e | 38.57 | e | 94.1 | b | 41.7 | d | 33.2 | cd | 23.7 | ef | 0.2 | cd |
Karina variety | 0.25 | a | 5 | e | 38.47 | e | 94.3 | b | 43.5 | e | 26.6 | a | 25.8 | g | 0.19 | bc |
Timoty variety | 0.37 | a | 5 | e | 32.83 | ab | 95.6 | c | 41.4 | cd | 34.4 | ef | 24.4 | f | 0.22 | e |
LSD 5% | 2.15 | 0.1 | 2.8 | 0.68 | 0.89 | 1.71 | 1.1 | 0.01 | ||||||||
CV | 6.17 | 4.0 | 9.7 | 0.85 | 2.6 | 6.33 | 5.3 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latifah, E.; Antarlina, S.S.; Sugiono, S.; Handayati, W.; Mariyono, J. Grafting Technology with Locally Selected Eggplant Rootstocks for Improvement in Tomato Performance. Sustainability 2023, 15, 855. https://doi.org/10.3390/su15010855
Latifah E, Antarlina SS, Sugiono S, Handayati W, Mariyono J. Grafting Technology with Locally Selected Eggplant Rootstocks for Improvement in Tomato Performance. Sustainability. 2023; 15(1):855. https://doi.org/10.3390/su15010855
Chicago/Turabian StyleLatifah, Evy, Sri Satya Antarlina, Sugiono Sugiono, Wahyu Handayati, and Joko Mariyono. 2023. "Grafting Technology with Locally Selected Eggplant Rootstocks for Improvement in Tomato Performance" Sustainability 15, no. 1: 855. https://doi.org/10.3390/su15010855
APA StyleLatifah, E., Antarlina, S. S., Sugiono, S., Handayati, W., & Mariyono, J. (2023). Grafting Technology with Locally Selected Eggplant Rootstocks for Improvement in Tomato Performance. Sustainability, 15(1), 855. https://doi.org/10.3390/su15010855