Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0
Abstract
:1. Introduction
2. Background
2.1. Blockchain Types
2.2. Consensus Algorithm
2.2.1. Competency-Based Proof Algorithm
2.2.2. Hybrid Consensus Algorithm
2.2.3. Common Algorithms in Alliance Chains
3. Consensus Algorithm Based on Contributor Weight Proof
3.1. Primary Node Selection Method and New Node Protection Mechanism
3.2. Weightage to Contributors
3.3. WtCPBFT Consensus Algorithm
3.3.1. Concept of the Algorithm
3.3.2. Algorithm Flow
3.3.3. Blacklist Mechanism
4. Case Study and Analysis of Results
4.1. Algorithm Data Collection
4.2. Computing Power Cost
4.3. Transaction Throughput
4.4. Fault Tolerance Performance
4.5. Correlation of Proposed Research in Food Supply Chain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBFT | Practical Byzantine fault tolerance |
WtC | Weightage to contributors |
TPS | Transactions per second |
WtCPBFT | Weight to contributors practical Byzantine fault tolerance |
IR4.0 | Industrial Revolution 4.0 |
SG-PBFT | Score Grouping-PBFT |
PPLNS | Pay Per Last N Share |
PPS | Pay Per Share |
ASICs | Application-specific integrated circuits |
CPU | Central Processing Unit |
GPU | Graphics Processing Unit |
PoW | Proof of work |
PoS | Proof of stake |
DPoS | Delegated proof of stake |
IBFT | Istanbul Byzantine fault tolerance |
POL | Proof of luck |
PoB | Proof of burning |
NSTP | Number of successful transactions in the PBFT test/200 transactions |
STR | Successful transaction rate |
SMS | Simple malicious nodes |
SMR | Dishonest recommended nodes |
CM | Coordinated malicious nodes |
SMP | Strategic malicious nodes |
References
- Rehman Khan, S.A.; Yu, Z.; Sarwat, S.; Godil, D.I.; Amin, S.; Shujaat, S. The role of block chain technology in circular economy practices to improve organisational performance. Int. J. Logist. Res. Appl. 2022, 25, 605–622. [Google Scholar] [CrossRef]
- Hunt, K.; Narayanan, A.; Zhuang, J. Blockchain in humanitarian operations management: A review of research and practice. Socio-Econ. Plan. Sci. 2022, 80, 101175. [Google Scholar] [CrossRef]
- Shokri, A.; Shokri, A.; White, D.; Gelski, R.; Goldberg, Y.; Harrison, S.; Rashidi, T.H. EnviroCoin: A Holistic, Blockchain Empowered, Consensus-Based Carbon Saving Unit Ecosystem. Sustainability 2022, 14, 6979. [Google Scholar] [CrossRef]
- Moudoud, H.; Cherkaoui, S.; Khoukhi, L. An IoT blockchain architecture using oracles and smart contracts: The use-case of a food supply chain. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Hajiaghayi, M.T.; Kowalski, D.R.; Olkowski, J. Improved communication complexity of fault-tolerant consensus. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, 20–24 June 2022; pp. 488–501. [Google Scholar]
- Trinh, M.H.; Van Vu, D.; Van Tran, Q.; Ahn, H.S. Matrix-Scaled Consensus. In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancún, Mexico, 6–9 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 346–351. [Google Scholar]
- Korkmaz, K.; Bruneau-Queyreix, J.; Mokhtar, S.B.; Réveillère, L. ALDER: Unlocking blockchain performance by multiplexing consensus protocols. In Proceedings of the 2022 IEEE 21st International Symposium on Network Computing and Applications (NCA), Boston, MA, USA, 14–16 December 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 21, pp. 9–18. [Google Scholar]
- Manolache, M.A.; Manolache, S.; Tapus, N. Decision making using the blockchain proof of authority consensus. Procedia Comput. Sci. 2022, 199, 580–588. [Google Scholar] [CrossRef]
- Rajawat, A.S.; Goyal, S.B.; Bedi, P.; Simoff, S.; Jan, T.; Prasad, M. Smart Scalable ML-Blockchain Framework for Large-Scale Clinical Information Sharing. Appl. Sci. 2022, 12, 795. [Google Scholar] [CrossRef]
- Yang, K.; Li, C.; Jing, X.; Zhu, Z.; Wang, Y.; Ma, H.; Zhang, Y. Energy dispatch optimization of islanded multi-microgrids based on symbiotic organisms search and improved multi-agent consensus algorithm. Energy 2022, 239, 122105. [Google Scholar] [CrossRef]
- Xiong, H.; Chen, M.; Wu, C.; Zhao, Y.; Yi, W. Research on progress of blockchain consensus algorithm: A review on recent progress of blockchain consensus algorithms. Future Internet 2022, 14, 47. [Google Scholar] [CrossRef]
- Xu, G.; Bai, H.; Xing, J.; Luo, T.; Xiong, N.N.; Cheng, X.; Liu, S.; Zheng, X. SG-PBFT: A secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles. J. Parallel Distrib. Comput. 2022, 164, 1–11. [Google Scholar] [CrossRef]
- Mazzoni, M.; Corradi, A.; Di Nicola, V. Performance evaluation of permissioned blockchains for financial applications: The ConsenSys Quorum case study. Blockchain Res. Appl. 2022, 3, 100026. [Google Scholar] [CrossRef]
- Zhang, G.; Pan, F.; Dang’ana, M.; Mao, Y.; Motepalli, S.; Zhang, S.; Jacobsen, H.A. Reaching consensus in the byzantine empire: A comprehensive review of bft consensus algorithms. arXiv 2022, arXiv:2204.03181. [Google Scholar]
- Xu, X.; Wang, C.; Zhou, P. GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. Int. J. Prod. Econ. 2021, 235, 108078. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Lou, R.; Song, H. Industrial Security Solution for Virtual Reality. IEEE Internet Things J. 2021, 8, 6273–6281. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Chen, T.; Zhao, S.; Zhang, J.; Zhang, X. Gas sensor technologies and mathematical modelling for quality sensing in fruit and vegetable cold chains: A review. Trends Food Sci. Technol. 2021, 110, 483–492. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett. 2021, 32, 3342–3354. [Google Scholar] [CrossRef]
- Li, Q.K.; Lin, H.; Tan, X.; Du, S. H∞ Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 50, 4905–4918. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Z.; Wang, Z.; Li, J.; Zhang, X. Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain. Food Control 2023, 145, 109394. [Google Scholar] [CrossRef]
- Unhelkar, B.; Joshi, S.; Sharma, M.; Prakash, S.; Mani, A.K.; Prasad, M. Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–A systematic literature review. Int. J. Inf. Manag. Data Insights 2022, 2, 100084. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.; Yao, C.; Gu, F.; Shi, F.; Cao, H. Trusted Blockchain-Driven IoT Security Consensus Mechanism. Sustainability 2022, 14, 5200. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, S.; Wang, T.; Liew, S.C. Bodyless Block Propagation: TPS Fully Scalable Blockchain with Pre-Validation. arXiv 2022, arXiv:2204.08769. [Google Scholar]
- Li, Z.; Wang, W.; Guo, J.; Zhu, Y.; Han, L.; Wu, Q. Blockchain-Empowered Dynamic Spectrum Management for Space-Air-Ground Integrated Network. Chin. J. Electron. 2022, 31, 456–466. [Google Scholar] [CrossRef]
- Tellew, J.; Kuo, T.T. CertificateChain: Decentralized healthcare training certificate management system using blockchain and smart contracts. JAMIA Open 2022, 5, ooac019. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zou, Y.; Xu, M.; Xu, Y.; Yu, D.; Cheng, X. Distributed consensus for blockchains in internet-of-things networks. Tsinghua Sci. Technol. 2022, 27, 817–831. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, S.; Qi, J.; Jiang, J.; Song, H.; Wang, C.; On Li, T.; Hubert Chan, T.; Zhang, F.; Luo, X.; et al. Efficient and DoS-resistant consensus for permissioned blockchains. ACM Sigmetrics Perform. Eval. Rev. 2022, 49, 61–62. [Google Scholar] [CrossRef]
- Yang, W.; Garg, S.; Huang, Z.; Kang, B. A hybrid consensus algorithm for master–slave blockchain in a multidomain conversation system. Expert Syst. Appl. 2022, 204, 117300. [Google Scholar] [CrossRef]
- Jain, A.; Arora, S.; Damle, S.; Gujar, S. Tiramisu: Layering consensus protocols for scalable and secure blockchains. In Proceedings of the 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Nguyen, D.C.; Hosseinalipour, S.; Love, D.J.; Pathirana, P.N.; Brinton, C.G. Latency optimization for blockchain-empowered federated learning in multi-server edge computing. IEEE J. Sel. Areas Commun. 2022, 40, 3373–3390. [Google Scholar] [CrossRef]
- Ma, X.; Wu, H.; Xu, D.; Wolter, K. CBlockSim: A Modular High-Performance Blockchain Simulator. In Proceedings of the 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Keddar, M.; Doumbia, M.L.; Belmokhtar, K.; Krachai, M.D. Enhanced reactive power sharing and voltage restoration based on adaptive virtual impedance and consensus algorithm. Energies 2022, 15, 3480. [Google Scholar] [CrossRef]
- Tritt, A.; Abda, I.N.; Dahdah, N. Review of MIS-C Clinical Protocols and Diagnostic Pathways: Towards a Consensus Algorithm. CJC Pediatr. Congenit. Heart Dis. 2022, 1, 86–93. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S.; Xiang, Y. Exploring unfairness on proof of authority: Order manipulation attacks and remedies. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, New York, NY, USA, 30 May–3 July 2022; pp. 123–137. [Google Scholar]
- Wang, H.; Tan, W.; Wu, J.; Liu, P. OPBFT: Optimized Practical Byzantine Fault Tolerant Consensus Mechanism Model. AI and Analytics for Public Health: Proceedings of the 2020 INFORMS International Conference on Service Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 123–135. [Google Scholar]
- Gu, S.; Pan, W.; Chung, T.; Huang, X. Blockchain-based model for intelligent supply chain production and distribution. Wirel. Commun. Mob. Comput. 2022, 2022, 7503017. [Google Scholar] [CrossRef]
- Lu, B.; Guo, Z.; Zhong, K.; Osire, T.; Sun, Y.; Jiang, L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci. Technol. 2023, 135, 174–189. [Google Scholar] [CrossRef]
- Yan, L.; Yin-He, S.; Qian, Y.; Zhi-Yu, S.; Chun-Zi, W.; Zi-Yun, L. Method of Reaching Consensus on Probability of Food Safety Based on the Integration of Finite Credible Data on Block Chain. IEEE Access 2021, 9, 123764–123776. [Google Scholar] [CrossRef]
- Xu, J.; Ma, R.; Stankovski, S.; Liu, X.; Zhang, X. Intelligent Dynamic Quality Prediction of Chilled Chicken with Integrated IoT Flexible Sensing and Knowledge Rules Extraction. Foods 2022, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, J.; Li, D.; Liu, S.; Yin, J.; Lai, Z.; Yang, G. A Hg(II)-specific probe for imaging application in living systems and quantitative analysis in environmental/food samples. Chin. Chem. Lett. 2021, 32, 1527–1531. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Ekren, B.Y.; Kazancoglu, Y.; Luthra, S.; Prasad, M. Assessing Supply Chain Innovations for Building Resilient Food Supply Chains: An Emerging Economy Perspective. Sustainability 2023, 15, 4924. [Google Scholar] [CrossRef]
- Mishra, A.K.; Tripathy, A.K.; Obaidat, M.S.; Tan, Z.; Prasad, M.; Sadoun, B.; Puthal, D. A Chain Topology for Efficient Monitoring of Food Grain Storage using Smart Sensors. In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018), Porto, Portugal, 26–28 July 2018; Volume 1, pp. 89–98. [Google Scholar]
- Lee, H.; Yeon, C. Blockchain-based traceability for anti-counterfeit in cross-border e-commerce transactions. Sustainability 2021, 13, 11057. [Google Scholar] [CrossRef]
- Kim, H.M.; Laskowski, M. Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Account. Financ. Manag. 2018, 25, 18–27. [Google Scholar] [CrossRef]
- Abeyratne, S.A.; Monfared, R.P. Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 2016, 5, 1–10. [Google Scholar]
- ul Abadin, Z.; Syed, M. A Pattern for Proof of Work Consensus Algorithm in Blockchain. In Proceedings of the 26th European Conference on Pattern Languages of Programs, Graz, Austria, 7–11 July 2021; pp. 1–6. [Google Scholar]
- Russell, P.; Brown, P.N. The Philos Trust Algorithm: Preventing Exploitation of Distributed Trust. In Proceedings of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland, 22–25 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 45–52. [Google Scholar]
- Dua, K. Implementation of an efficient, portable and platform-agnostic cryptocurrency mining algorithm for Internet of Things devices. arXiv 2022, arXiv:2205.01646. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, G.; Saha, R.; Conti, M.; Alazab, M.; Thomas, R. A survey and taxonomy of consensus protocols for blockchains. J. Syst. Archit. 2022, 127, 102503. [Google Scholar] [CrossRef]
- Wen, X.J.; Chen, Y.Z.; Fan, X.C.; Zhang, W.; Yi, Z.Z.; Fang, J.B. Blockchain consensus mechanism based on quantum zero-knowledge proof. Opt. Laser Technol. 2022, 147, 107693. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, W.; Huang, M.; Feng, S. Optimization of PBFT algorithm based on improved C4. 5. Math. Probl. Eng. 2021, 2021, 1–7. [Google Scholar]
- Tian, J.; Hou, M.; Bian, H.; Li, J. Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
Type | Public Chain | Alliance Chain | Private Chain |
---|---|---|---|
Participant | Anyone | Alliance member | Members of an institution or organization |
Degree of decentralization | Decentralized | Polycentric | Centralized |
Node joining method | Free to join | Internal controls | Authorization required |
Excitation mechanism | Need | Optional | Not required |
Consensus mechanism | PoW/PoS/DPoS | PBFT | RAFT |
Transaction throughput | 3∼20 TPS | 1000∼10,000 TPS | 1000∼100,000 TPS |
Transaction speed | Slow | Fast | Quick |
Application scenarios | Virtual currency | Payment and settlement | Audit and issuance |
Type | PoW | PoS | DPoS | RAFT | PBFT |
---|---|---|---|---|---|
Scenes | Public | Public/Alliance | Alliance | Private/Alliance | Alliance |
Mode | Decentralized | Decentralized | Decentralized | Centralized | Polycentric |
Bookkeeping node | Whole network | Whole network | Election of rep. | Selection of leader | Dynamic decision |
Response time | 10 min | 1 min | 3 s | Second order | Second order |
Storage efficiency | Full ledger | Full ledger | Full ledger | Full ledger | Full account book + partial account book |
Throughput | About 7 TPS | About 15 TPS | About 300 TPS | Thousands or ten thousand transactions per second | About 1000 TPS or higher |
Fault-tolerant | 50% | 50% | 50% | 50% | 33% |
Byzantine fault tolerance | Yes | Yes | No | No | Yes |
Number of Nodes | No. of Nodes Shut Down | Closing of Nodes A-N0, NB-N2, and C-N3 | Shutdown of 5 Nodes | |
---|---|---|---|---|
NSTP | Test 1 | 198 | 181 | 153 |
Test 2 | 197 | 182 | 151 | |
Test 3 | 200 | 187 | 157 | |
NSTP | Test 1 | 181 | 159 | 149 |
Test 2 | 185 | 157 | 144 | |
Test 3 | 184 | 155 | 140 | |
NSTP | Test 1 | 197 | 195 | 187 |
Test 2 | 200 | 194 | 187 | |
Test 3 | 196 | 193 | 188 | |
NSTP | Test 1 | 80 | 67 | 59 |
Test 2 | 87 | 69 | 61 | |
Test 3 | 89 | 70 | 56 |
Section 3—Consensus Algorithm Based on Contributor Weight Proof | Relationship to Food Supply Chain | Real-Life Example |
---|---|---|
Section 3.1—Primary node Selection Method and New Node Protection Mechanism | Selecting primary node to ensure authenticity and traceability | Selection of primary node in the anti-counterfeiting traceability of rice supply chain |
Section 3.2—Weightage to contributors | Assigning weight to different contributors in the supply chain | Assigning weight to farmers, manufacturers, distributors, and retailers in the chain |
Section 3.3.1—Concept of the Algorithm | Incorporating credit evaluation system to select the primary node | Credit value generated by rewards for successful release of blocks |
Section 3.3.2—Algorithm Flow | Optimizing the consensus process for the food supply chain | Reducing computing cost, improving stability and fault tolerance |
Section 3.3.3—Blacklist Mechanism | Punishing malicious behavior and increasing normal node transactions | Generating a consensus blacklist locally to identify malicious nodes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Goyal, S.B.; Singh Rajawat, A.; Jan, T.; Azizi, N.; Prasad, M. Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0. Sustainability 2023, 15, 7855. https://doi.org/10.3390/su15107855
Tan J, Goyal SB, Singh Rajawat A, Jan T, Azizi N, Prasad M. Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0. Sustainability. 2023; 15(10):7855. https://doi.org/10.3390/su15107855
Chicago/Turabian StyleTan, Ji, S. B. Goyal, Anand Singh Rajawat, Tony Jan, Neda Azizi, and Mukesh Prasad. 2023. "Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0" Sustainability 15, no. 10: 7855. https://doi.org/10.3390/su15107855
APA StyleTan, J., Goyal, S. B., Singh Rajawat, A., Jan, T., Azizi, N., & Prasad, M. (2023). Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0. Sustainability, 15(10), 7855. https://doi.org/10.3390/su15107855