Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
- ➢
- The Map of the Hydrographic Division of Poland (MPHP), scale 1:10,000, developed by the Institute of Meteorology and Water Management (IMGW = Pol. Instytut Meteorologii I Gospodarki Wodnej).
- ➢
- The Raster Hydrographical Map of Poland, scale 1: 50,000 (provided by the Head Office of Geodesy and Cartography (GUGiK = Pol. Główny Urząd Geodezji i Kartografii).
- ➢
- The Topographic Map Messtischblatt, scale 1:25,000, data from 1940 (downloaded from the Archive of Maps of Western Poland (Pol. Archiwum Map Zachodniej Polski).
- ➢
- CORINE Land Cover (CLC) vector layers for 2018, obtained from the Copernicus Land Monitoring Service.
- ➢
- Digital elevation model (DEM) of the mesh size of at least 5 m for Poland provided by GUGiK. We adopted a DEM to verify the Michałówka River catchment’s boundaries, study the land surface’s topography, and create the model in HEC-HMS.
2.3. Methodology
3. Results
3.1. Characteristics of the Catchment Area
3.2. Input Parameters Necessary for Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sood, A.; Smakhtin, V. Global hydrological models: A review. Hydrol. Sci. J. 2015, 60, 549–565. [Google Scholar] [CrossRef]
- Dong, C. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. J. Hydrol. 2018, 561, 573–583. [Google Scholar] [CrossRef]
- Dhami, B.S.; Pandey, A. Comparative Review of Recently Developed Hydrologic Models. J. Indian Water Resour. Soc. 2013, 33, 34–41. [Google Scholar] [CrossRef]
- Nega, H. Regionalization of mean annual flow for ungauged catchments (Case study: Abbay River Basin). Model. Earth Syst. Environ. 2019, 7, 341–350. [Google Scholar] [CrossRef]
- Mulugera, M. Runof estimation by Giuh based Clark and Nash Model for Shaya River 58, 2 [Addis Ababa University, AAIT]. 2013. Available online: http://etd.aau.edu.et/bitstream/handle/123456789/9863/Mulugeta%20Mussie.pdf?sequence=1&isAllowed=y (accessed on 28 January 2023).
- Lemma, M. Sediment yield modeling using swat, case study of Upper Awash Basin. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Behailu, S. Stream Flow Simulation for Stream Flow Simulation for. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2004. [Google Scholar]
- Won, Y.M.; Lee, J.H.; Moon, H.T.; Moon, Y.I. Development and Application of an Urban Flood Forecasting and Warning Process to Reduce Urban Flood Damage: A Case Study of Dorim River Basin. Seoul Water 2022, 14, 187. [Google Scholar] [CrossRef]
- Schanze, J.; Hutter, G.; Offert, A.; Penning-Rowsell, E.C.; Parker, D.; Harries, T.; Koniger, P. Systematisation, Evaluation and Context Conditions of Structural and Non-Structural Measures for Flood Risk Reduction. CRUE Funding Initiative on Flood Risk Management Research. 2008. Available online: https://discovery.dundee.ac.uk/en/publications/systematisation-evaluation-and-context-conditions-of-structural-a (accessed on 13 April 2023).
- Youssef, A.M.A.; Ibrahem, S.M.M.; El Sayed, A.N.; Masoud, M.H.Z. Assessment and management of water resources in Wadi El-Deeb using geophysical, hydrological and GIS techniques-Red Sea. J. Afr. Earth Sci. 2020, 164, 103777. [Google Scholar] [CrossRef]
- Guduru, J.U.; Jilo, N.B.; Rabba, Z.A.; Namara, W.G. Rainfall-runoff modeling using HEC-HMS model for Meki River watershed, rift valley basin, Ethiopia. J. Afr. Earth Sci. 2023, 197, 104743. [Google Scholar] [CrossRef]
- Masseroni, D.; Cislaghi, A.; Camici, S.; Massari, C.; Brocca, L. A reliable rainfall–runoff model for flood forecasting: Review and application to a semi-urbanized watershed at high flood risk in Italy. Hydrol. Res. 2017, 48, 726–740. [Google Scholar] [CrossRef]
- Orenstein, D.E.; Bradley, B.A.; Albert, J.; Mustard, J.F.; Hamburg, S.P. How much is built? Quantifying and interpreting patterns of built space from different data sources. Int. J. Remote Sens. 2011, 32, 2621–2644. [Google Scholar] [CrossRef]
- World Urbanization Prospects. 2014. Available online: https://population.un.org/wup/publications/files/wup2014-report.pdf (accessed on 28 January 2023).
- United Nations. United Nations Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development. United Nations Population Division. 2008. Available online: https://sustainabledevelopment.un.org/content/documents/2529P01_UNPopDiv.pdf (accessed on 13 April 2023).
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Du, S.Q.; Van Rompaey, A.; Shi, P.J.; Wang, J.A. A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat. Hazards 2015, 77, 111–128. [Google Scholar] [CrossRef]
- Richert, E.; Bianchin, S.; Heilmeier, H.; Merta, M.; Seidler, C. A method for linking results from an evaluation of land use scenarios from the viewpoint of flood prevention and nature conservation. Landsc. Urban Plan. 2011, 103, 118–128. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Gong, J.; Xu, Y. Modeling the quality and quantity of runoff in a highly urbanized catchment using storm water management model. Pol. J. Environ. Stud. 2016, 25, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in Impervious Cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Gulliver, J.S.; Wilson, B.N. Effective impervious area for runoff in Urban Watersheds. Hydrol. Process. 2016, 30, 3717–3729. [Google Scholar] [CrossRef]
- Zhang, B.A.; Xie, G.D.; Zhang, C.Q.; Zhang, J. The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in Beijing, China. J. Environ. Manag. 2012, 100, 65–71. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Stadelmann, T.H. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the twin cities metropolitan area, Minnesota, USA. Water Res. 2002, 36, 1743–1757. [Google Scholar] [CrossRef]
- Fan, F.; Deng, Y.; Hu, X.; Weng, Q. Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in Guangzhou, China. Remote Sens. 2013, 5, 1425–1438. [Google Scholar] [CrossRef]
- USDA-SCS (Soil Conservation Service). National Engineering Handbook. Sec. 4; Hydrology: Washington, DC, USA, 1972. [Google Scholar]
- ASCE—American Society of Civil Engineers. Curve Number Hydrology: State of the Practice; Hawkins, R.H., Ward, T.J., Woodward, D.E., Van Mullem, J.A., Eds.; American Society of Civil Engineers: Reston, VI, USA, 2009. [Google Scholar]
- Cacal, J.C.; Austria, V.C.A.; Taboada, E.B. Extreme Event-based Rainfall-runoff Simulation Utilizing GIS Techniques in Irawan Watershed, Palawan, Philippines. Civ. Eng. J. 2023, 9, 220–232. [Google Scholar] [CrossRef]
- Diskin, M.H.; Ince, M.; Kwabena, O.N. Parallel cascades model for urban watersheds. J. Hydraul. Div. 1978, 104, 261–276. [Google Scholar] [CrossRef]
- Bhunya, P.K.; Ghosh, N.C.; Mishra, S.K.; Ojha CS, P.; Berndtsson, R. Hybrid model for derivation of synthetic unit hydrograph. J. Hydrol. Eng. 2005, 10, 458–467. [Google Scholar] [CrossRef]
- Singh, P.K.; Bhunya, P.K.; Mishra, S.K.; Chaube, U.C. An extended hybrid model for synthetic unit hydrograph derivation. J. Hydrol. 2007, 336, 347–360. [Google Scholar] [CrossRef]
- Bhunya, P.K.; Singh, P.K.; Mishra, S.K.; Panigrahy, N. A variable storage coefficient model for rainfall–runoff computation. Hydrol. Sci. J. 2008, 53, 338–352. [Google Scholar] [CrossRef]
- Kurnatowski, J. Technical note: Cascade of submerged reservoirs as a rainfall–runoff model. Hydrol. Earth Syst. Sci. 2017, 21, 4649–4661. [Google Scholar] [CrossRef]
- Yan, B.; Guo, S.; Liang, J.; Sun, H. The generalized Nash model for river flow routing. J. Hydrol. 2015, 530, 79–86. [Google Scholar] [CrossRef]
- Kalinin, G.P.; Milyukov, P.I. On the computation of unsteady flow in open channels. Met. Gidrol. 1957, 10, 10–18. [Google Scholar]
- Ramesh, V. Application of the HEC-HMS Model for Runoff Simulation in the Krishna Basin. Master’s Thesis, National Institute of Technology Karnataka, Karnataka, India, 2017. [Google Scholar] [CrossRef]
- US Army Corps of Engineers. Hydrologic Modeling System (HEC-HMS) Applications Guide: Version 3.1.0; Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2008.
- Halwatura, D.; Najim, M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Hoogestraat, G.K. Flood Hydrology and Dam-Breach Hydraulic Analyses of Four Reservoirs in the Black Hills, South Dakota; Scientific Investigations Report for U.S. Geological Survey: Reston, VA, USA, 2011; p. 37. Available online: https://pubs.usgs.gov/sir/2011/5011/pdf/sir2011-5011.pdf (accessed on 15 January 2023).
- Derdour, A.; Bouanani, A.; Babahamed, K. Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: Case study in Ain Sefra watershed, Ksour Mountains (SW Algeria). J. Water Land Dev. 2018, 36, 45–55. [Google Scholar] [CrossRef]
- Kozlov, D.V.; Ghebrehiwot, A.A. Efficacy of digital elevation and Nash models in runoff forecast. Mag. Civ. Eng. 2019, 3, 103–122. [Google Scholar] [CrossRef]
- Yan, B.; Huo, L.; Liang, J.; Yang, W.; Zhang, J. Discretization of the generalized Nash model for flood routing. J. Hydrol. Eng. 2019, 24, 04019029. [Google Scholar] [CrossRef]
- Diagnosis of the State of the Commune. Study of Conditions and Directions of Spatial Development of the Kleszczewo Commune. Diagnoza Stanu Gminy. Studium Uwarunkowań I Kierunków Zagospodarowania Przestrzennego Gminy Kleszczewo. Available online: http://bip.kleszczewo.pl/?p=document&action=show&id=9644&bar_id=4674 (accessed on 13 April 2023). (In Polish).
- Local Government. Newspaper of the Residents of the Kleszczewo Commune. Samorząd. Gazeta Mieszkańców Gminy Kleszczewo. Available online: https://docplayer.pl/207106622-Nr-1-2-203-styczen-luty.html (accessed on 13 April 2023). (In Polish).
- Licznar, P.; Kotowski, A.; Siekanowicz-Grochowina, K.; Oktawiec, M.; Burszta-Adamiak, E. Empirical Verification of Bog-danowicz-Stachý’s Formula for Design Rainfall Intensity Calculations. Ochr. Środowiska 2018, 40, 21–28. (In Polish) [Google Scholar]
- Janicka, E.; Kanclerz, J. Assessing the Effects of Urbanization on Water Flow and Flood Events Using the HEC-HMS Model in the Wirynka River Catchment. Water 2023, 15, 86. [Google Scholar] [CrossRef]
- Sikorska, A.; Banasik, K. Parameter identification of a conceptual rainfall-runoff model for a small urban catchment. Ann. Warsaw Univ. Life Sci. SGGW. Land Reclam. 2010, 42, 279–293. [Google Scholar] [CrossRef]
- Rao, R.A.; Delleur, J.W.; Sarma, B.S. Conceptual hydrologic models for urbanizing basins. J. Hydraul. Div. 1972, 98, 1205–1220. [Google Scholar] [CrossRef]
- McColl, C.; Aggett, G. Land-use forecasting and hydrologic model integration for improved land-use decision support. J. Environ. Manag. 2007, 84, 494–512. [Google Scholar] [CrossRef]
- Manan, E.A.; Hassan, A.J. Correlation between runoff volume and land use changes using SCS-CN method for Sungai Gombak catchment. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 12120. [Google Scholar] [CrossRef]
- Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A.M.; Liu, X.; Zarrinpar, A. Liver-on-a-chip models of fatty liver disease. Hepatology 2020, 71, 733. [Google Scholar] [CrossRef]
- Sojka, M.; Murat-Błażejewska, S.; Wróżyński, R. Prognoza wpływu realizacji zapisów miejscowych planów zagospodarowania przestrzennego na wzrost przepływów wezbraniowych, Monografia Komitetu Gospodarki Wodnej. Monogr. Kom. Gospod. Wodnej Pol. Akad. Nauk. 2014, 20, 155–164. (In Polish) [Google Scholar]
- Holeksa, S.; Raciok, M.; Absalon, D. Wpływ urbanizacji na zmiany hydrogramu odpływu w zlewni żylicy (beskidy zachodnie), Badania Fizjograficzne. Geogr. Fiz. 2017, 68, 149–157. (In Polish) [Google Scholar]
- Borowicz, E.; Kozak, M.; Madzia, M. Wpływ metody pozyskiwania informacji o zagospodarowaniu terenu na wartość wyznaczonego opadu efektywnego. Nauka Przyr. Technol. 2011, 5, 65. (In Polish) [Google Scholar]
- Tufano, R.; Guerriero, L.; Annibali Corona, M.; Cianflone, G.; Di Martire, D.; Ietto, F.; Calcaterra, D. Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling. Nat. Hazards 2023, 116, 1029–1051. [Google Scholar] [CrossRef]
- Rashid, A.A.; Liang, Q.; Dawson, R.J.; Smith, L.S. Calibrating a high-performance hydrodynamic model for broad-scale flood simulation: Application to Thames Estuary, London, UK. Procedia Eng. 2016, 154, 967–974. [Google Scholar] [CrossRef]
- Kanclerz, J.; Murat-Błażejewska, S.; Dragon, K.; Birk, S. Wpływ urbanizacji w strefie podmiejskiej na stosunki wodne w zlewniach małych cieków. Ecol. Eng. 2016, 46, 94–99. (In Polish) [Google Scholar]
- El Alfy, M. Assessing the impact of arid area urbanization on flash floods using GIS, remote sensing, and HEC-HMS rainfall–runoff modeling. Hydrol. Res. 2016, 47, 1142–1160. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, P.; Qu, S.; Ji, X.; Zhao, L.; Gou, J.; Mou, S. Integrating XAJ model with giuh based on Nash model for rainfall-runoff modelling. Water 2019, 11, 772. [Google Scholar] [CrossRef]
- Becker, A.; Kundzewicz, Z.W. Nonlinear flood routing with multilinear models. Water Resour. Res. 1987, 23, 1043–1048. [Google Scholar] [CrossRef]
- Sahoo, B.; Perumal, M.; Moramarco, T.; Barbetta, S.; Sahoo, S. A multilinear discrete Nash-cascade model for stage-hydrograph routing in compound river channels. Hydrol. Sci. J. 2020, 65, 335–347. [Google Scholar] [CrossRef]
Time of Precipitation | Precipitation P1% | Precipitation P10% | ||
---|---|---|---|---|
ΔP (mm) | Sum ∆P (mm) | ΔP (mm) | Sum ∆P (mm) | |
P1 (15 min) | 7.8 | 7.8 | 5.5 | 5.5 |
P2 (30 min) | 25.1 | 32.9 | 17.6 | 23.1 |
P3 (45 min) | 7 | 39.9 | 5 | 28.1 |
P4 (60 min) | 7 | 47 | 5 | 33.1 |
Time of Precipitation | Effective Precipitation P1% | Effective Precipitation P10% | ||
---|---|---|---|---|
ΔP (mm) | Sum ΔP (mm) | ΔP (mm) | Sum ΔP (mm) | |
The year 1940 | ||||
P1 (15 min) | 1.0 | 1.0 | 0.3 | 0.3 |
P2 (30 min) | 3.2 | 4.2 | 0.9 | 1.2 |
P3 (45 min) | 0.9 | 5.1 | 0.2 | 1.4 |
P4 (60 min) | 0.9 | 6.0 | 0.2 | 1.6 |
The year 2018 | ||||
P1 (15 min) | 1.4 | 1.4 | 0.5 | 0.5 |
P2 (30 min) | 4.4 | 5.8 | 1.5 | 2.0 |
P3 (45 min) | 1.2 | 7.0 | 0.4 | 2.4 |
P4 (60 min) | 1.2 | 8.3 | 0.4 | 2.8 |
P1%, 60 min | P10%, 60 min | |||
---|---|---|---|---|
1940 | 2018 | 1940 | 2018 | |
LAG (h) | 4.39 | 4.03 | 6.23 | 5.4 |
k (h) | 2.03 | 1.96 | 2.33 | 2.21 |
N (-) | 2.16 | 2.06 | 2.66 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicka, E.; Kanclerz, J.; Agaj, T.; Gizińska, K. Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River. Sustainability 2023, 15, 7959. https://doi.org/10.3390/su15107959
Janicka E, Kanclerz J, Agaj T, Gizińska K. Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River. Sustainability. 2023; 15(10):7959. https://doi.org/10.3390/su15107959
Chicago/Turabian StyleJanicka, Ewelina, Jolanta Kanclerz, Tropikë Agaj, and Katarzyna Gizińska. 2023. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River" Sustainability 15, no. 10: 7959. https://doi.org/10.3390/su15107959
APA StyleJanicka, E., Kanclerz, J., Agaj, T., & Gizińska, K. (2023). Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River. Sustainability, 15(10), 7959. https://doi.org/10.3390/su15107959