Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Mix Proportion
2.2. Specimens Preparation
2.3. Experiment Methods
3. Experiments Results and Discussion
3.1. Experiments Results
3.1.1. Static Flexural Strength
3.1.2. Flexural Fatigue Life
3.2. Survival Analysis of GTR/SF-PC under Freeze-Thaw Cycles
3.3. Fitting of Fatigue Life Distribution
3.4. Goodness-of-Fit Test of Fatigue Life Distribution
3.5. Effect of Freeze-Thaw Cycles on the Failure Rate of Fatigue Life
3.6. Fatigue Life Equations under Freeze-Thaw Cycles
4. Conclusions
- Kaplan Meier survival analysis can intuitively represent the change of fatigue life. At a certain stress level, the fatigue life and survival rate of GTR/SF-PC are reduced by freeze-thaw cycles.
- Compared with the GTR/SF-PC without freeze-thaw cycles, the fatigue life under different stress levels is reduced by 15% on average after 30 freeze-thaw cycles.
- The Weibull distribution model can be used to characterize the fatigue life of porous concrete. The shape parameters α and the scale parameters u of flexural fatigue life Weibull model of the GTR/SF-PC are reduced by the increasing freeze-thaw cycles.
- The fatigue failure rate of GTR/SF-PC under different freeze-thaw cycles increases with the increasing freeze-thaw cycles, after 30 freeze-thaw cycles, the fatigue failure rate of GTR/SF-PC is about 1.5 times of that without freeze-thaw cycles.
- The fatigue equations of GTR/SF-PC indicate that the fatigue life decreases with the increasing freeze-thaw cycles. The reliability is inversely proportional to fatigue life, and the choice of appropriate reliability is important for fatigue design.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, K.N.; Hu, L.T.; Liu, X.M. The influences of sponge city construction on spring discharge in Jinan city of China. Hydrol. Res. 2020, 51, 959–975. [Google Scholar] [CrossRef]
- Chen, D.; Wang, S.; Shen, M.L.; Qian, Q.T.; Birhane, T.G. Aggregate micro tribological properties of sponge city permeable pavement base layer under vehicle loading. Constr. Build. Mater. 2020, 261, 120424. [Google Scholar] [CrossRef]
- Ma, Y.C.; Jiang, Y.; Swallow, S. China’s sponge city development for urban water resilience and sustainability: A policy discussion. Sci. Total Environ. 2020, 729, 139078. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef]
- Dupuis, D.J.; Trapin, L. Structural change to the persistence of the urban heat island. Environ. Res. Lett. 2020, 15, 104076. [Google Scholar] [CrossRef]
- Wang, J.L.; Niu, Z.D.; Chen, Q. Study on influencing factors of noise reduction performance of pervious concrete. Mater. Sci. Forum 2020, 971, 106–113. [Google Scholar] [CrossRef]
- Singh, A.; Sampath, P.V.; Biligiri, K.P. A review of sustainable porous concrete systems: Emphasis on clogging, material characterization, and environmental aspects. Constr. Build. Mater. 2020, 261, 120491. [Google Scholar] [CrossRef]
- Elizondo-Martínez, E.J.; Andrés-Valeri, V.C.; Jato-Espino, D.; Rodriguez-Hernandez, J. Review of porous concrete as multifunctional and sustainable pavement. J. Build. Eng. 2019, 27, 100967. [Google Scholar] [CrossRef]
- Xie, N.; Akin, M.; Shi, X.M. Permeable concrete pavements: A review of environmental benefits and durability. J. Clean. Prod. 2018, 210, 1605–1621. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Özdöner, N.; Tayeh, B.A. Performance assessment of fiber-reinforced concrete produced with waste lathe fibers. Sustainability 2022, 14, 11817. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y.O.; Çelik, A.İ.; Deifalla, A.F.; Ahmad, M.; Sabri, M.M.S. Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire. Front. Mater. 2022, 9, 1057128. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Meskhi, B.; Shilov, A.A.; Varavka, V.; Evtushenko, A.; Özkılıç, Y.O.; Aksoylu, C.; Karalar, M. Composition component influence on concrete properties with the additive of rubber tree seed shells. Appl. Sci. 2022, 12, 11744. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; Özkılıç, Y.O.; Aksoylu, C. Normal-weight concrete with improved stress–strain characteristics reinforced with dispersed coconut fibers. Appl. Sci. 2022, 12, 11734. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O. Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder. Steel Compos. Struct. 2023, 46, 689–707. [Google Scholar]
- Zeybek, Ö.; Özkılıç, Y.O.; Karalar, M.; Çelik, A.İ.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Influence of replacing cement with waste glass on mechanical properties of concrete. Materials 2022, 15, 7513. [Google Scholar] [CrossRef]
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Özkılıç, Y.O.; Al Dughaishi, H.; Alosta, M.; Sabri, M.M.S.; Alkhatib, F.; Milad, A. Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics. Materials 2022, 15, 6222. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Karalar, M.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Bejinariu, C. Mechanical behavior of crushed waste glass as replacement of aggregates. Materials 2022, 15, 8093. [Google Scholar] [CrossRef] [PubMed]
- Basaran, B.; Kalkan, I.; Aksoylu, C.; Özkılıç, Y.O.; Sabri, M.M.S. Effects of waste powder, fine and coarse marble aggregates on concrete compressive strength. Sustainability 2022, 14, 14388. [Google Scholar] [CrossRef]
- Karalar, M.; Özkılıç, Y.O.; Aksoylu, C.; Sabri, M.M.S.; Beskopylny, A.N. Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete. Front. Mater. 2022, 9, 1068791. [Google Scholar] [CrossRef]
- Qaidi, S.; Al-Kamaki, Y.; Hakeem, I.; Dulaimi, A.F.; Özkılıç, Y.; Sabri, M.; Sergeev, V. Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates. Front. Mater. 2023, 10, 1101146. [Google Scholar] [CrossRef]
- Acar, M.C.; Çelik, A.İ.; Kayabas, R.; Sener, A.; Özdoner, N.; Özkılıç, Y.O. Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings. J. Mater. Res. Technol. 2023, 24, 81–99. [Google Scholar] [CrossRef]
- Fayed, S.; Madenci, E.; Özkılıç, Y.O.; Mansour, W. Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement. Constr. Build. Mater. 2023, 369, 130452. [Google Scholar] [CrossRef]
- Karalar, M.; Bilir, T.; Çavuşlu, M.; Özkılıç, Y.O.; Sabri, M.M.S. Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate. Front. Mater. 2022, 9, 1064604. [Google Scholar] [CrossRef]
- Bu, C.M.; Zhu, D.X.; Liu, L.; Lu, X.Y.; Sun, Y.; Yu, L.W.; OuYang, Y.H.; Cao, X.M.; Wang, F.X. Research progress on rubber concrete properties: A review. J. Rubber Res. 2022, 25, 105–125. [Google Scholar] [CrossRef]
- Imam, A.; Kumar, V.; Srivastava, V. Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Adv. Concr. Constr. 2018, 6, 145–157. [Google Scholar]
- Shariati, M.; Heyrati, A.; Zandi, Y.; Laka, H.; Toghroli, A.; Kianmehr, P.; Safa, M.; Salih, M.N.A.; Poi-Ngian, S. Application of waste tire rubber aggregate in porous concrete. Smart Struct. Syst. 2019, 24, 553–566. [Google Scholar]
- Gesoglu, M.; Guneyisi, E.; Khoshnaw, G.; Ipek, S. Investigating properties of pervious concretes containing waste tire rubbers. Constr. Build. Mater. 2014, 63, 206–213. [Google Scholar] [CrossRef]
- Gesoglu, M.; Guneyisi, E.; Khoshnaw, G.; Ipek, S. Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Constr. Build. Mater. 2014, 73, 19–24. [Google Scholar]
- Luo, G.B.; Zhao, P.; Zhang, Y.P.; Xie, Z.Z. Performance evaluation of waste crumb rubber/silica fume composite modified pervious concrete in seasonal frozen regions. Adv. Mater. Sci. Eng. 2021, 2021, 1411185. [Google Scholar] [CrossRef]
- Li, D.Y.; Toghroli, A.; Shariati, M.; Sajedi, F.; Bui, D.T.; Kianmehr, P.; Mohamad, E.T.; Khorami, M. Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete. Smart Struct. Syst. 2019, 23, 207–214. [Google Scholar]
- Mondal, S.; Biligiri, K.P. Crumb rubber and silica fume inclusions in pervious concrete pavement systems: Evaluation of hydrological, functional, and structural properties. J. Test. Eval. 2018, 46, 892–905. [Google Scholar] [CrossRef]
- Grubesa, I.N.; Barisic, I.; Ducman, V.; Korat, L. Draining capability of single-sized porous concrete. Constr. Build. Mater. 2018, 169, 252–260. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Porous concrete as a sustainable pavement material–research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Šešlija, M.; Radović, N.; Jovanov, D.; Kukaras, D.; Starcev-Curcin, A.; Jokanović, I. Possibilities of porous concrete application in road construction. Teh. Vjesn. 2018, 25, 1202–1212. [Google Scholar]
- Liu, H.B.; Luo, G.B.; Wei, H.B.; Yu, H. Strength, permeability, and freeze-thaw durability of porous concrete with different aggregate sizes, porosities, and water-binder ratios. Appl. Sci. 2018, 8, 1217. [Google Scholar] [CrossRef]
- Lund, M.S.M.; Hansen, K.K.; Brincker, R.; Jensen, A.H.; Amador, S.D.R. Evaluation of freeze-thaw durability of porous concrete by use of operational modal analysis. Cem. Concr. Res. 2018, 106, 57–64. [Google Scholar] [CrossRef]
- Lund, M.S.M.; Kevern, J.T.; Schaefer, V.R.; Hansen, K.K. Mix design for improved strength and freeze-thaw durability of porous concrete fill in pearl-chain bridges. Mater. Struct. 2017, 50, 42. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Sun, B.B.; Yin, J. Experimental investigation on freeze–thaw durability of Portland cement porous concrete (PCPC). Constr. Build. Mater. 2016, 117, 63–71. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Gong, Y.F.; Wei, H.B. Mechanical properties, permeability, and freeze–thaw resistance of porous concrete modified by waste crumb rubbers. Appl. Sci. 2016, 8, 1843. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Wang, L.H.; Wang, W.W.; Li, W.J.; Gong, Y.F. Laboratory evaluation of eco-friendly porous concrete pavement material containing silica fume. Appl. Sci. 2019, 9, 73. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Wang, L.H.; Gong, Y.F. Strength time–varying and freeze–thaw durability of sustainable porous concrete pavement material containing waste fly ash. Sustainability 2019, 11, 176. [Google Scholar] [CrossRef]
- Guthrie, W.; DeMille, C.; Eggett, D. Effects of soil clogging and water saturation on freeze-thaw durability of porous concrete. Transp. Res. Rec. J. Transp. Res. Board 2010, 2164, 89–97. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zheng, M.L.; Wang, Q.; Yang, J.G.; Lin, T.F. Flexural fatigue behavior of polymer-modified porous concrete with single sized aggregates. Constr. Build. Mater. 2016, 124, 897–905. [Google Scholar] [CrossRef]
- Singh, R.R.; Sidhu, A.J.S. Fracture and fatigue study of porous concrete with 15–20% void ratio. Sadhana 2020, 45, 151. [Google Scholar] [CrossRef]
- Debnath, B.; Sarkar, P.P. Prediction and model development for fatigue performance of porous concrete made with over burnt brick aggregate. Mater. Struct. 2020, 53, 86. [Google Scholar] [CrossRef]
- Alshareedah, O.; Nassiri, S.; Dolan, J.D. Porous concrete under flexural fatigue loading: Performance evaluation and model development. Constr. Build. Mater. 2019, 207, 17–27. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Effect of pore structure on fatigue of porous concrete. Road Mater. Pavement 2019, 20, 1525–1547. [Google Scholar] [CrossRef]
- Chen, X.D.; Shi, D.D.; Shen, N.; Li, S.T.; Liu, S.S. Experimental study and analytical modeling on fatigue properties of porous concrete made with natural and recycled aggregates. Int. J. Concr. Struct. Mater. 2019, 13, 10. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Flexural-fatigue characteristics of porous concrete: Statistical distributions and model development. Constr. Build. Mater. 2017, 153, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.J.; Wang, X.H.; Zhou, W.F. Strength, fracture and fatigue of porous concrete. Constr. Build. Mater. 2013, 42, 97–104. [Google Scholar] [CrossRef]
- Li, L.L.; Guan, J.F.; Yuan, P.; Yin, Y.A.; Li, Y.L. A Weibull distribution-based method for the analysis of concrete fracture. Eng. Fract. Mech. 2021, 256, 107964. [Google Scholar] [CrossRef]
- Huang, B.T.; Li, Q.H.; Xu, S.L. Fatigue deformation model of plain and fiber-reinforced concrete based on Weibull function. J. Struct. Eng. 2019, 145, 04018234. [Google Scholar] [CrossRef]
- Hong, F.; Qiao, H.X.; Wang, P.H. Predicting the life of BNC-coated reinforced concrete using the Weibull distribution. Energ. Mater. Res. 2020, 9, 424–434. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Zhou, P.L.; Wei, H.B.; Li, W.J.; Yu, D. Flexural-fatigue properties of sustainable porous concrete pavement material containing ground tire rubber and silica fume. Sustainability 2019, 11, 4467. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical Specification for Pervious Cement Concrete Pavement; Ministry of Housing and Urban-Ural Construction of the People’s Republic of China: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Stel, V.S.; Dekker, F.W.; Tripepi, G.; Zoccali, C.; Jager, K.J. Survival analysis I: The Kaplan-Meier method. Nephron Clin. Pract. 2011, 119, C83–C88. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shetterly, S.; Powers, D.; Raebel, M.A.; Tsai, T.T.; Ho, P.M.; Magid, D. Extension of Kaplan-Meier Methods in Observational Studies with Time-Varying Treatment. Value Health 2012, 15, 167–174. [Google Scholar] [CrossRef]
Chemical Composition (%) | |||||
---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | Fe2O3 | SO3 |
22.6 | 5.6 | 62.7 | 1.7 | 4.3 | 2.5 |
Coarse Aggregate | Cement | Water | Superplasticizer | GTR | SF |
---|---|---|---|---|---|
1503 | 413.0 | 140.8 | 3.75 | 28.2 | 56.2 |
Experiment Condition | Step 1: Freeze-Thaw Cycles Test | Step 2: Flexural Strength Test | Step 3: Flexural Fatigue Test |
---|---|---|---|
0 freeze-thaw cycles | 25 | 5 | 20 |
15 freeze-thaw cycles | 25 | 5 | 20 |
30 freeze-thaw cycles | 25 | 5 | 20 |
Parameters | Value |
---|---|
control mode | stress control mode |
load patterns | sinusoidal wave |
load frequency | 10 Hz |
stress level | 0.70, 0.75, 0.80, 0.85 |
stress ratio | 0.15 |
test termination condition | fatigue failure or fatigue life reaches 1 million times |
Freeze-Thaw Cycles | Static Flexural Strength (MPa) | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average | |
0 | 4.91 | 4.88 | 4.21 | 4.76 | 4.58 | 4.67 |
15 | 4.86 | 4.47 | 4.56 | 4.71 | 4.62 | 4.64 |
30 | 4.78 | 4.67 | 4.49 | 4.51 | 4.56 | 4.60 |
Freeze-Thaw Cycles | Stress Level | |||
---|---|---|---|---|
0.70 | 0.75 | 0.80 | 0.85 | |
0 | 51,621 | 9589 | 1721 | 398 |
84,797 | 18,752 | 3284 | 625 | |
193,306 | 32,147 | 4576 | 970 | |
267,857 | 45,423 | 7452 | 1240 | |
435,779 | 72,780 | 9785 | 1793 | |
15 | 40,038 | 7982 | 1358 | 265 |
75,754 | 18,531 | 2544 | 644 | |
189,761 | 31,753 | 3998 | 852 | |
254,653 | 44,892 | 6852 | 1359 | |
388,792 | 67,741 | 9214 | 1702 | |
30 | 38,541 | 6589 | 987 | 196 |
69,286 | 14,783 | 2250 | 489 | |
178,892 | 29,753 | 3765 | 954 | |
249,950 | 39,195 | 6650 | 987 | |
377,658 | 65,548 | 8533 | 1469 |
Stress Level | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles | |||
---|---|---|---|---|---|---|
0.85 | 1.9351 | 1133 | 1.9868 | 1088 | 1.9584 | 924 |
0.80 | 1.7206 | 6016 | 1.7380 | 5380 | 1.6530 | 4963 |
0.75 | 1.4868 | 39,545 | 1.7035 | 38,313 | 1.5646 | 34,694 |
0.70 | 1.3705 | 225,971 | 1.5580 | 211,145 | 1.5287 | 203,014 |
Stress Level | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles | |||
---|---|---|---|---|---|---|
0.85 | 2.2235 | 1140 | 1.9828 | 1089 | 1.9217 | 922 |
0.80 | 1.9622 | 6074 | 1.7418 | 5402 | 1.6128 | 4959 |
0.75 | 1.6831 | 40,186 | 1.6789 | 38,336 | 1.5326 | 34,676 |
0.70 | 1.5319 | 230,273 | 1.5013 | 210,423 | 1.4703 | 202,230 |
Stress Level | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles | |||
---|---|---|---|---|---|---|
0.85 | 2.0793 | 1137 | 1.9848 | 1089 | 1.9401 | 923 |
0.80 | 1.8414 | 6045 | 1.7399 | 5391 | 1.6329 | 4961 |
0.75 | 1.5850 | 39,866 | 1.6912 | 38,325 | 1.5486 | 34,685 |
0.70 | 1.4512 | 228,122 | 1.5297 | 210,784 | 1.4995 | 202,622 |
Stress Level | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles |
---|---|---|---|
0.85 | |||
0.80 | |||
0.75 | |||
0.70 |
Stress Level | Number | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.70 | 1 | 0.2 | 51,621 | 0.1093 | 0.0907 | 40,038 | 0.0758 | 0.1242 | 38,541 | 0.0797 | 0.1203 |
2 | 0.4 | 84,797 | 0.2117 | 0.1883 * | 75,754 | 0.1886 | 0.2114 * | 69,286 | 0.1813 | 0.2187 * | |
3 | 0.6 | 193,306 | 0.5445 | 0.0555 | 189,761 | 0.5732 | 0.0268 | 178,892 | 0.5638 | 0.0362 | |
4 | 0.8 | 267,857 | 0.7170 | 0.0830 | 254,653 | 0.7369 | 0.0631 | 249,950 | 0.7459 | 0.0541 | |
5 | 1.0 | 435,779 | 0.9226 | 0.0774 | 388,792 | 0.9220 | 0.0780 | 377,658 | 0.9214 | 0.0786 | |
0.75 | 1 | 0.2 | 9589 | 0.0992 | 0.1008 | 7982 | 0.0680 | 0.1320 | 6589 | 0.0735 | 0.1265 |
2 | 0.4 | 18,752 | 0.2611 | 0.1389 * | 18,531 | 0.2537 | 0.1463 * | 14,783 | 0.2343 | 0.1657 * | |
3 | 0.6 | 32,147 | 0.5088 | 0.0912 | 31,753 | 0.5169 | 0.0831 | 29,753 | 0.5455 | 0.0545 | |
4 | 0.8 | 45,423 | 0.7076 | 0.0924 | 44,892 | 0.7293 | 0.0707 | 39,195 | 0.7013 | 0.0987 | |
5 | 1.0 | 72,780 | 0.9254 | 0.0746 | 67,741 | 0.9272 | 0.0728 | 65,548 | 0.9314 | 0.0686 | |
0.80 | 1 | 0.2 | 1721 | 0.0942 | 0.1058 | 1358 | 0.0868 | 0.1132 | 987 | 0.0691 | 0.1309 |
2 | 0.4 | 3284 | 0.2776 | 0.1224 | 2544 | 0.2372 | 0.1628 * | 2250 | 0.2404 | 0.1596 * | |
3 | 0.6 | 4576 | 0.4506 | 0.1494 * | 3998 | 0.4481 | 0.1519 | 3765 | 0.4713 | 0.1287 | |
4 | 0.8 | 7452 | 0.7701 | 0.0299 | 6852 | 0.7808 | 0.0192 | 6650 | 0.8008 | 0.0008 | |
5 | 1.0 | 9785 | 0.9117 | 0.0883 | 9214 | 0.9212 | 0.0788 | 8533 | 0.9115 | 0.0885 | |
0.85 | 1 | 0.2 | 398 | 0.1066 | 0.0934 | 265 | 0.0587 | 0.1413 * | 196 | 0.0483 | 0.1517 * |
2 | 0.4 | 625 | 0.2504 | 0.1496 * | 644 | 0.2971 | 0.1029 | 489 | 0.2529 | 0.1471 | |
3 | 0.6 | 970 | 0.5126 | 0.0874 | 852 | 0.4590 | 0.1410 | 954 | 0.6557 | 0.0557 | |
4 | 0.8 | 1240 | 0.6981 | 0.1019 | 1359 | 0.7882 | 0.0118 | 987 | 0.6798 | 0.1202 | |
5 | 1.0 | 1793 | 0.9241 | 0.0759 | 1702 | 0.9116 | 0.0884 | 1469 | 0.9149 | 0.0851 |
Reliability | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.85 | 0.80 | 0.75 | 0.70 | 0.85 | 0.80 | 0.75 | 0.70 | 0.85 | 0.80 | 0.75 | 0.70 | |
0.95 | 273 | 1205 | 6120 | 29,464 | 244 | 978 | 6618 | 30,240 | 200 | 805 | 5095 | 27,954 |
0.90 | 385 | 1781 | 9638 | 48,385 | 350 | 1479 | 10,130 | 48,411 | 289 | 1250 | 8110 | 45,177 |
0.85 | 475 | 2254 | 12,669 | 65,225 | 436 | 1897 | 13,089 | 64,267 | 362 | 1631 | 10,730 | 60,318 |
0.80 | 553 | 2677 | 15,474 | 81,150 | 511 | 2277 | 15,787 | 79,066 | 426 | 1980 | 13,167 | 74,519 |
0.75 | 625 | 3073 | 18,164 | 96,675 | 581 | 2634 | 18,346 | 93,350 | 486 | 2313 | 15,514 | 88,276 |
0.70 | 693 | 3453 | 20,803 | 112,110 | 648 | 2981 | 20,833 | 107,436 | 543 | 2639 | 17,825 | 101,883 |
0.65 | 758 | 3826 | 23,434 | 127,685 | 712 | 3322 | 23,293 | 121,547 | 598 | 2962 | 20,136 | 115,552 |
0.60 | 823 | 4197 | 26,094 | 143,596 | 776 | 3664 | 25,762 | 135,872 | 653 | 3288 | 22,478 | 129,460 |
0.55 | 888 | 4572 | 28,817 | 160,035 | 840 | 4011 | 28,273 | 150,586 | 708 | 3620 | 24,881 | 143,778 |
0.50 | 953 | 4954 | 31,636 | 177,208 | 905 | 4367 | 30,858 | 165,875 | 764 | 3964 | 27,375 | 158,685 |
Reliability | 0 Freeze-Thaw Cycles | 15 Freeze-Thaw Cycles | 30 Freeze-Thaw Cycles | |||
---|---|---|---|---|---|---|
0.95 | −0.0413 | 1.0722 | −0.0394 | 1.0541 | −0.0387 | 1.0412 |
0.90 | −0.0400 | 1.0792 | −0.0386 | 1.0648 | −0.0380 | 1.0524 |
0.85 | −0.0392 | 1.0832 | −0.0382 | 1.0711 | −0.0375 | 1.0590 |
0.80 | −0.0387 | 1.0860 | −0.0379 | 1.0756 | −0.0372 | 1.0637 |
0.75 | −0.0383 | 1.0883 | −0.0376 | 1.0792 | −0.0369 | 1.0675 |
0.70 | −0.0379 | 1.0901 | −0.0374 | 1.0822 | −0.0367 | 1.0706 |
0.65 | −0.0376 | 1.0918 | −0.0372 | 1.0848 | −0.0365 | 1.0733 |
0.60 | −0.0374 | 1.0932 | −0.0370 | 1.0872 | −0.0363 | 1.0757 |
0.55 | −0.0371 | 1.0945 | −0.0369 | 1.0894 | −0.0362 | 1.0779 |
0.50 | −0.0369 | 1.0957 | −0.0367 | 1.0913 | −0.0360 | 1.0800 |
Freeze-Thaw Cycles | 50% | 95% |
---|---|---|
0 | ||
15 | ||
30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, G.; Zhang, J.; Zhao, Z.; Sun, M. Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles. Sustainability 2023, 15, 7965. https://doi.org/10.3390/su15107965
Luo G, Zhang J, Zhao Z, Sun M. Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles. Sustainability. 2023; 15(10):7965. https://doi.org/10.3390/su15107965
Chicago/Turabian StyleLuo, Guobao, Jian Zhang, Zhenhua Zhao, and Mingzhi Sun. 2023. "Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles" Sustainability 15, no. 10: 7965. https://doi.org/10.3390/su15107965
APA StyleLuo, G., Zhang, J., Zhao, Z., & Sun, M. (2023). Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles. Sustainability, 15(10), 7965. https://doi.org/10.3390/su15107965