Evaluation of Kitchen Waste Recycling as Organic N-Fertiliser for Sustainable Agriculture under Cool and Warm Seasons
Abstract
:1. Introduction
- The effect of winter conditions on plant growth for both fertilizers; which fertilizer will resist them better?
- The overfertilization effect—where and at what stage of growth does it occur?
- The nitrogen uptake inhibition effect—will it be dependent on fertilizer application rate or the level of impurities?
- Plant biomass increases as a function of the fertilizer load, i.e., g plant d.m. = f (kg N/ha),
- N uptake by the plant as a function of fertilizer load, i.e., g plant N/kg plant d.m. = f (kg N/ha applied),
- Internal N utilization expressed as an increase in plant biomass as a function of N uptake in kg plant d.m./ha = f (g plant N/ha raised),
- Soil residual properties such as Soil pH, Soil conductivity, Soil N content.
2. Materials and Methods
2.1. Fertilisers
2.1.1. Model Waste Preparation
2.1.2. Kitchen Waste Conversion and Fertilizer Production
2.1.3. Reference Mineral Fertilizers
2.1.4. Assuming Fertilizer Dosages
2.1.5. Fertilizer Application
2.2. Soil and Plants
2.2.1. Soil Preparation
2.2.2. Ryegrass Growth
2.3. Soil and Plant Analysis
3. Theory and Calculation
3.1. Agronomic Effectiveness
3.2. The Monod Model/Kinetics
4. Results
4.1. Measurements
4.1.1. Response of the Ryegrass Biomass Yield to Kitchen Waste-Based Fertilizers
- Harvest 1 (30 days): Dynamic growth up to 0.18 g d.m./pot for 70 kg N/ha for the MF and gradual growth of ryegrass grown on the KW with rapid increase at 120 kg N/ha; both response curves cross at ca. 100 kg N/ha.
- Harvest 2 (next 60 days, 90 days in total): Opposite situation—gradual growth for the MF up to 0.13 g d.m./pot for 70 kg N/ha and dynamic growth of ryegrass grown on the KW up to 0.15 g d.m./pot (i.e., higher than the mineral one); the response curves cross at ca. 100 kg N/ha.
- Harvest 3 (next 90 days, 180 days in total): Dynamic growth up to 0.15 g d.m./pot for 120 kg N/ha for the MF and gradual growth of ryegrass for KW with rapid increase at 120 kg N/ha, but only up to 0.07 g d.m./pot at 170 kg N/ha; response curves cross at ca. 160 kg N/ha.
- Overfertilization for the MF: for all three harvests after 70 kg N/ha; for KW: NO observed.
4.1.2. Nitrogen Uptake by Ryegrass Fertilization with Kitchen Waste-Based Fertilizers
4.1.3. Residual Soil Properties after the Growth of Ryegrass
4.2. Modelling
5. Discussion
5.1. Absolute Agronomic Effectiveness
5.1.1. Cool Season
5.1.2. Warm Season
5.2. Relative Agronomic Effectiveness
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadhukhan, J.; Dugmore, T.I.J.; Matharu, A.; Martinez-Hernandez, E.; Aburto, J.; Rahman, P.K.S.M.; Lynch, J. Perspectives on “game changer” global challenges for sustainable 21st century: Plant-based diet, unavoidable food waste biorefining, and circular economy. Sustainability 2020, 12, 1976. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Sienkiewicz-Cholewa, U.; Baśladyńska, S.; Kocek, D.; Mironiuk, M.; Chojnacka, K. New environmentally friendly bio-based micronutrient fertilizer by biosorption: From laboratory studies to the field. Sci. Total Environ. 2020, 710, 136061. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, K.; Cenian, A.; Świerczek, L.; Konkol, I. Municipal Solid Waste Organic Fraction (Kitchen Waste) Management via Urban Green Areas Fertilization WP4 Report. Interreg Soutb Baltic Programme WASTEMAN Project Internal Report; Gdańsk. 2021. Available online: https://www.imp.gda.pl/wasteman/artykuly/WasteAsFertilisers.pdf (accessed on 22 March 2023).
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Esteban-Lustres, R.; Torres, M.D.; Piñeiro, B.; Enjamio, C.; Domínguez, H. Intensification and biorefinery approaches for the valorization of kitchen wastes—A review. Bioresour. Technol. 2022, 360, 127652. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, H.; Zhang, H.; Xu, S.; Lichtfouse, E.; Yun, Y. Anaerobic digestion and recycling of kitchen waste: A review. Environ. Chem. Lett. 2022, 20, 1745–1762. [Google Scholar] [CrossRef]
- Hafid, H.S.; Rahman, N.A.A.; Shah, U.K.M.; Baharuddin, A.S.; Ariff, A.B. Feasibility of using kitchen waste as future substrate for bioethanol production: A review. Renew. Sustain. Energy Rev. 2017, 74, 671–686. [Google Scholar] [CrossRef]
- Bernat, K.; Zielińska, M.; Cydzik-Kwiatkowska, A.; Wojnowska-Baryła, I. Biogas production from different size fractions separated from solid waste and the accompanying changes in the community structure of methanogenic Archaea. Biochem. Eng. J. 2015, 100, 30–40. [Google Scholar] [CrossRef]
- Konkol, I.; Świerczek, L.; Cenian, A. Biogas Production From Bakery Wastes-Dynamics, Retention Time and Biogas Potential. J. Res. Appl. Agric. Eng. 2018, 63, 32–34. [Google Scholar]
- Suriapparao, D.V.; Vinu, R. Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis. Renew. Energy 2021, 179, 370–378. [Google Scholar] [CrossRef]
- Van Fan, Y.; Lee, C.T.; Klemeš, J.J.; Chua, L.S.; Sarmidi, M.R.; Leow, C.W. Evaluation of Effective Microorganisms on home scale organic waste composting. J. Environ. Manag. 2018, 216, 41–48. [Google Scholar] [CrossRef]
- Pour, F.H.; Makkawi, Y.T. A review of post-consumption food waste management and its potentials for biofuel production. Energy Rep. 2021, 7, 7759–7784. [Google Scholar] [CrossRef]
- Sharma, A.; Kuthiala, T.; Thakur, K.; Thatai, K.S.; Singh, G.; Kumar, P.; Arya, S.K. Kitchen waste: Sustainable bioconversion to value-added product and economic challenges. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Bian, F.; Zhang, X. Testing composted bamboo residues with and without added effective microorganisms as a renewable alternative to peat in horticultural production. Ind. Crops Prod. 2018, 112, 602–607. [Google Scholar] [CrossRef]
- Ahn, K.; Lee, K.B.; Kim, Y.J.; Koo, Y.M. Quantitative analysis of the three main genera in effective microorganisms using qPCR. Korean J. Chem. Eng. 2014, 31, 849–854. [Google Scholar] [CrossRef]
- Jusoh, M.L.C.; Manaf, L.A.; Latiff, P.A. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. J. Environ. Health Sci. Eng. 2013, 10, 17. [Google Scholar] [CrossRef]
- Hu, C.; Qi, Y. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 2013, 46, 63–67. [Google Scholar] [CrossRef]
- Liu, X.; Wu, L.; Zhou, W.; Hu, L.; Lv, J.; Du, W. Environment-friendly bio-based controlled-release phosphate fertilizer with waste kitchen oil as coating material: Preparation, characterization, and mechanisms. J. Environ. Manag. 2022, 324, 116409. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Guo, Y.; Chen, Q.; Zhao, X.; Ao, X. Preparation and performance of a kitchen waste oil-modified polyvinyl alcohol-grafted urea slow-release fertilizer. J. Appl. Polym. Sci. 2022, 139, 51484. [Google Scholar] [CrossRef]
- Prado, L.O.; Souza, H.H.S.; Chiquito, G.M.; Paulo, P.L.; Boncz, M.A. A comparison of different scenarios for on-site reuse of blackwater and kitchen waste using the life cycle assessment methodology. Environ. Impact Assess. Rev. 2020, 82, 106362. [Google Scholar] [CrossRef]
- Minale, M.; Worku, T. Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: Waste generated from condominium house. Int. J. Environ. Sci. Technol. 2014, 11, 509–516. [Google Scholar] [CrossRef]
- Odejobi, O.J.; Ajala, O.O.; Osuolale, F.N. Anaerobic co-digestion of kitchen waste and animal manure: A review of operating parameters, inhibiting factors, and pretreatment with their impact on process performance. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shahazi, R.; Nova, S.N.B.; Uddin, M.R.; Hossain, M.S.; Yousuf, A. Biogas production from anaerobic co-digestion using kitchen waste and poultry manure as substrate—Part 1: Substrate ratio and effect of temperature. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tan, X.; Zheng, M.; Yu, D.; Lin, A.; Liu, J.; Wang, C.; Gao, Z.; Cui, J. Modified biochar/humic substance/fertiliser compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils. J. Environ. Manag. 2023, 325, 116614. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Lin, T.; Hu, Y.; Lin, M.; Liu, Y.; Zhang, G.; Ye, H.; Xue, X. Reducing food-system nitrogen input and emission through circular agriculture in montane and coastal regions. Resour. Conserv. Recycl. 2023, 188, 106726. [Google Scholar] [CrossRef]
- Karwal, M.; Kaushik, A. Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden. J. Mater. Cycles Waste Manag. 2021, 23, 358–370. [Google Scholar] [CrossRef]
- Macura, B.; Johannesdottir, S.L.; Piniewski, M.; Haddaway, N.R.; Kvarnström, E. Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: A systematic review protocol. Environ. Evid. 2019, 8, 29. [Google Scholar] [CrossRef]
- Cordovil, C.M.d.S.; Cabral, F.; Coutinho, J. Potential mineralization of nitrogen from organic wastes to ryegrass and wheat crops. Bioresour. Technol. 2007, 98, 3265–3268. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Murillo, J.M.; Cabrera, F.; López, R.; Martín-Olmedo, P. Testing low-quality urban composts for agriculture: Germination and seedling performance of plants. Agric. Ecosyst. Environ. 1995, 54, 127–135. [Google Scholar] [CrossRef]
- Giri, B.S.; Sarowgi, A.; Kaushik, Y.; Pal, A.; Jaiswal, A.; Kumari, S.; Singh, H.; Sonwani, R.; Thivaharan, V.; Singh, R.S. Indoor potted plant based biofilter: Performance evaluation and kinetics study. Indian J. Exp. Biol. 2019, 57, 879–886. [Google Scholar]
- Tang, J.; Riley, W.J. Finding Liebig’s law of the minimum. Ecol. Appl. 2021, 31, e02458. [Google Scholar] [CrossRef] [PubMed]
- Paulsrud, B.; Szatkowska, B.; Hupka, J.; Aranowski, R.; Cenian, A.; Zimiński, T.; Dembowska, K.; Pontus, K. Odpady Organiczne—Odnawialne Źródło Energii. Rozwiązania Technologiczne do Produkcji i Wykorzystania Biogazu i Pofermentu Powstałych z Odpadów Organicznych w Województwie Pomorskim; Gdańsk. 2016. Available online: http://www.pom-biogas.eu/pl/publikacje-i-wydarzenia (accessed on 22 March 2023).
- Regulation of the Council of Ministers Action Program to Reduce Water Pollution with Nitrates from Agricultural Sources and Prevent Further Pollution; On-line System of Legal Acts, Prime Minister of Poland: Warszawa, Poland, 2020.
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, VIC, Australia, 1992. [Google Scholar]
- Bolland, M.D.A.; Gilkes, R.J. The poor performance of rock phosphate fertilizers in Western Australia: Part 1. The crop and pasture response. Agric. Sci. 1990, 3, 8–43. [Google Scholar]
- Kuligowski, K.; Gilkes, R.J.; Poulsen, T.G.; Yusiharni, B.E. Ash from the thermal gasification of pig manureeffects on ryegrass yield, element uptake, and soil properties. Soil Res. 2012, 50, 406–415. [Google Scholar] [CrossRef]
- Yusiharni, B.E.; Ziadi, H.; Gilkes, R.J. A laboratory and glasshouse evaluation of chicken litter ash, wood ash, and iron smelting slag as liming agents and P fertilisers. Aust. J. Soil Res. 2007, 45, 374–389. [Google Scholar] [CrossRef]
Material | Season | Symbol | d.m. | TOS | N-Total | P-Olsen | P-Total | K-Olsen | K-Total |
---|---|---|---|---|---|---|---|---|---|
Unit | % | % | g/kg (Pure Ingredient) | ||||||
Soil | Cool | 84.75 | 5.80 | 1.26 | 0.0195 | 0.191 | 0.0670 | 0.626 | |
Soil | Warm | 88.77 | 6.08 | 1.32 | 0.0190 | 0.186 | 0.0649 | 0.610 | |
Kitchen Waste EM-incubated/Dried & Pelleted | Cool, Warm | KW | 25.75/ 95.00 | 93.72 | 34.18 | 0.0486 | 1.511 | 5.715 | 8.482 |
Kitchen Waste digested | Warm | KW-dig | 16.51 | 95.00 | 42.82 | 0.0486 | 1.511 | 5.715 | 8.482 |
Mineral fertiliser FLOROVIT NPK 1 | Cool | MF | 100 | 0 | 44.00 | 14.8 | 22.7 3 | 157.3 | NA |
Mineral fertiliser FLOROVIT NP 2 | Warm | MF | 100 | 0 | 190 | 17.03 | 26.2 3 | NA | NA |
Mineral Fertiliser NPK (Cool Season)—MF (C) | Kitchen Waste Incubated with EM, Pelleted (Cool and Warm Seasons)—KW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dosage No | kg N/ha | g N/pot | g Fertiliser/Pot | mg N/kg Soil d.m. | Dosage No | kg N/ha | g N/Pot | g of Fertiliser/Pot Cool/Warm | mg N/kg Soil d.m. | |
1 (normal) | 20 | 0.033 | 0.75 | 0.024 | 1 | 20 | 0.033 | 0.97 | 1.02 | 0.023 |
2 | 70 | 0.116 | 2.63 | 0.083 | 2 | 70 | 0.116 | 3.38 | 3.56 | 0.079 |
3 | 120 | 0.198 | 4.50 | 0.142 | 3 | 120 | 0.198 | 5.79 | 6.10 | 0.135 |
4 (max in PL) | 170 | 0.281 | 6.38 | 0.201 | 4 | 170 | 0.281 | 8.21 | 8.64 | 0.192 |
5 | 220 | 0.363 | 8.25 | 0.260 | 5 | 220 | 0.363 | 10.62 | 11.18 | 0.248 |
6 | 270 | 0.446 | 10.13 | 0.319 | 6 | 270 | 0.446 | 13.04 | 13.72 | 0.304 |
7 * | 370 | 0.611 | 18.81 | 0.417 | ||||||
Mineral fertiliser NP (warm season)—MF (W) | Kitchen Waste digested, (warm season)—KW–dig | |||||||||
Dosage No | kg N/ha | g N/pot | g fertiliser/pot | mg N/kg soil d.m. | Dosage No | kg N/ha | g N/pot | g fertiliser/pot | mg N/kg soil d.m. | |
1 (normal) | 20 | 0.033 | 0.17 | 0.023 | 1 | 20 | 0.033 | 4.67 | 0.023 | |
2 | 70 | 0.116 | 0.61 | 0.079 | 2 | 70 | 0.116 | 16.34 | 0.079 | |
3 | 120 | 0.198 | 1.04 | 0.135 | 3 | 120 | 0.198 | 28.01 | 0.135 | |
4 (max in PL) | 170 | 0.281 | 1.48 | 0.192 | 4 | 170 | 0.281 | 39.69 | 0.192 | |
5 | 220 | 0.363 | 1.91 | 0.248 | 5 | 220 | 0.363 | 51.36 | 0.248 | |
6 | 270 | 0.446 | 2.35 | 0.304 | 6 | 270 | 0.446 | 63.03 | 0.304 | |
7 * | 370 | 0.611 | 3.21 | 0.417 | 7 * | 370 | 0.611 | 86.37 | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuligowski, K.; Konkol, I.; Świerczek, L.; Chojnacka, K.; Cenian, A.; Szufa, S. Evaluation of Kitchen Waste Recycling as Organic N-Fertiliser for Sustainable Agriculture under Cool and Warm Seasons. Sustainability 2023, 15, 7997. https://doi.org/10.3390/su15107997
Kuligowski K, Konkol I, Świerczek L, Chojnacka K, Cenian A, Szufa S. Evaluation of Kitchen Waste Recycling as Organic N-Fertiliser for Sustainable Agriculture under Cool and Warm Seasons. Sustainability. 2023; 15(10):7997. https://doi.org/10.3390/su15107997
Chicago/Turabian StyleKuligowski, Ksawery, Izabela Konkol, Lesław Świerczek, Katarzyna Chojnacka, Adam Cenian, and Szymon Szufa. 2023. "Evaluation of Kitchen Waste Recycling as Organic N-Fertiliser for Sustainable Agriculture under Cool and Warm Seasons" Sustainability 15, no. 10: 7997. https://doi.org/10.3390/su15107997
APA StyleKuligowski, K., Konkol, I., Świerczek, L., Chojnacka, K., Cenian, A., & Szufa, S. (2023). Evaluation of Kitchen Waste Recycling as Organic N-Fertiliser for Sustainable Agriculture under Cool and Warm Seasons. Sustainability, 15(10), 7997. https://doi.org/10.3390/su15107997