Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network
Abstract
:1. Introduction
2. Previous Research
2.1. 4th Industrial Revolution Technology and Logistics Technology
2.2. Patent Analysis
2.2.1. Technology Development Status Analysis
2.2.2. Network Analysis
3. Methodological Framework
3.1. Overall Framework
3.2. Detailed Explanation
3.2.1. Step 1: Collecting Patents and Preprocessing Data for Technology Analysis
3.2.2. Step 2: Technology Development Status Analysis
3.2.3. Step 3: Future Technology Prediction
4. Future Logistics Technology Predicition Using Big Data
4.1. Logistics Patent Data Collection and Data Preprocessing
4.2. Logistics Technology Development Status Analysis Based on Big Data
4.2.1. Technology Innovation Stage Analysis
4.2.2. Technology Prospect Analysis
4.2.3. Summary
4.3. Future Logistics Technology Prediction Based on Big Data
4.3.1. Logistics Technology Network Transition
4.3.2. Network Analysis/Major IPC Selection
4.3.3. Future Logistics Technology Prediction
5. Conclusions/Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skapinyecz, R.; Illés, B.; Bányai, Á. Logistic aspects of Industry 4.0. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 448, p. 012014. [Google Scholar]
- Kitchens, B.; Dobolyi, D.; Li, J.; Abbasi, A. Advanced customer analytics: Strategic value through integration of relationship-oriented big data. J. Manag. Inf. Syst. 2018, 35, 540–574. [Google Scholar] [CrossRef]
- Spiess, J.; T’Joens, Y.; Dragnea, R.; Spencer, P.; Philippart, L. Using big data to improve customer experience and business performance. Bell Labs Tech. J. 2014, 18, 3–17. [Google Scholar] [CrossRef]
- Shen, C.Y. Logistic growth modelling of COVID-19 proliferation in China and its international implications. Int. J. Infect. Dis. 2020, 96, 582–589. [Google Scholar] [CrossRef]
- Liu, W.; Liang, Y.; Bao, X.; Qin, J.; Lim, M.K. China’s logistics development trends in the post COVID-19 era. Int. J. Logist. Res. Appl. 2022, 25, 965–976. [Google Scholar] [CrossRef]
- Lee, C.K.; Lv, Y.; Ng, K.; Ho, W.; Choy, K.L. Design and application of Internet of things-based warehouse management system for smart logistics. Int. J. Prod. Res. 2018, 56, 2753–2768. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Newman, S.T.; Huang, G.Q.; Lan, S. Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Comput. Ind. Eng. 2016, 101, 572–591. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Jin, D.H.; Kim, H.J. Integrated understanding of big data, big data analysis, and business intelligence: A case study of logistics. Sustainability 2018, 10, 3778. [Google Scholar] [CrossRef]
- Hewage, T.N.; Halgamuge, M.N.; Syed, A.; Ekici, G. Big Data Techniques of Google, Amazon, Facebook and Twitter. J. Commun. 2018, 13, 94–100. [Google Scholar] [CrossRef]
- Martin, J.; Moritz, G.; Frank, W. Big data in logistics a DHL perspective on how to move beyond the hype. In DHL Customer Solutions & Innovation; DHL Customer Solutions & Innovation: Plantation, FL, USA, 2013; pp. 1–30. [Google Scholar]
- Robak, S.; Franczyk, B.; Robak, M. Applying big data and linked data concepts in supply chains management. In Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, Krakow, Poland, 8–11 September 2013; IEEE: New York, NY, USA, 2013; pp. 1215–1221. [Google Scholar]
- Facchini, F.; Oleśków-Szłapka, J.; Ranieri, L.; Urbinati, A. A maturity model for logistics 4.0: An empirical analysis and a roadmap for future research. Sustainability 2019, 12, 86. [Google Scholar] [CrossRef]
- Bessis, N.; Dobre, C. Big Data and Internet of Things: A Roadmap for Smart Environments; Springer: Heidelberg, Germany, 2014; Volume 546. [Google Scholar]
- Diez-Olivan, A.; Del Ser, J.; Galar, D.; Sierra, B. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Inf. Fusion 2019, 50, 92–111. [Google Scholar] [CrossRef]
- Caviggioli, F. Technology fusion: Identification and analysis of the drivers of technology convergence using patent data. Technovation 2016, 55, 22–32. [Google Scholar] [CrossRef]
- Park, Y.; Yoon, B.; Lee, S. The idiosyncrasy and dynamism of technological innovation across industries: Patent citation analysis. Technol. Soc. 2005, 27, 471–485. [Google Scholar] [CrossRef]
- Wenfeng, Z.; Xin, F.; Hongmei, Y. Research on Technology Opportunity Identification of Small and Medium-sized Vaccine Enterprises Based on Patent Analysis. Asian Soc. Pharm. 2020, 15, 97–107. [Google Scholar]
- Leydesdorff, L.; Kushnir, D.; Rafols, I. Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC). Scientometrics 2014, 98, 1583–1599. [Google Scholar] [CrossRef]
- Chun, E.; Jun, S.; Lee, C. Identification of Promising Smart Farm Technologies and Development of Technology Roadmap Using Patent Map Analysis. Sustainability 2021, 13, 10709. [Google Scholar] [CrossRef]
- Kwon, K.; Jun, S.; Lee, Y.J.; Choi, S.; Lee, C. Logistics technology forecasting framework using patent analysis for technology roadmap. Sustainability 2022, 14, 5430. [Google Scholar] [CrossRef]
- Comelli, M.; Fenies, P.; Tchernev, N. A combined financial and physical flows evaluation for logistic process and tactical production planning: Application in a company supply chain. Int. J. Prod. Econ. 2008, 112, 77–95. [Google Scholar] [CrossRef]
- Ayed, A.B.; Halima, M.B.; Alimi, A.M. Big data analytics for logistics and transportation. In Proceedings of the 2015 4th international conference on advanced logistics and transport (ICALT), Valenciennes, France, 20–22 May 2015; IEEE: New York, NY, USA, 2015; pp. 311–316. [Google Scholar]
- Bucki, R.; Suchánek, P. The Method of Logistic Optimization in E-commerce. J. Univers. Comput. Sci. 2012, 18, 1238–1258. [Google Scholar]
- Zijm, W.; Klumpp, M. Future Logistics: What to Expect, How to Adapt; Springer: Cham, Germany, 2017; pp. 365–379. [Google Scholar]
- Charoenporn, P. Smart logistic system by IOT technology. In Proceedings of the 6th International Conference on Information and Education Technology, Osaka, Japan, 6–8 January 2018; pp. 149–153. [Google Scholar]
- Dekle, R. Robots and industrial labor: Evidence from Japan. J. Jpn. Int. Econ. 2020, 58, 101108. [Google Scholar] [CrossRef]
- Shin, H. A Study on Trends in the Use of Logistics Technology based on the 4th Industrial Revolution. E-Bus. Stud. 2020, 21, 17–27. [Google Scholar] [CrossRef]
- Lambert, D.M.; Cooper, M.C. Issues in supply chain management. Ind. Mark. Manag. 2000, 29, 65–83. [Google Scholar] [CrossRef]
- Cooper, D.P.; Tracey, M. Supply chain integration via information technology: Strategic implications and future trends. Int. J. Integr. Supply Manag. 2005, 1, 237–257. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, W.; Bai, P.; Chen, Y. Data-driven optimization for last-mile delivery. Complex Intell. Syst. 2021, 1–14. [Google Scholar] [CrossRef]
- Halldórsson, Á.; Wehner, J. Last-mile logistics fulfilment: A framework for energy efficiency. Res. Transp. Bus. Manag. 2020, 37, 100481. [Google Scholar] [CrossRef]
- Kahng, A.B. The ITRS design technology and system drivers roadmap: Process and status. In Proceedings of the 50th Annual Design Automation Conference, Austin, TX, USA, 29 May–7 June 2013; pp. 1–6. [Google Scholar]
- Haegeman, K.; Marinelli, E.; Scapolo, F.; Ricci, A.; Sokolov, A. Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration? Technol. Forecast. Soc. Chang. 2013, 80, 386–397. [Google Scholar] [CrossRef]
- Woudenberg, F. An evaluation of Delphi. Technol. Forecast. Soc. Chang. 1991, 40, 131–150. [Google Scholar] [CrossRef]
- Ekström, T. The Delphi Technique–Limitations and Possibilities. In Proceedings of the 32nd Annual NOFOMA Conference, Online, 17–18 September 2020. [Google Scholar]
- Goodman, C.M. The Delphi technique: A critique. J. Adv. Nurs. 1987, 12, 729–734. [Google Scholar] [CrossRef]
- Pearl, R.; Reed, L.J. A further note on the mathematical theory of population growth. Proc. Natl. Acad. Sci. USA 1922, 8, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.S.; Cho, J.H. Development of Survivor Models Using Technological Growth Models. J. Soc. Korea Ind. Syst. Eng. 2010, 33, 167–177. [Google Scholar]
- Ryu, J.; Byeon, S.C. Technology level evaluation methodology based on the technology growth curve. Technol. Forecast. Soc. Chang. 2011, 78, 1049–1059. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, C.Y.; Lee, S.C. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int. J. Hydrog. Energy 2011, 36, 6957–6969. [Google Scholar] [CrossRef]
- Trappey, C.V.; Wu, H.Y.; Taghaboni-Dutta, F.; Trappey, A.J. Using patent data for technology forecasting: China RFID patent analysis. Adv. Eng. Inform. 2011, 25, 53–64. [Google Scholar] [CrossRef]
- Jun, S.C.; Han, S.H.; Kim, S.B. Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm. J. Korea Soc. Comput. Inf. 2020, 25, 261–270. [Google Scholar]
- Yoon, B.; Park, I.; Yun, D.; Park, G. Exploring promising vacant technology areas in a technology-oriented company based on bibliometric analysis and visualisation. Technol. Anal. Strateg. Manag. 2019, 31, 388–405. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network analysis in the social sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Hage, P.; Harary, F. Eccentricity and centrality in networks. Soc. Netw. 1995, 17, 57–63. [Google Scholar] [CrossRef]
- Rhodes, R. Policy networks. In The Oxford Handbook of Public Policy; Oxford University Press: Oxford, UK, 2006; pp. 425–447. [Google Scholar]
- Sternitzke, C.; Bartkowski, A.; Schramm, R. Visualizing patent statistics by means of social network analysis tools. World Pat. Inf. 2008, 30, 115–131. [Google Scholar] [CrossRef]
- Jun, S.; Han, S.H.; Yu, J.; Hwang, J.; Kim, S.; Lee, C. Identification of promising vacant technologies for the development of truck on freight train transportation systems. Appl. Sci. 2021, 11, 499. [Google Scholar] [CrossRef]
- Yoon, B.; Park, Y. A text-mining-based patent network: Analytical tool for high-technology trend. J. High Technol. Manag. Res. 2004, 15, 37–50. [Google Scholar] [CrossRef]
- Li, A.; Cornelius, S.P.; Liu, Y.Y.; Wang, L.; Barabási, A.L. The fundamental advantages of temporal networks. Science 2017, 358, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Holme, P.; Saramäki, J. Temporal networks. Phys. Rep. 2012, 519, 97–125. [Google Scholar] [CrossRef]
- Masuda, N.; Holme, P. Predicting and controlling infectious disease epidemics using temporal networks. F1000prime Rep. 2013, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Li, X.; Xu, J.; Vasilakos, A. Human Interactive Patterns in Temporal Networks. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 214–222. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, L.; Zhu, R.; Stanley, H.E. Applying temporal network analysis to the venture capital market. Eur. Phys. J. B 2015, 88, 260. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S. Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technol. Forecast. Soc. Chang. 2015, 92, 332–345. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Lin, C.J.; Lin, Y.I. Text mining techniques for patent analysis. Inf. Process. Manag. 2007, 43, 1216–1247. [Google Scholar] [CrossRef]
- Gao, L.; Porter, A.L.; Wang, J.; Fang, S.; Zhang, X.; Ma, T.; Wang, W.; Huang, L. Technology life cycle analysis method based on patent documents. Technol. Forecast. Soc. Chang. 2013, 80, 398–407. [Google Scholar] [CrossRef]
- Kim, K.H.; Han, Y.J.; Lee, S.; Cho, S.W.; Lee, C. Text mining for patent analysis to forecast emerging technologies in wireless power transfer. Sustainability 2019, 11, 6240. [Google Scholar] [CrossRef]
- Huang, J.Y. Patent portfolio analysis of the cloud computing industry. J. Eng. Technol. Manag. 2016, 39, 45–64. [Google Scholar] [CrossRef]
- O’Leary, D.E. Technology life cycle and data quality: Action and triangulation. Decis. Support Syst. 2019, 126, 113139. [Google Scholar] [CrossRef]
- Cho, H.P.; Lim, H.; Lee, D.; Cho, H.; Kang, K.I. Patent analysis for forecasting promising technology in high-rise building construction. Technol. Forecast. Soc. Chang. 2018, 128, 144–153. [Google Scholar] [CrossRef]
- Ryu, T.; Jung, C.; Kim, B.; Lim, S.; Lim, H.; Choo, Y.; Park, J.; Kim, J.; Kim, H.; Joung, D.; et al. Development of Indicators for IP Competitiveness and Characteristics. 2012. Available online: https://www.kiip.re.kr/en/research_report/view.do?bd_gb=ereport&bd_cd=1&bd_item=0&po_item_gb=regb_10¤tPage=8&po_no=R0359 (accessed on 24 February 2023).
- Zhang, G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Xu, L.; Chen, W.; Lv, Z. Construction and Simulation of Economic Statistics Measurement Model Based on Time Series Analysis and Forecast. Complexity 2021, 2021, 5963516. [Google Scholar] [CrossRef]
- Daud, A.; Abbas, F.; Amjad, T.; Alshdadi, A.A.; Alowibdi, J.S. Finding rising stars through hot topics detection. Future Gener. Comput. Syst. 2021, 115, 798–813. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Zhao, C. Explaining social events through community evolution on temporal networks. Appl. Math. Comput. 2021, 404, 126148. [Google Scholar] [CrossRef]
- Enright, J.; Meeks, K.; Mertzios, G.B.; Zamaraev, V. Deleting edges to restrict the size of an epidemic in temporal networks. J. Comput. Syst. Sci. 2021, 119, 60–77. [Google Scholar] [CrossRef]
- Thompson, W.H.; Brantefors, P.; Fransson, P. From static to temporal network theory: Applications to functional brain connectivity. Netw. Neurosci. 2017, 1, 69–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Guarrasi, V.; Sarıyüce, A.E. Temporal network motifs: Models, limitations, evaluation. IEEE Trans. Knowl. Data Eng. 2021, 35, 945–957. [Google Scholar] [CrossRef]
Classification | Symbol | Detailed Explanation |
---|---|---|
Section | G | Physics |
Class | G01 | Measurement; Test |
Subclass | G01B | Length, Thickness or Similar Straight Line, Angle Measurement |
Main Group | G01B7 | An electrical or magnetic measuring device |
Sub Group | G01B7/14 | For measuring the length or width of a moving object |
IPC 1 | IPC 2 | ⋯ | IPC M | |
---|---|---|---|---|
Patent 1 | 1 | 0 | ⋯ | 1 |
Patent 2 | 0 | 0 | ⋯ | 0 |
Patent 3 | 0 | 0 | ⋯ | 0 |
⋮ | ⋮ | ⋮ | ⋱ | ⋮ |
Patent N−1 | 0 | 0 | ⋯ | 0 |
Patent N | 1 | 1 | ⋯ | 1 |
IPC 1 | IPC 2 | ⋯ | IPC 22 | |
---|---|---|---|---|
B07C | B25J | ⋯ | H04W | |
Patent 1 | 0 | 0 | ⋯ | 0 |
Patent 2 | 0 | 1 | ⋯ | 1 |
Patent 3 | 0 | 0 | ⋯ | 0 |
⋮ | ⋮ | ⋮ | ⋱ | ⋮ |
Patent 962 | 0 | 0 | ⋯ | 1 |
Patent 963 | 1 | 1 | ⋯ | 1 |
IPC | Contents |
---|---|
B07C | Classification of individual items |
B25J | Manipulator |
B65B | Item/Material packaging machine and equipment |
B65G | Transportation or storage |
G01C | A rotating device with vibration mass |
G01S | Wireless defense decision |
G05B | Control or adjustment system |
G05D | Non-electrical variance control |
G06F | Electrical digital data processing |
G06K | Data recognition, data display |
G06N | Specific computational model computer system |
G06T | Data processing system |
G07C | Image data processing or generating |
G07F | Machine work registration or display |
G08B | Coin-input operating device |
G08G | Signal or calling system |
G09B | Traffic control system |
G16Y | Educational or teaching equipment |
H04L | IoT communication technology |
H04N | Multiple communication |
H04W | Video communication |
G06Q | Wireless communication network |
Num | IPC 1 | IPC 2 | Time | Definition |
---|---|---|---|---|
1 | G06Q | H04L | 2017 | Internet of Things wireless communication |
2 | G06Q | G06F | 2018 | Digital data processing wireless communication |
3 | G06Q | H04L | 2018 | Internet of Things wireless communication |
4 | G06Q | H04L | 2019 | Internet of Things wireless communication |
5 | G06Q | G06F | 2019 | Digital data processing wireless communication |
6 | G05B | H04L | 2019 | IoT data control technology |
7 | G06Q | G06K | 2020 | Data recognition and communication through external sensors |
8 | G06Q | G06F | 2020 | Digital data processing wireless communication |
9 | G06Q | G06N | 2020 | Computing technology for data calculation |
10 | G06Q | H04W | 2020 | Video wireless communication |
11 | G06Q | H04L | 2020 | Internet of Things wireless communication |
12 | G06F | G06K | 2020 | Digital data display system |
13 | G06Q | G06T | 2020 | Wireless data processing system |
14 | G01S | H04W | 2020 | Video communication using speed and 3D position sensor |
IPC | Count | Appearance | |
---|---|---|---|
1 | G06Q | 9 | X |
2 | G06K | 7 | X |
3 | G06F | 5 | X |
4 | G06T | 4 | X |
5 | G01S | 3 | X |
6 | G06N | 3 | X |
7 | G07C | 3 | O |
8 | B25J | 2 | O |
9 | B07C | 2 | O |
10 | B65G | 2 | X |
11 | G08G | 2 | O |
12 | G05D | 2 | O |
13 | G08B | 1 | O |
14 | H04W | 1 | X |
IPC 1 | IPC 2 | IPC 3 | IPC 4 | |
---|---|---|---|---|
Technology 1 | G07C | G06Q | G05B | G01S |
Technology 2 | B25J | G06Q | G05B | G01S |
Technology 3 | B07C | G06Q | G05B | G01S |
Technology 4 | G08G | G06Q | G05B | G01S |
Technology 5 | G05D | G06Q | G05B | G01S |
Technology 6 | G08B | G06Q | G05B | G01S |
Technology | Description |
---|---|
Technology 1 | Wireless communicating image data generation system (IDGS) and control system using IDGS |
Technology 2 | A wireless control system using video communication |
Technology 3 | Automatic classification system using 3D position sensors and other sensors attached machines |
Technology 4 | An alarm system that collects and analyzes various data through sensors |
Technology 5 | Automatic control system using data analysis technology |
Technology 6 | A system that recognizes certain conditions through sensors and automation technology based on specific conditions |
Technology 1 | Technology 2 | Technology 3 | Technology 4 | Technology 5 | Technology 6 | |
---|---|---|---|---|---|---|
Digital Logistics | ⊚ | ⊚ | ⊚ | ⊚ | ⊚ | ⊚ |
Eco-friendly Logistics | ∘ | |||||
Safe Logistics | ∘ | ⊚ | ⊚ | ∘ | ∘ | |
IoT Logistics | ∘ | ⊚ | ⊚ | ⊚ | ||
Smart-city Logistics | ⊚ | ∘ | ⊚ | ⊚ | ⊚ | ⊚ |
Smart Airport/Harbor | ⊚ | ⊚ | ⊚ | ⊚ | ⊚ | ⊚ |
Cold Chain | ∘ | ⊚ | ||||
Worker Shortage Solution | ∘ | ⊚ | ⊚ | ⊚ | ⊚ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, K.; So, J. Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network. Sustainability 2023, 15, 8159. https://doi.org/10.3390/su15108159
Kwon K, So J. Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network. Sustainability. 2023; 15(10):8159. https://doi.org/10.3390/su15108159
Chicago/Turabian StyleKwon, Koopo, and Jaeryong So. 2023. "Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network" Sustainability 15, no. 10: 8159. https://doi.org/10.3390/su15108159
APA StyleKwon, K., & So, J. (2023). Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network. Sustainability, 15(10), 8159. https://doi.org/10.3390/su15108159