Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China
Abstract
:1. Introduction
2. Literature Review
3. Model
3.1. Basic Model
3.1.1. Electricity Conservation Index Model (ECIM) of BEPV
3.1.2. From Perspective of the Fuel Whole Life Cycle, BEPVs’ Electricity Energy Consumption per 100 km
3.1.3. From Perspective of the Fuel Whole Life Cycle, ICEVs Energy Consumption per 100 km
3.1.4. Carbon Emissions Reduction Index Model (CERIM) of BEPV
3.1.5. Carbon Emissions Model per 10,000 km of BEPV
3.1.6. Carbon Emissions Model per 10,000 km of ICEV
3.2. Influence Factor
3.2.1. Mileage Credibility of BEPV
3.2.2. Regional Mileage Credibility
3.2.3. Low Temperature
3.2.4. Low Temperature Endurance Mileage Accuracy
4. Data
5. Case Analysis
5.1. Analysis of All Levels BEPVs’ ECIM and CERIM Values
5.2. Forecast All Levels BEPVs’ Average Electricity Energy Conservation and Carbon Emissions Reduction Capability in 2025, 2030 and 2035
5.3. The Impact of Mileage Credibility on BEPVs’ Electricity Energy Conservation and Carbon Emission Reduction Capability
5.4. The Impact of Regional Mileage Credibility on BEPVs’ Electricity Energy Conservation and Carbon Emissions Reduction Capability
5.5. Sensitivity Analysis of Low Temperature on BEPVs’ Electricity Energy Conservation and Carbon Emission Reduction
5.6. Sensitivity Analysis of Low Temperature Endurance Mileage Accuracy on Electricity Energy Conservation and Carbon Emission Reduction Capability of BEPV
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ICEV | internal combustion engine vehicle |
ECIM | electricity conservation index model |
CERIM | carbon emissions reduction index model |
WTW | well-to-wheel |
WTP | well to pump |
PTW | pump to wheels |
km | Kilometer |
Appendix A
References
- Xu, X.; Aziz, H.; Guensler, R. A modal-based approach for estimating electric vehicle energy consumption in transportation networks. Transp. Res. Part D Transp. Environ. 2019, 75, 249–264. [Google Scholar] [CrossRef]
- Li, F.; Ou, R.; Xiao, X.; Zhou, K.; Xie, W.; Ma, D.; Liu, K.; Song, Z. Regional comparison of electric vehicle adoption and emission reduction effects in China. Resour. Conserv. Recycl. 2019, 149, 714–726. [Google Scholar] [CrossRef]
- China Society of Automotive Engineering. Technology Roadmap 2.0 for Energy-Saving and New Energy Vehicle; Mechanical Industry Press: Beijing, China, 2021. [Google Scholar]
- Elshurafa, A.M.; Peerbocus, N. Electric vehicle deployment and carbon emissions in Saudi Arabia: A power system perspective. Electr. J. 2020, 33, 106774. [Google Scholar] [CrossRef]
- Suanpang, P.; Jamjuntr, P.; Kaewyong, P.; Niamsorn, C.; Jermsittiparsert, K. An Intelligent Recommendation for Intelligently Accessible Charging Stations: Electronic Vehicle Charging to Support a Sustainable Smart Tourism City. Sustainability 2023, 15, 455. [Google Scholar] [CrossRef]
- Mundaca, L.; Roman-Collado, R.; Cansino Muñoz-Repiso, J.M. Assessing the impacts of social norms on low-carbon mobility options. Energy Policy 2022, 162, 112814. [Google Scholar] [CrossRef]
- Axsen, J.; Kurani, K.S.; McCarthy, R. Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model. Energy Policy 2011, 39, 1617–1629. [Google Scholar] [CrossRef]
- Garcia, R.; Gregory, J.; Freire, F. Dynamic fleet-based life-cycle greenhouse gas assessment of the introduction of electric vehicles in the Portuguese light-duty fleet. Int. J. Life Cycle Assess 2015, 20, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Kotchen, M.J.; Mansur, T.; Joshua, S. Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies. J. Econ. Behav. Organ. 2014, 107, 248–268. [Google Scholar]
- Dubarry, M.; Truchot, C.; Liaw, B.Y.; Gering, K.; Sazhin, S.; Jamison, D.; Michelbacher, C. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications III: Effect of thermal excursions without prolonged thermal aging. J. Electrochem. Soc. 2013, 160, A191–A199. [Google Scholar] [CrossRef]
- Li, J.; Yuan, C.F.; Guo, Z.H.; Zhang, Z.A.; Lai, Y.Q.; Liu, J. Limiting factors for low-temperature performance of electrolytes in LiFePO4 /Li and graphite /Li half cells. Electrochim. Acta 2012, 59, 69–74. [Google Scholar] [CrossRef]
- Yu, A.; Wei, Y.; Chen, W.; Peng, N.; Peng, L. Life cycle environmental impacts and carbon emissions: A case study of electric and gasoline vehicles in China. Transp. Res. Part D Transp. Environ. 2018, 65, 409–420. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, M.; Lu, Z.; Kelly, J. Taking into account greenhouse gas emissions of electric vehicles for transportation de-carbonization. Energy Policy 2021, 155, 112353. [Google Scholar] [CrossRef]
- Kamiya, G.Y. Modelling the greenhouse gas emissions intensity of plug-in electric vehicles in Canada using short-term and long-term perspectives. Transp. Res. Part D Transp. Environ. 2015, 69, 209–223. [Google Scholar] [CrossRef]
- Bastida-Molina, P.; Hurtado-Pérez, E.; Peñalvo-López, E.; Moros-Gómez, M.C. Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels. Transp. Res. Part D Transp. Environ. 2020, 88, 102560. [Google Scholar] [CrossRef]
- Manjunath, A.; Gross, G. Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs). Energy Policy 2017, 102, 423–429. [Google Scholar] [CrossRef]
- Li, Z.; Khajepour, A.; Song, J. A comprehensive review of the key technologies for pure electric vehicles. Energy 2019, 182, 824–839. [Google Scholar] [CrossRef]
- Liu, D.; Xu, L.; Sadia, U.H.; Wang, H. Evaluating the CO2 emission reduction effect of China’s battery electric vehicle promotion efforts. Atmos. Pollut. Res. 2021, 12, 101115. [Google Scholar] [CrossRef]
- Moro, A.; Lonza, L. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transp. Res. Part D Transp. Environ. 2017, 64, 5–14. [Google Scholar] [CrossRef]
- Li, J.; Yang, B. Analysis of greenhouse gas emissions from electric vehicle considering electric energy structure, climate and power economy of ev: A China case. Atmos. Pollut. Res. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. J. Environ. Manag. 2021, 303, 114050. [Google Scholar] [CrossRef]
- Choi, H.; Shin, J.; Woo, J. Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy Policy 2018, 121, 13–24. [Google Scholar] [CrossRef]
- Plötz, P.; Gnann, T.; Jochem, P.; Yilmaz, H.Ü.; Kaschub, T. Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy 2019, 130, 32–40. [Google Scholar] [CrossRef]
- Zhao, Y.; Onat, N.C.; Kucukvar, M.; Tatari, O. Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transp. Res. Part D Transp. Environ. 2016, 47, 195–207. [Google Scholar] [CrossRef]
- McLaren, J.; Miller, J.; O’Shaughnessy, E.; Wood, E.; Shapiro, E. CO2 emissions associated with electric vehicle charging: The impact of electricity generation mix, charging infrastructure availability and vehicle type. Electr. J. 2016, 29, 72–88. [Google Scholar] [CrossRef] [Green Version]
- Bellocchi, S.; Klöckner, K.; Manno, M.; Noussan, M.; Vellini, M. On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison. Appl. Energy 2019, 255, 113848. [Google Scholar] [CrossRef]
- Sykes, M.; Axsen, J. No free ride to zero-emissions: Simulating a region’s need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets. Energy Policy 2017, 110, 447–460. [Google Scholar] [CrossRef]
- Xiong, S.; Wang, Y.; Bai, B.; Ma, X. A hybrid life cycle assessment of the large-scale application of electric vehicles. Energy 2021, 216, 119314. [Google Scholar] [CrossRef]
- Pan, L.; Liu, C.; Zhang, Z.; Wang, T.; Shi, J.; Chen, J. Energy-saving Effect of Utilizing Recirculated Air in Electric Vehicle Air Conditioning System. Int. J. Refrig. 2019, 102, 122–129. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Cirimele, V.; Canova, A. Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions. Renew. Sustain. Energy Rev. 2020, 138, 110537. [Google Scholar] [CrossRef]
- Challa, R.; Kamath, D.; Anctil, A. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. J. Environ. Manag. 2022, 308, 114592. [Google Scholar] [CrossRef]
- Wang, Z.P.; Liang, Z.W. Annual Report on the Big Data of New Energy Vehicle in China; China Machine Press: Beijing, China, 2021. [Google Scholar]
- China Automotive Technology & Research Center (CATARC). Annual Report on New Energy Vehicle Industry in China (2021); CATARC: Tianjin, China, 2021. [Google Scholar]
Level | 2018 | 2019 | 2020 | 2025E | 2030E | 2035E |
---|---|---|---|---|---|---|
A00+A0 entry-level | 13.1 | 12.8 | 12.4 | 9 | 8.5 | 8 |
A universal level | 15.3 | 14.4 | 14.1 | 11 | 10.5 | 10 |
B high-end level | 20.5 | 19.6 | 16.9 | 13 | 12.5 | 12 |
Category | Hydro Power | Thermal Power | Nuclear Power | Wind Power | Solar Power | Comprehensive Generation Efficiency | Power Transmission Efficiency | |
---|---|---|---|---|---|---|---|---|
2018 | Proportion of power generation | 17.6% | 70.4% | 4.2% | 5.2% | 2.5% | 46.37% | 94.1% |
power generation efficiency | 87.5% | 38.1% | 41.5% | 36.5% | 18.8% | |||
2019 | Proportion of power generation | 16.8% | 69.8% | 4.5% | 5.7% | 3.2% | 46.37% | 94.2% |
power generation efficiency | 88.8% | 38.3% | 42.6% | 38.3% | 19.4% | |||
2020 | Proportion of power generation | 16.15% | 69.26% | 4.74% | 6.10% | 3.76% | 46.1% | 94.3% |
power generation efficiency | 89.2% | 38.4% | 42.6% | 38.5% | 19.5% |
2018 | 2019 | 2020 | |
---|---|---|---|
A00+A0 | 6.9 | 6.6 | 6.2 |
A | 8.7 | 8.4 | 7.9 |
B | 10.1 | 9.7 | 9.1 |
Level | A00+A0 | A | B | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | Chery Eq1 | JMC E100 | BAIC EC180 | BAIC EU260 | BYD Qin | BYD E5 | DENZA EV | BAIC EU7 | BYD Han |
Mileage credibility | 1.02 | 1.00 | 0.99 | 1.03 | 0.89 | 0.88 | 0.90 | 0.76 | 0.75 |
Standard mileage | 151.00 | 152.00 | 200.00 | 260.00 | 400.00 | 405.00 | 352.00 | 451.00 | 550.00 |
Actual mileage | 154.02 | 152.00 | 198.00 | 267.80 | 356.00 | 356.40 | 316.80 | 342.76 | 412.50 |
Standard battery capacity | 18.20 | 18.80 | 30.40 | 41.40 | 52.00 | 51.20 | 62.00 | 60.23 | 76.90 |
Electric consumption per 100 km | 11.82 | 12.37 | 15.35 | 15.46 | 14.61 | 14.37 | 19.57 | 17.57 | 18.64 |
Region | Level | A00+A0 | A | B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
North China | Type | Chery Eq1 | JMC E100 | BAIC EV200 | BAIC EU260 | EmgrandEV | BYD E5 | DENZA EV | ||
Mileage credibility | 1.00 | 0.99 | 0.95 | 0.99 | 0.91 | 0.87 | 0.91 | |||
Standard mileage | 151.00 | 152.00 | 200.00 | 260.00 | 400.00 | 405.00 | 352.00 | |||
Actual mileage | 151.00 | 150.48 | 190.00 | 257.40 | 364.00 | 352.35 | 320.32 | |||
Standard battery capacity | 18.20 | 18.80 | 30.40 | 41.40 | 52.00 | 51.20 | 62.00 | |||
Electric consumption per 100 km | 12.05 | 12.49 | 16.00 | 16.08 | 14.29 | 14.53 | 19.36 | |||
East China | Type | Chery Eq1 | JMC E100 | BAIC EV200 | BYD E5 | BYD Qin | BAIC EU 5 | DENZA EV | BAIC EU7 | BYD Han |
Mileage credibility | 1.02 | 0.99 | 0.98 | 0.91 | 0.89 | 0.86 | 0.87 | 0.78 | 0.78 | |
Standard mileage | 151.00 | 152.00 | 200.00 | 405.00 | 450.00 | 260.00 | 352.00 | 451.00 | 550.00 | |
Actual mileage | 154.02 | 150.48 | 196.00 | 368.55 | 400.50 | 223.60 | 306.24 | 351.78 | 429.00 | |
Standard battery capacity | 18.20 | 18.80 | 30.40 | 51.20 | 53.56 | 41.40 | 62.00 | 60.23 | 76.90 | |
Electric consumption per 100 km | 11.82 | 12.49 | 15.51 | 13.89 | 13.37 | 18.52 | 20.25 | 17.12 | 17.93 | |
South China | Type | BAIC EV200 | BAIC EC180 | Chery Eq1 | BYD E2 | BYD E5 | Geometry A | DENZA EV | BYD Han | BAIC EU7 |
Mileage credibility | 1.08 | 1.07 | 1.06 | 0.93 | 0.92 | 0.9 | 0.87 | 0.87 | 0.82 | |
Standard mileage | 200.00 | 156.00 | 151.00 | 401.00 | 405.00 | 430.00 | 352.00 | 550.00 | 451.00 | |
Actual mileage | 216.00 | 166.92 | 160.06 | 372.93 | 372.60 | 387.00 | 306.24 | 478.50 | 369.82 | |
Standard battery capacity | 30.40 | 20.30 | 18.20 | 43.20 | 51.20 | 53.00 | 62.00 | 76.90 | 60.23 | |
Electric consumption per 100 km | 14.07 | 12.16 | 11.37 | 11.58 | 13.74 | 13.70 | 20.25 | 16.07 | 16.29 | |
Central China | Type | Chery Eq1 | JMC E100 | BAIC EC180 | Junfeng E17 | BYD Qin | Geometry A | Model 3 | BYD Han | |
Mileage credibility | 1.01 | 1.01 | 0.96 | 1.06 | 0.90 | 0.89 | 0.74 | 0.73 | ||
Standard mileage | 151.00 | 152.00 | 156.00 | 310.00 | 450.00 | 430.00 | 556.00 | 550.00 | ||
Actual mileage | 152.51 | 153.52 | 149.76 | 328.60 | 405.00 | 382.70 | 411.44 | 401.50 | ||
Standard battery capacity | 18.20 | 18.80 | 20.30 | 49.93 | 53.56 | 53.00 | 60.00 | 76.90 | ||
Electric consumption per 100 km | 11.93 | 12.25 | 13.56 | 15.19 | 13.22 | 13.85 | 14.58 | 19.15 | ||
North-west China | Type | BAIC EC180 | Chery Eq1 | JMC E200 | BAIC EU260 | BAICEU5 | Emgrand EV | |||
Mileage credibility | 1.01 | 1.01 | 0.96 | 0.91 | 0.84 | 0.83 | ||||
Standard mileage | 156.00 | 151.00 | 152.00 | 260.00 | 260.00 | 400.00 | ||||
Actual mileage | 157.56 | 152.51 | 145.92 | 236.60 | 218.40 | 332.00 | ||||
Standard battery capacity | 20.30 | 18.20 | 17.30 | 41.40 | 41.40 | 52.00 | ||||
Electric consumption per 100 km | 12.88 | 11.93 | 11.86 | 17.50 | 18.96 | 15.66 | ||||
South-west China | Type | Chery Eq1 | JMC E100 | JMC E200 | BAIC EU260 | BYD Qin | Geometry A | DENZA EV | ||
Mileage credibility | 1.06 | 1.05 | 0.93 | 1.03 | 0.91 | 0.88 | 0.91 | |||
Standard mileage | 151.00 | 152.00 | 152.00 | 260.00 | 450.00 | 430.00 | 352.00 | |||
Actual mileage | 160.06 | 159.60 | 141.36 | 267.80 | 409.50 | 378.40 | 320.32 | |||
Standard battery capacity | 18.20 | 18.80 | 17.30 | 41.40 | 53.56 | 53.00 | 62.00 | |||
Electric consumption per 100 km | 11.37 | 11.78 | 12.24 | 15.46 | 13.08 | 14.01 | 19.36 | |||
North-east China | Type | Roewe Ei5 | Maruti E70 | |||||||
Mileage credibility | 0.76 | 0.74 | ||||||||
Standard mileage | 501.00 | 401.00 | ||||||||
Actual mileage | 380.76 | 296.74 | ||||||||
Standard battery capacity | 61.10 | 50.30 | ||||||||
Electric consumption per 100 km | 16.05 | 16.95 |
Changan Benben EV260 | JAC IEV6E | Yujie E-Line | BAIC EC180 | Saic GM Wuling Baojun E100 | JMC E200S | Chery Eq1 | Zhongtai E200 | |
---|---|---|---|---|---|---|---|---|
The percentage of the standard mileage | 71.49 | 68.51 | 67.43 | 58.29 | 58.24 | 57.03 | 46.69 | 6.92 |
Standard battery capacity | 31.00 | 34.90 | 22.00 | 20.30 | 28.00 | 17.30 | 32.2 | 31.90 |
Standard mileage | 251 | 310 | 153 | 156 | 305 | 144 | 251 | 301 |
the endurance mileage after descent | 179.44 | 212.38 | 103.17 | 90.93 | 177.63 | 82.12 | 117.19 | 20.83 |
Electric consumption per 100 km after descent | 17.28 | 16.43 | 21.32 | 22.32 | 15.76 | 21.07 | 27.48 | 153.15 |
BYD Qin Pro EV | BYD Qin EV | DENZA EV | Geometry A | BYD Song EV | Dongfeng Fengshen E70 | Xpeng G3 | Gac Trumpchi GE3 | NIO ES8 | |
---|---|---|---|---|---|---|---|---|---|
The percentage of the standard mileage | 74.18% | 72.46% | 72.25% | 69.65% | 68.36% | 65.3% | 63.39% | 63.23% | 63.14% |
Standard battery capacity | 51.3 | 53.56 | 62 | 53 | 16.9 | 43.2 | 55 | 48.39 | 75 |
Standard mileage | 401 | 450 | 352 | 430 | 80 | 330 | 460 | 410 | 450 |
the endurance mileage after descent | 297.46 | 326.07 | 254.32 | 299.50 | 54.69 | 215.49 | 291.59 | 259.24 | 284.13 |
Electric consumption per 100 km after descent | 17.25 | 16.43 | 24.38 | 17.70 | 30.90 | 20.05 | 18.86 | 18.67 | 26.40 |
Soueast Motor DX3 EV400 | BAIC EU7 | Roewe Ei5 | Wima EX5 Chi Xing 2.0 | Chery Tiger 3Xe | Gac AION S | BAIC EU5 | Yudo π1 | ||
The percentage of the standard mileage | 62.71 | 58.17 | 56.84 | 56.25 | 55.01 | 54.06 | 51.7 | 37.83 | |
Standard battery capacity | 50.12 | 60.7 | 61.1 | 59.53 | 53.6 | 58.8 | 50.8 | 49.8 | |
Standard mileage | 351 | 475 | 501 | 460 | 401 | 460 | 416 | 430 | |
the endurance mileage after descent | 220.11 | 276.31 | 284.77 | 258.75 | 220.59 | 248.68 | 215.07 | 162.67 | |
Electric consumption per 100 km after descent | 22.77 | 21.97 | 21.46 | 23.01 | 24.30 | 23.65 | 23.62 | 30.61 |
Wima EX5 Chi Xing 2.0 | BYD Qin Pro EV | Geometry A | Xpeng G3 | BAIC EU7 | Chery Tiger 3Xe | NIO ES8 | Gac AION S | |
---|---|---|---|---|---|---|---|---|
Accuracy | 0.99 | 0.98 | 0.69 | 0.62 | 0.42 | 0.19 | 0.18 | 0.15 |
The percentage of the standard mileage | 56.25 | 72.46 | 69.65 | 63.39 | 58.17 | 55.01 | 63.14 | 99.85 |
Standard battery capacity | 59.53 | 51.3 | 53 | 55 | 60.7 | 53.6 | 75 | 58.8 |
Standard mileage | 460 | 401 | 430 | 460 | 475 | 401 | 450 | 460 |
the endurance mileage after descent | 256.16 | 284.75 | 206.65 | 180.79 | 116.05 | 41.91 | 51.14 | 68.90 |
Electric consumption per 100 km after descent | 23.24 | 18.02 | 25.65 | 30.42 | 52.31 | 127.89 | 146.65 | 85.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, B.; He, M. Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China. Sustainability 2023, 15, 5701. https://doi.org/10.3390/su15075701
Li J, Yang B, He M. Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China. Sustainability. 2023; 15(7):5701. https://doi.org/10.3390/su15075701
Chicago/Turabian StyleLi, Jun, Bin Yang, and Mingke He. 2023. "Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China" Sustainability 15, no. 7: 5701. https://doi.org/10.3390/su15075701
APA StyleLi, J., Yang, B., & He, M. (2023). Capabilities Analysis of Electricity Energy Conservation and Carbon Emissions Reduction in Multi-Level Battery Electric Passenger Vehicle in China. Sustainability, 15(7), 5701. https://doi.org/10.3390/su15075701