Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Cropping Systems
2.2. Identification of Socio–Demographic and Physiographic Variables and Their Description
2.3. Primary Data Collection
2.4. Rice Equivalent Yield and System Yield
2.5. Costs and Returns for Farm Enterprises
2.6. Risk Analysis
2.7. Statistical Analysis
3. Results
3.1. Socio–Demographic and Physiographic Features
3.2. Climatic Trends
3.3. Farmers’ Perceptions of Climate and Market Changes
- #Farmer 1: “First, there was a flood in 2006 in my area, then Aila in 2009, and now Fani in 2019… Field crops are damaged every time because of salt intrusion in crop fields… It takes time to restore normal soil conditions… For the last few years, I have been growing lathyrus, but I do not know whether we will be able to grow it in the coming rabi (winter) season (in 2019) or not, as there will be a salinity problem”.
- #Farmer 2: “Due to these devastating effects of nature, sustainable livelihood is affected, and despite the adoption of new technologies and varieties farmers could hardly have any savings because of these recurrent cyclones or floods”.
- #Farmer 3: “I use farm profit to meet family expenditure, but there are no extra savings because every year we have to face cyclones and floods… We concede damages to our property like homes, ponds and crop fields. And every time it takes time to recover from the situation. Not only that, the uncertain weather conditions like early monsoon also sometimes destroy the summer (pre-kharif) crops”.
- #Farmer 9: “This year, due to the early monsoon, I incurred a huge loss, and could not manage a bag of green-gram from my plot. The price of green-gram varied from INR.35 to 45/kg in general. However, in some years it may rise up to INR.65/kg. But we seldom get an opportunity to exploit the price rise”.
- #Farmer 10: “Chilli was once a very remunerative crop in our area. But frequent virus attack (chilli leaf curl virus) has reduced the area of chilli cultivation. The price also varies… if demand rises in the market and if it is your lucky day, you will be able to sell it at INR.120 per kg, but in normal situations, it is generally sold at INR.55 to 65 per kg”.
3.4. Productivity of Rice–Based Cropping Systems
3.5. Profitability of Rice-Based Cropping Systems
3.6. Stochastic Dominance Analysis
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schut, M.; van Asten, P.; Okafor, C.; Hicintuka, C.; Mapatano, S.; Nabahungu, N.L.; Kagabo, D.; Muchunguzi, P.; Njukwe, E.; Dontsop-Nguezet, P.M.; et al. Sustainable intensification of agricultural systems in the Central African. Agric. Syst. 2016, 145, 165–176. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for agricultural sustainable intensification: A review of research. Land 2019, 8, 157. [Google Scholar] [CrossRef]
- Reich, J.; Paul, S.S.; Snapp, S.S. Highly variable performance of sustainable intensification on smallholder farms: A systematic review. Glob. Food Secur. 2021, 30, 100553. [Google Scholar] [CrossRef]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef]
- Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 2013, 143, 76–90. [Google Scholar] [CrossRef]
- Smith, A.; Snapp, S.; Chikowo, R.; Thorne, P.; Bekunda, M.; Glover, J. Measuring sustainable intensification in smallholder agroecosystems: A review. Glob. Food Sec. 2017, 12, 127–138. [Google Scholar] [CrossRef]
- Cortner, O.; Garrett, R.D.; Valentim, J.F.; Ferreira, J.; Niles, M.T.; Reis, J.; Gil, J. Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon. Land Use Policy 2019, 82, 841–853. [Google Scholar] [CrossRef]
- Mahon, N.; Crute, I.; Simmons, E.; Islam, M.M. Sustainable intensification-‘oxymoron’ or ’third-way’? A systematic review. Ecol. Indic. 2017, 74, 73–97. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M.G.; Chandrasekhar, B. Chapter 3—Sustainable agriculture and food security. In Biotechnology for Sustainable Agriculture: Emerging Approaches and Strategies; Singh, R.K., Mondal, S., Eds.; Woodland Publishing: Salt Lake City, UT, USA, 2018; pp. 67–92. [Google Scholar]
- Agrawal, A.; Brandhorst, S.; Jain, M.; Liao, C.; Pradhan, N.; Solomon, D. From environmental governance to governance for sustainability. One Earth 2022, 5, 615–621. [Google Scholar] [CrossRef]
- Tripathi, S.C.; Venkatesh, K.; Meena, R.P.; Chander, S.; Singh, G.P. Sustainable intensification of maize and wheat cropping system through pulse intercropping. Sci. Rep. 2021, 11, 18805. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Alletto, L.; Cong, W.F.; Dayoub, E.; Maury, P.; Plaza-Bonilla, D.; Reckling, M.; Saia, S.; Soltani, E.; Tison, G.; et al. Relay cropping for sustainable intensification of agriculture across temperate regions: Crop management challenges and future research priorities. Field Crops Res. 2023, 291, 108795. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical [Yearbook]; FAO: Rome, Italy, 2021; Volume 2021. [Google Scholar] [CrossRef]
- Kumar, H.M.V.; Chauhan, N.B.; Patel, D.D.; Patel, J.B. Predictive factors to avoid farming as a livelihood. Econ. Struct. 2019, 8, 10. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Upadhyay, P.K.; Hans, H. Rice fallows in the eastern India: Problems and prospects. Indian J. Agri. Sci. 2019, 89, 567–577. [Google Scholar] [CrossRef]
- Zsögön, A.; Peres, L.E.P.; Xiao, Y.; Yan, J.; Fernie, A.R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 2022, 109, 402–414. [Google Scholar] [CrossRef]
- Bonnet, C.; Gaudio, N.; Alletto, L.; Raffaillac, D.; Bergez, J.E.; Debaeke, P.; Gavaland, A.; Willaume, M.; Bedoussac, L.; Justes, E. Design and multicriteria assessment of low-input cropping systems based on plant diversification in southwestern France. Agron. Sustain. Dev. 2021, 41, 65. [Google Scholar] [CrossRef]
- Chavas, J.P.; Chambers, R.G.; Pope, R.D. Production economics and farm management: A century of contributions. Am. J. Agric. Econ. 2010, 92, 356–375. [Google Scholar] [CrossRef]
- Collinson, M. Farm Management in Peasant Agriculture; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Ray, K.; Hasan, S.S.; Goswami, R. Techno-economic and environmental assessment of different rice-based cropping systems in an inceptisol of West Bengal. India. J. Cleaner. Prod. 2018, 205, 350–363. [Google Scholar] [CrossRef]
- Rasul, G.; Thapa, G.B. Sustainability of ecological and conventional agricultural systems in Bangladesh: An assessment based on environmental, economic and social perspectives. Agric. Syst. 2004, 79, 327–351. [Google Scholar] [CrossRef]
- Darnhofer, I.; Gibbon, D.; Dedieu, B. Farming systems research: An approach to inquiry. In Farming Systems Research into the 21st Century: The New Dynamic; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–31. [Google Scholar]
- Deytieux, V.; Munier-Jolain, N.; Caneill, J. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. Eur. J. Agron. 2016, 72, 107–126. [Google Scholar] [CrossRef]
- Pashaei Kamali, F.; Borges, J.A.R.; Meuwissen, M.P.M.; de Boer, I.J.M.; Oude Lansink, A.G.J.M. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 2017, 157, 118–128. [Google Scholar] [CrossRef]
- Spada, E.; Stillitano, T.; Falcone, G.; Iofrida, N.; Gulisano, G.; De Luca, A.I. Economic sustainability assessment of Mediterranean crops: A comparative Life Cycle Costing (LCC) analysis. Front. Sustain. Food Syst. 2022, 6, 1004065. [Google Scholar] [CrossRef]
- Ed-Dafali, S.; Al-Azad, M.S.; Mohiuddin, M.; Reza, M.N.H. Strategic orientations, organizational ambidexterity, and sustainable competitive advantage: Mediating role of industry 4.0 readiness in emerging markets. J. Cleaner. Prod. 2023, 401, 136765. [Google Scholar] [CrossRef]
- Sadok, W.; Angevin, F.; Bergez, J.É.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Doré, T. Ex ante assessment of the sustainability of alternative cropping systems: Implications for using multi-criteria decision-aid methods. A review. Agron. Sustain. Dev. 2008, 28, 163–174. [Google Scholar] [CrossRef]
- Kabir, M.J.; Cramb, R.; Gaydon, D.S.; Roth, C.H. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: III Benefits of adaptation in current and future environments. Agric. Syst. 2018, 161, 28–41. [Google Scholar] [CrossRef]
- Kabir, J.; Cramb, R.; Gaydon, D.S.; Roth, C.H. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: II. Economic viability in historical and future environments. Agric. Syst. 2017, 155, 103–115. [Google Scholar] [CrossRef]
- Mainuddin, M.; Karim, F.; Gaydon, D.S.; Kirby, J.M. Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges Delta. Sci. Rep. 2021, 11, 7041. [Google Scholar] [CrossRef]
- Banerjee, H.; Sarkar, S.; Ray, K. Energetics, GHG emissions and economics in nitrogen management practices under potato cultivation: A farm level study. Energy Ecol. Environ. 2017, 2, 250–258. [Google Scholar] [CrossRef]
- Ghosh, S.; Mistri, B. Drainage induced waterlogging problem and its impact on farming system: A study in Gosaba Island, Sundarban, India. Spat. Inf. Res. 2020, 28, 709–721. [Google Scholar] [CrossRef]
- Directorate of Agriculture, Government of West Bengal. Area, yield and production of major field crops. In Evaluation Wing, Directorate of Agriculture; Government of West Bengal: Kolkata, India, 2021. [Google Scholar]
- Ray, K.; Sen, P.; Goswami, R.; Sarkar, S.; Brahmachari, K.; Ghosh, A.; Nanda, M.K.; Mainuddin, M. Profitability, energetics and GHGs emission estimation from rice-based cropping systems in the coastal saline zone of West Bengal, India. PLoS ONE 2020, 15, e0233303. [Google Scholar] [CrossRef]
- Ghosh, S.; Mistri, B. Coastal agriculture and its challenges: A case study in Gosaba Island, Sundarban, India. Space Cult. 2020, 8, 140–154. [Google Scholar] [CrossRef]
- Mandal, S.; Sarangi, S.K.; Mainuddin, M.; Mahanta, K.K.; Mandal, U.K.; Burman, D.; Digar, S.; Sharma, P.C.; Maji, B. Cropping system intensification for smallholder farmers in coastal zone of West Bengal, India: A socio-economic evaluation. Front. Sustain. Food Syst. 2022, 6, 1001367. [Google Scholar] [CrossRef]
- Jamal, M.R.; Kristiansen, P.; Kabir, M.J.; Lobry de Bruyn, L. Cropping systems intensification and diversification: Risk, vulnerability and adaptation in southwest coastal Bangladesh. Int. J. Sustain. Dev. World Ecol. 2022, 29, 677–694. [Google Scholar] [CrossRef]
- Mandal, U.K.; Burman, D.; Bhardwaj, A.K.; Nayak, D.B.; Samui, A.; Mullick, S.; Mahanta, K.; Lama, T.D.; Maji, B.; Mandal, S.; et al. Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans. Agric. Water Manag. 2019, 216, 12–26. [Google Scholar] [CrossRef]
- Prusty, A.K.; Natesan, R.; Panwar, A.S.; Jat, M.L.; Tetarwal, J.P.; López-Ridaura, S.; Toorop, R.A.; Akker, J.V.D.; Kaur, J.; Ghasal, P.C.; et al. Redesigning of farming systems using a multi-criterion assessment tool for sustainable intensification and nutritional security in Northwestern India. Sustainability 2022, 14, 3892. [Google Scholar] [CrossRef]
- Mandal, S. Risks and profitability challenges of agriculture in Sundarbans India. In The Sundarbans: A Disaster-Prone Eco-Region, Coastal Research; Sen, H.S., Ed.; Springer Nature: Basel, Switzerland, 2019; pp. 353–371. [Google Scholar] [CrossRef]
- Hassan, A.; Wahid, S.; Shrestha, M.L.; Rashid, M.A.; Ahmed, T.; Mazumder, A.; Sarker, M.H.; Md. Tamim Al Hossain, B.; Mumu, S.; Sarker, M.H. Climate change and water availability in the Ganges-Brahmaputra-Meghna Basin: Impact on local crop production and policy directives. In Research Insights on Climate and Water in the Hindu Kush Himalayas; Vaidya, R., Sharma, E., Eds.; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2014; pp. 97–108. [Google Scholar]
- Lázár, A.N.; Clarke, D.; Adams, H.; Akanda, A.R.; Szabo, S.; Nicholls, R.J.; Matthews, Z.; Begum, D.; Saleh, A.F.M.; Abedin, A.; et al. Agricultural livelihoods in coastal Bangladesh under climate and environmental change-a model framework. Environ. Sci. Process. Impacts. 2015, 17, 1018–1031. [Google Scholar] [CrossRef]
- Kabir, M.J.; Gaydon, D.S.; Cramb, R.; Roth, C.H. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments. Agric. Syst. 2018, 162, 107–122. [Google Scholar] [CrossRef]
- MainMainuddin, M.; Kirby, M.; Gaydon, D.; Glover, M.; Janardhanan, S.; Yu, Y.; Bell, R.; Barrett-Lennard, E.; Ali, A.; Saha, R.R.; et al. (Eds.) Cropping System INTENSIFICATION in the Salt Affected Coastal Zones of Bangladesh and West Bengal, India; Project summary report; CSIRO: Perth, Australia, 2021; 27p. [Google Scholar]
- Kabir, M.J.; Cramb, R.; Alauddin, M.; Gaydon, D.S. Farmers’ perceptions and management of risk in rice-based farming systems of south-west coastal Bangladesh. Land Use Policy 2019, 86, 177–188. [Google Scholar] [CrossRef]
- Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Rao, K.K.; Mondal, S.; Hazra, K.K.; Choudhary, J.S.; Hans, H.; Bhatt, B.P. Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Sci. Rep. 2020, 10, 11146. [Google Scholar] [CrossRef] [PubMed]
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The effect of monoculture, crop rotation combinations, and continuous bare fallow on soil CO2 emissions, earthworms, and productivity of winter rye after a 50-year period. Plants 2022, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.S.; Lal, R.; Meena, R.S.; Datta, M.; Babu, S.; Das, A.; Layek, J.; Saha, P. Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J. Cleaner. Prod. 2017, 158, 29–37. [Google Scholar] [CrossRef]
- Singh, A.K.; Das, B.; Mali, S.S.; Bhavana, P.; Shinde, R.; Bhatt, B.P. Intensification of rice-fallow cropping systems in the Eastern Plateau region of India: Diversifying cropping systems and climate risk mitigation. Clim. Dev. 2020, 12, 791–800. [Google Scholar] [CrossRef]
- Ray, L.I.P.; Swetha, K.; Singh, A.K.; Singh, N.J. Water productivity of major pulses—A review. Agric. Water. Manag. 2023, 281, 108249. [Google Scholar] [CrossRef]
- Samant, T.K. System productivity, profitability, sustainability and soil health as influenced by rice-based cropping systems under mid central table land zone of Odisha. Int. J. Agric. Sci. 2015, 7, 746–749. [Google Scholar]
- Samanta, B. Changing scenario of red chilli cultivation after Cyclone Aila in Haripur. Int. J. Res. Anal. Rev. 2018, 5, 920–925. [Google Scholar]
- Lahiri, K. Role of Participatory Management for Livelihood Resurgence in Sundarban Region with Special Reference to Sagar Island and Canning Blocks. 2011. Sodhganga. Available online: http://shodhganga.inflibnet.ac.in/handle/10603/155888 (accessed on 12 April 2023).
- Debnath, A. Condition of agricultural productivity of Gosaba C.D. Block, South24 Parganas, West Bengal, India after severe Cyclone Aila. Int. J. Sci. Res. Publ. 2013, 3, 1–4. [Google Scholar]
- Patel, L.C.; Mondal, C.K. Management of causal agents of chilli leaf curl complex through bio-friendly approaches. J. Plant Prot. Sci. 2013, 5, 20–25. [Google Scholar]
- Aggarwal, P.K. Global climate change and Indian agriculture: Impacts, adaptation and mitigation. Indian J. Agric. Sci. 2008, 78, 911–919. [Google Scholar]
- Pathak, H. Impact, adaptation, and mitigation of climate change in Indian agriculture. Environ. Monit. Assess. 2022, 195, 52. [Google Scholar] [CrossRef]
- Guntukula, R. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J. Public Aff. 2020, 20, e2040. [Google Scholar] [CrossRef]
- Birthal, P.S.; Hazrana, J.; Negi, D.S.; Bhan, S.C. Climate change and land-use in Indian agriculture. Land Use Policy 2021, 109, 105652. [Google Scholar] [CrossRef]
- Birthal, P.S.; Khan, T.; Negi, D.S.; Agarwal, S. Impact of climate change on yields of major food crops in India: Implications for food security. Agric. Econ. Res. Rev. 2014, 27, 145–155. [Google Scholar] [CrossRef]
- Department of Economic Affairs, Ministry of Finance, Government of India. Economic Survey 2012-22. 2022; p. 236. Available online: https://www.indiabudget.gov.in/economicsurvey/ebook_es2022/index.html#p=262 (accessed on 10 April 2023).
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Chebrolu, S.P.; Dutta, D. Managing sustainable transitions: Institutional innovations from india. Sustainability 2021, 13, 6076. [Google Scholar] [CrossRef]
Cropping System | Wet Season | Dry Season | Early Wet Season |
---|---|---|---|
Existing | Rice | Tomato | Fallow |
Rice | Lathyrus | Fallow | |
Rice | Potato | Fallow | |
Rice | Fallow | Fallow | |
Rice | Rice | Fallow | |
Rice | Lentil | Fallow | |
Rice | Onion | Fallow | |
Rice | Chilli | Fallow | |
Potential | Rice | Fallow | Green-gram |
Rice | Maize | Fallow | |
Rice | Potato | Green-gram |
Variables | Frequency (%) |
---|---|
Age (years) | |
<40 | 10 (20) |
40–60 | 27 (54) |
>60 | 13 (26) |
Primary occupation | |
Agriculture | 44 (88) |
Non-agriculture | 6 (12) |
Secondary occupation | |
Agriculture | 2 (4) |
Non-agriculture | 34 (68) |
Nil | 14 (28) |
Education (class) | |
<10 | 41 (82) |
10–11 | 8 (16) |
≥12 | 1 (2) |
Caste | |
General | 44 (88) |
Schedule caste | 6 (12) |
Total family members (number) | |
<5 | 24 (48) |
5–7 | 24 (48) |
>7 | 2 (4) |
Family type | |
Nuclear | 38 (76) |
Extended | 12 (24) |
Tenurial status of land | |
Own land | 32 (64) |
Leased-in land | 18 (36) |
Total operational land (acre) * | |
<1 | 32 (64) |
1–2.5 | 14 (28) |
>2.5 | 4 (8) |
Irrigation availability | |
Unirrigated | 22 (44) |
Irrigated | 28 (56) |
Soil testing performed or not | |
Not performed | 44 (88) |
Performed | 6 (12) |
Fertility status of soil | |
Fertile | 16(32) |
Medium fertile | 19 (38) |
Unfertile | 15 (30) |
Perception about women’s participation in agricultural activities | |
Active participation | 43 (86) |
No participation | 7 (14) |
Perception about women’s participation in household activities | |
Active participation | 46 (92) |
No participation | 4 (8) |
Crop | Grain Yield (t/ha) | Selling Price (INR/kg) | ||||||
---|---|---|---|---|---|---|---|---|
Best Seasonal Condition | Normal Seasonal Condition | Worst Seasonal Condition | % Variation (1–3) | High Price | Normal Price | Low Price | % Variation (5–7) | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Wet season rice | 5.4 | 3.8 | 3.2 | 40.74 | 15 | 13 | 12 | 20.00 |
Dry season rice | 6.5 | 4.5 | 3.8 | 41.54 | 17 | 15.5 | 14 | 17.65 |
Potato | 18.3 | 16.6 | 15.0 | 18.03 | 12 | 10 | 8 | 33.33 |
Lathyrus | 1.4 | 1.2 | 0.9 | 35.71 | 26 | 22 | 20.5 | 21.15 |
Lentil | 1.0 | 0.8 | 0.7 | 30.00 | 70 | 50 | 40 | 42.86 |
Tomato | 15.0 | 14.0 | 13.0 | 13.33 | 30 | 20 | 14 | 53.33 |
Onion | 3.6 | 3.4 | 3.2 | 11.11 | 18 | 15 | 10 | 44.44 |
Chilli | 5.6 | 5.3 | 3.8 | 32.14 | 100 | 75 | 65 | 35.00 |
Green-gram | 1.4 | 1.1 | 0.8 | 42.86 | 40 | 35 | 30 | 25.00 |
Maize | 7.3 | 5.5 | 4.8 | 34.25 | 15 | 12 | 10 | 33.33 |
Sl. No. | Cropping Systems | Ranks |
---|---|---|
Existing | Rice–tomato | 2 |
Rice–lathyrus | =5 | |
Rice–potato | 4 | |
Rice–fallow | =5 | |
Rice–rice | =5 | |
Rice–lentil | =5 | |
Rice–onion | 6 | |
Rice–chilli | 1 | |
Potential | Rice–fallow–green-gram | =5 |
Rice–maize | =5 | |
Rice–potato–green-gram | 3 |
Systems | Input | Net Return (INR/ha) |
---|---|---|
Rice–tomato | Rice price | 9820 |
Rice yield | 26,694 | |
Tomato price | 1,64,858 | |
Tomato yield | 91,303 | |
Rice–lathyrus | Rice price | 10,627 |
Rice yield | 26,221 | |
Lathyrus price | 4274 | |
Lathyrus yield | 7865 | |
Rice–potato | Rice price | 10,671 |
Rice yield | 26,556 | |
Potato price | 65,956 | |
Potato yield | 47,215 | |
Rice–fallow | Rice price | 10,689 |
Rice yield | 26,297 | |
Rice–rice | Rainy season rice price | 10,612 |
Rainy season rice yield | 26,190 | |
Summer season rice price | 12,023 | |
Summer season rice yield | 29,673 | |
Rice–lentil | Rice price | 10,758 |
Rice yield | 26,381 | |
Lentil price | 17,634 | |
Lentil yield | 9411 | |
Rice–onion | Rice price | 10,641 |
Rice yield | 26,383 | |
Onion price | 18,707 | |
Onion yield | 10,095 | |
Rice–chilli | Rice price | 10,346 |
Rice yield | 25,860 | |
Chilli price | 89,345 | |
Chilli yield | 78,872 | |
Rice–fallow–green-gram | Rice price | 10,717 |
Rice yield | 26,263 | |
Green-gram price | 7795 | |
Green-gram yield | 14,663 | |
Rice–maize | Rice price | 10,617 |
Rice yield | 26,148 | |
Maize price | 20,291 | |
Maize yield | 21,913 | |
Rice–potato–green-gram | Rice price | 10,698 |
Rice yield | 26,522 | |
Potato price | 65,911 | |
Potato yield | 47,139 | |
Green-gram price | 7550 | |
Green-gram yield | 14,286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, K.; Mondal, S.; Kabir, M.J.; Sarkar, S.; Roy, K.; Brahmachari, K.; Ghosh, A.; Nanda, M.K.; Misra, S.; Ghorui, S.; et al. Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India. Sustainability 2023, 15, 8691. https://doi.org/10.3390/su15118691
Ray K, Mondal S, Kabir MJ, Sarkar S, Roy K, Brahmachari K, Ghosh A, Nanda MK, Misra S, Ghorui S, et al. Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India. Sustainability. 2023; 15(11):8691. https://doi.org/10.3390/su15118691
Chicago/Turabian StyleRay, Krishnendu, Suman Mondal, Md. Jahangir Kabir, Sukamal Sarkar, Kalyan Roy, Koushik Brahmachari, Argha Ghosh, Manoj K. Nanda, Sanchayeeta Misra, Supriya Ghorui, and et al. 2023. "Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India" Sustainability 15, no. 11: 8691. https://doi.org/10.3390/su15118691
APA StyleRay, K., Mondal, S., Kabir, M. J., Sarkar, S., Roy, K., Brahmachari, K., Ghosh, A., Nanda, M. K., Misra, S., Ghorui, S., Goswami, R., & Mainuddin, M. (2023). Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India. Sustainability, 15(11), 8691. https://doi.org/10.3390/su15118691