The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Setting Future Development Scenario and Quantity of Land Demand
Scenario Definitions
Multi-Objective Programming
- ①
- Objective function
- ②
- Constraint conditions
- (1)
- Total area constraint
- (2)
- Forest coverage constraints
- (3)
- Population constraints
- (4)
- Constraints on ecological land use
- (5)
- Area constraint of cultivated land/forest land/grassland/water body/unused land
- (6)
- Constraint on construction land area
2.3.2. Land Use Simulation
2.3.3. Habitat Quality Assessment
3. Results
3.1. Transition Rules and Accuracy Verification of LULC
3.2. Spatiotemporal Evolution of LULC
3.3. Temporal Variations in Habitat Quality
3.3.1. Temporal Variations in Habitat Quality
3.3.2. Spatiotemporal Evolution of Habitat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Hillard, E.M.; Nielsen, C.K.; Groninger, J.W. Swamp rabbits as indicators of wildlife habitat quality in bottomland hardwood forest ecosystems. Ecol. Indic. 2017, 79, 47–53. [Google Scholar] [CrossRef]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2021, 750, 141270. [Google Scholar] [CrossRef] [PubMed]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Aguilar, R.; Cristóbal Pérez, E.J.; Balvino Olvera, F.J.; Aguilar Aguilar, M.; Aguirre Acosta, N.; Ashworth, L.; Lobo, J.A.; Martén Rodríguez, S.; Fuchs, E.J.; Sanchez Montoya, G.; et al. Habitat fragmentation reduces plant progeny quality: A global synthesis. Ecol. Lett. 2019, 22, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Krauss, J.; Bommarco, R.; Guardiola, M.; Heikkinen, R.K.; Helm, A.; Kuussaari, M.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 2010, 13, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.C.; Chen, X.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Gomes, E.; Banos, A.; Abrantes, P.; Rocha, J.; Schläpfer, M. Future land use changes in a peri-urban context: Local stakeholder views. Sci. Total Environ. 2020, 718, 137381. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Z.; Lei, X.; He, B.; Jia, K.; Zhang, Y. Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: A case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration. Ecol. Eng. 2016, 88, 112–121. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China. GIScience Remote Sens. 2019, 56, 282–308. [Google Scholar] [CrossRef]
- Ji, Y.; Jia, L.; Yang, L.; Li, Y.; Dong, Q. Spatio-temporal Evolutionand Prediction Analysis of Habitat Quality in Yulin City Coupled with InVEST-PLUS Model. J. Soil Water Conserv. 2022, 37, 123–132. [Google Scholar]
- Hu, F.; Zhang, Y.; Guo, Y.; Zhang, P.; Lv, S.; Zhang, C. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin 429 based on the PLUS and InVEST models and predictions. Arid. Land Geogr. 2022, 45, 1125–1136. [Google Scholar]
- An, X.; Jin, W.; Long, X.; Chen, S.; Qi, S.; Zhang, M. Spatial and temporal evolution of carbon stocks in Dongting Lake wetlands based on remote sensing data. Geocarto Int. 2022, 37, 14983–15009. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Chen, S.; Tian, S.; Wang, J.; Li, L. A static and dynamic coupling approach for maintaining ecological networks connectivity in rapid urbanization contexts. J. Clean. Prod. 2022, 369, 133375. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Wang, X.; Hou, P.; Wu, Z.; Cui, T. Evaluation of future wetland changes under optimal scenarios and land degradation neutrality analysis in the Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2023, 879, 163111. [Google Scholar] [CrossRef]
- Amir Siddique, M.; Wang, Y.; Xu, N.; Ullah, N.; Zeng, P. The Spatiotemporal Implications of Urbanization for Urban Heat Islands in Beijing: A Predictive Approach Based on CA–Markov Modeling (2004–2050). Remote Sens. 2021, 13, 4697. [Google Scholar] [CrossRef]
- Kafy, A.A.; Dey, N.N.; Al Rakib, A.; Rahaman, Z.A.; Nasher, N.M.R.; Bhatt, A. Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environ. Chall. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, Y.; Tu, J.; Wang, M. SDG-oriented multi-scenario sustainable land-use simulation under the background of urban expansion. Environ. Sci. Pollut. Res. 2022, 29, 72797–72818. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land Use Policy 2023, 125, 106463. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Li, T.; Liu, M.; Chen, C.; Li, J. Urban Expansion Simulation Based on Zonal FA-MLP-CA Model: A Case Study of Chengdu-Chongqing Economic Circle. Geogr. Geo-Inf. Sci. 2022, 38, 16–23. [Google Scholar]
- Xia, C.; Wang, H.; Zhang, A.; Zhang, W. A high-performance cellular automata model for urban simulation based on vectorization and parallel computing technology. Int. J. Geogr. Inf. Sci. IJGIS 2018, 32, 399–424. [Google Scholar] [CrossRef]
- Yang, J.; Guo, A.; Li, Y.; Zhang, Y.; Li, X. Simulation of landscape spatial layout evolution in rural-urban fringe areas: A case study of Ganjingzi District. GIScience Remote Sens. 2019, 56, 388–405. [Google Scholar] [CrossRef]
- Ke, X.; Qi, L.; Zeng, C. A partitioned and asynchronous cellular automata model for urban growth simulation. Int. J. Geogr. Inf. Sci. IJGIS 2016, 30, 637–659. [Google Scholar] [CrossRef]
- Qian, Y.; Xing, W.; Guan, X.; Yang, T.; Wu, H. Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation. Sci. Total Environ. 2020, 722, 137738. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Xiong, N.; Sun, L.; Xu, J. Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation. Remote Sens. 2022, 14, 1755. [Google Scholar] [CrossRef]
- Jian, P.; Yanxu, L.; Hong, S.; Pan, X.; Xiaoxu, H.; Yanglin, W. Using impervious surfaces to detect urban expansion in Beijing of China in 2000s. Chin. Geogr. Sci. 2016, 26, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 2016, 352, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Stehfest, E.; van Zeist, W.; Valin, H.; Havlik, P.; Popp, A.; Kyle, P.; Tabeau, A.; Mason-D Croz, D.; Hasegawa, T.; Bodirsky, B.L.; et al. Key determinants of global land-use projections. Nat. Commun. 2019, 10, 2166. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Zhao, L. Research on Land Use Structure Optimization Based on Ecosystem Service Value Evaluation-Take the Beijing-Tianjin-Hebei Region as an Example. Master’s Thesis, Capital University of Economics and Business, Beijing, China, 2020. [Google Scholar]
- Yanfang, L.; Dongping, M.; Jianyu, Y. Optimization of land use structure based on ecological GREEN equivalent. Geo-Spat. Inf. Sci. 2002, 5, 60–67. [Google Scholar] [CrossRef]
- Liang, Y. Ecosystem Service Valuation and Its Application—A Case Study of Beijing City, China. Master’s Thesis, Huazhong University of Science & Technology, Wuhan, China, 2017. [Google Scholar]
- Zheng, J.; Xie, B.; You, X. Spatio-temporal characteristics of habitat quality based on land-use changes in Guangdong Province. Acta Ecol. Sin. 2022, 42, 6997–7010. [Google Scholar]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of Land Use Pattern Change on Regional Scale Habitat Quality Based on InVEST Model—A Case Study in Beijing. Acta Sci. Nat. Univ. Pekin. 2016, 52, 553–562. [Google Scholar]
- Yao, Z.; Jiang, C.; Shan-shan, F. Effects of urban growth boundaries on urban spatial structural and ecological functional optimization in the Jining Metropolitan Area, China. Land Use Policy 2022, 117, 106113. [Google Scholar] [CrossRef]
- Bigdeli, A.; Maghsoudi, A.; Ghezelbash, R. Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. J. Geochem. Explor. 2022, 233, 106923. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Urban Area Mapping Using Multitemporal SAR Images in Combination with Self-Organizing Map Clustering and Object-Based Image Analysis. Remote Sens. 2023, 15, 122. [Google Scholar] [CrossRef]
Category | Data | Resolution | Data Resource |
---|---|---|---|
Land | Land Cover | 30 m | https://www.resdc.cn/, accessed on 6 June 2021. |
Socioeconomic Factors | Population | 1000 m | https://www.resdc.cn/, accessed on 10 June 2021. |
GDP | |||
Proximity to railway | 30 m | https://www.webmap.cn/, accessed on 2 July 2021. | |
Proximity to highway | |||
Proximity to road | |||
Proximity to District | |||
Proximity to Towns | |||
Nature Factors | DEM | 90 m | http://www.gscloud.cn/, accessed on 26 May 2021. |
Slope | |||
Annual Mean Temperature | 1000 m | https://www.resdc.cn/, accessed on 26 May 2021. | |
Annual Precipitation | |||
Soil type | |||
Proximity to open water | 30 m | https://www.webmap.cn/, accessed on 26 May 2021. |
Threat Factor | Weight | Maximum Impact Distance/km | Decay Type |
---|---|---|---|
Cultivated land | 0.6 | 8 | linear |
Built-up land | 0.9 | 10 | exponential |
Unused land | 0.2 | 4 | linear |
Land Use Type | Habitat Suitability | Threat Factors | ||
---|---|---|---|---|
Cultivated Land | Built-Up Land | Unused Land | ||
Cultivated land | 0.4 | 0.1 | 0.7 | 0.5 |
Forest | 1 | 1 | 0.8 | 0.5 |
Grassland | 0.8 | 0.7 | 0.85 | 0.6 |
Water | 0.9 | 0.5 | 0.4 | 0.2 |
Built-up land | 0 | 0 | 0 | 0 |
Unused land | 0.3 | 0.6 | 0.4 | 0.1 |
Index | Kappa | OA | FOM |
---|---|---|---|
Non-zoning | 0.8418 | 87.2% | 0.0596 |
Zoning | 0.8633 | 89.7% | 0.0636 |
Type | History | 2035 | ||||
---|---|---|---|---|---|---|
2015 | 2020 | ND | ED | EP | LC | |
Cultivated land | 3630.47 | 3664.3 | 3545.22 | 3437.49 | 3600.03 | 3437.49 |
Forest | 7302.65 | 7482.83 | 7999.39 | 7979.1 | 8010.38 | 7981.05 |
Grassland | 1109.91 | 1255.08 | 1611.75 | 1595.05 | 1621.03 | 1611.75 |
Water | 328.31 | 422.39 | 582.59 | 569.97 | 588.4 | 582.59 |
Built-up land | 4028.5 | 3560.23 | 2634.12 | 2791.52 | 2553.24 | 2760 |
Unused land | 1.68 | 16.71 | 29.11 | 29.07 | 29.13 | 29.07 |
Time | 2015 | 2020 | 2035 ND | 2035 ED | 2035 EP | 2035 LC |
---|---|---|---|---|---|---|
Mean | 0.459 | 0.461 | 0.508 | 0.506 | 0.511 | 0.510 |
Time | 2015 | 2020 | 2035 ND | 2035 ED | 2035 EP | 2035 LC |
---|---|---|---|---|---|---|
Worst | 4048.22 | 3575.15 | 2639.45 | 2795.09 | 2558.24 | 2753.90 |
Poor | 3918.53 | 4152.92 | 4539.96 | 4492.89 | 4156.57 | 4359.54 |
Medium | 897.79 | 825.16 | 913.90 | 847.31 | 932.70 | 882.96 |
Good | 2270.08 | 2175.44 | 1956.58 | 1936.36 | 2002.68 | 1993.33 |
Excellent | 5270.24 | 5676.05 | 6354.82 | 6330.09 | 6451.65 | 6414.97 |
Scenarios | CCFA | UFEA | UDNA | ECA |
---|---|---|---|---|
2035 ND | 0.150 | 0.168 | 0.238 | 0.664 |
2035 ED | 0.150 | 0.156 | 0.232 | 0.662 |
2035 EP | 0.150 | 0.171 | 0.243 | 0.672 |
2035 LC | 0.150 | 0.163 | 0.236 | 0.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, C.; Yang, H.; Cai, G. The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity. Sustainability 2023, 15, 9040. https://doi.org/10.3390/su15119040
Wang W, Liu C, Yang H, Cai G. The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity. Sustainability. 2023; 15(11):9040. https://doi.org/10.3390/su15119040
Chicago/Turabian StyleWang, Wenyu, Chenghui Liu, Hongbo Yang, and Guoyin Cai. 2023. "The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity" Sustainability 15, no. 11: 9040. https://doi.org/10.3390/su15119040
APA StyleWang, W., Liu, C., Yang, H., & Cai, G. (2023). The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity. Sustainability, 15(11), 9040. https://doi.org/10.3390/su15119040