Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data Source
2.2. Construction of Evaluation Index System
2.3. Index Weights Determination Using ANP
2.3.1. Network Model Construction
2.3.2. Calculation of Weights
- step 1: conduct the pairwise comparisons.Expert opinions were sought to perform pairwise comparisons of the indicators within each cluster and between clusters, reflecting their relative importance in determining agricultural sustainability. The pairwise comparisons were quantified using a nine-point scale, where 1 represented equal importance and 9 indicated extreme importance. Inverses of these values were assigned for reciprocal comparisons [32,49]. These values were subsequently input into the SuperDecisions software for further computations.
- step 2: calculate the unweighted supermatrix.Based on the scoring results in step 1, firstly, the maximum eigenvalues are calculated, and then the eigenvectors are normalized. 2. Please carefully check variable formatting (italic, bold, subscript, uppercase, etc.) throughout the manuscript to ensure the formatting is consistent and revise if needed.Then, using the eigenvalue method, calculate the ranking vector () and complete the consistency check. is denoted as:The column vector represents the influence ranking of element in system on element in system . If the elements in have no influence on the elements in , then (; ).Finally, the unweighted supermatrix of elemental interactions under the control level of the total system is obtained.
- step 3: calculate the weighted supermatrix.In the above supermatrix, all matrices are based on as the sub-criterion, and the ranking vectors are obtained by pairwise comparisons of elements in . Although each column in is column-normalized, W is not normalized. Therefore, it is necessary to compare the importance of each element group () under the control layer for the sub-criterion () and pass the consistency check.According to the relative weight value of , calculate the eigenvector to obtain the following weighted matrix :Weight the elements in the supermatrix to obtain , where , (; ). W is the weighted supermatrix, and its characteristic is that the sum of the columns is 1.
- step 4: Calculate the weights of the elementsBy using the weighted supermatrix and the idea of normalization, the limit supermatrix is obtained through consecutive multiplication, and its vector is the weight vector of the element :Here, represents the number of matrix multiplications performed until the convergence criterion is satisfied. Thus, the weight vectors of each element are as follows.
2.4. Calculation of the Evaluation Value
2.4.1. Normalization of Indicator Data
2.4.2. Calculation and Processing of Evaluation Value
- For the temporal analysis, to comprehensively capture the overall development and internal disparities in agricultural sustainability, we conducted calculations of the mean () and coefficient of variation () for the results (as shown in Equations (15) and (16)). The represents the central tendency of the data, while the quantifies the extent of variability relative to the mean, thereby shedding light on the degree of heterogeneity among the studied objects [50,51].Additionally, this study decomposes the agricultural sustainability level into dimensions to better reflect the changes in each dimension and their contributions to the overall level of agricultural sustainability. By calculating the contribution margin(), we can clearly distinguish the strengths and weaknesses of the dimensions that contribute to agricultural sustainability and make targeted improvements [52,53]; the formula is as follows:
- In the spatial analysis, this study employs the Natural Breaks Classification(NBC) method to further process the agricultural sustainability levels of various regions. This method is based on the distribution characteristics of the data, attempting to group similar data values into the same category while maximizing the differences between different categories [54]. In this study, we classified the level of agricultural sustainability using NBC method according to 5 classification standards in the ecological field: low level, relatively low level, medium level, relatively high level, and high level [55]. The Jenks optimization algorithm is employed to determine the optimal breaking points for the classification [56]. The detailed calculation principle is described below, with Equations (18) and (19) representing the optimization algorithm:In the above equations, represents the sum of squared deviations between classes for c classes, wherein , and k observations; n denotes the number of observed regions; stands for each individual agricultural sustainability level; and is the mean value from j to n.
3. Result
3.1. Index Weights Results
3.2. Temporal Analysis of Agricultural Sustainability
3.2.1. Overall Temporal Variation Analysis
3.2.2. Dimensional Temporal Variation Analysis
3.3. Spatial Analysis of Agricultural Sustainability
3.3.1. Overall Spatial Variation Analysis
3.3.2. Dimentional Spatial Variation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Tables of Results
Region | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.3560 | 0.3614 | 0.3797 | 0.5161 | 0.5331 | 0.5361 | 0.5710 | 0.5937 | 0.4108 | 0.4756 | 0.5269 | 0.5506 | 0.5695 | 0.6007 | 0.5642 | 0.6677 |
Tianjin | 0.2348 | 0.2678 | 0.2895 | 0.2838 | 0.3470 | 0.3528 | 0.4119 | 0.4430 | 0.3222 | 0.4741 | 0.5394 | 0.5836 | 0.6306 | 0.6604 | 0.7078 | 0.7903 |
Hebei | 0.2284 | 0.2518 | 0.3152 | 0.3402 | 0.3884 | 0.4104 | 0.4900 | 0.5376 | 0.3325 | 0.4688 | 0.5553 | 0.5919 | 0.6015 | 0.6920 | 0.7327 | 0.8286 |
Shanxi | 0.1913 | 0.2312 | 0.2604 | 0.2858 | 0.3733 | 0.4118 | 0.4975 | 0.5059 | 0.4717 | 0.5734 | 0.5839 | 0.6635 | 0.6558 | 0.7013 | 0.7274 | 0.8363 |
Neimeng | 0.2548 | 0.2582 | 0.2867 | 0.3439 | 0.4164 | 0.4519 | 0.5082 | 0.5267 | 0.4431 | 0.5635 | 0.6089 | 0.6143 | 0.5939 | 0.7014 | 0.7724 | 0.7950 |
Liaoning | 0.3622 | 0.3431 | 0.3304 | 0.3566 | 0.4387 | 0.5109 | 0.5964 | 0.6792 | 0.4633 | 0.4501 | 0.5372 | 0.6230 | 0.6470 | 0.6893 | 0.7793 | 0.8088 |
Jilin | 0.3443 | 0.3048 | 0.3022 | 0.3203 | 0.4073 | 0.4909 | 0.5025 | 0.5312 | 0.3673 | 0.4355 | 0.4689 | 0.5850 | 0.6014 | 0.7495 | 0.7187 | 0.7847 |
Heilongjiang | 0.1978 | 0.2047 | 0.1805 | 0.2529 | 0.3768 | 0.3975 | 0.4371 | 0.4774 | 0.4036 | 0.5082 | 0.5182 | 0.6217 | 0.6332 | 0.8279 | 0.8419 | 0.8821 |
Jiangsu | 0.1967 | 0.2238 | 0.2733 | 0.2977 | 0.4827 | 0.4915 | 0.5555 | 0.6066 | 0.4163 | 0.4561 | 0.5323 | 0.5985 | 0.6284 | 0.7364 | 0.6957 | 0.7845 |
Xinjiang | 0.2330 | 0.2217 | 0.2684 | 0.2514 | 0.3486 | 0.4108 | 0.4178 | 0.4572 | 0.4367 | 0.5925 | 0.6698 | 0.6430 | 0.6398 | 0.6785 | 0.7368 | 0.7263 |
Zhejiang | 0.2181 | 0.2105 | 0.2252 | 0.2594 | 0.4606 | 0.5015 | 0.4926 | 0.5679 | 0.4771 | 0.5619 | 0.6247 | 0.6522 | 0.6612 | 0.7810 | 0.7646 | 0.7906 |
Anhui | 0.2391 | 0.2388 | 0.2649 | 0.3008 | 0.3619 | 0.4738 | 0.4569 | 0.5208 | 0.4237 | 0.4832 | 0.6379 | 0.7179 | 0.7089 | 0.7674 | 0.8062 | 0.9397 |
Fujian | 0.2538 | 0.2153 | 0.2510 | 0.2606 | 0.3977 | 0.4402 | 0.4493 | 0.5068 | 0.5213 | 0.5156 | 0.5990 | 0.6687 | 0.6503 | 0.7468 | 0.7822 | 0.8068 |
Jiangxi | 0.2329 | 0.2294 | 0.2326 | 0.2633 | 0.3524 | 0.4366 | 0.4175 | 0.4811 | 0.3919 | 0.5666 | 0.6197 | 0.6535 | 0.6541 | 0.7898 | 0.8002 | 0.8255 |
Shandong | 0.2243 | 0.2314 | 0.2831 | 0.3089 | 0.3076 | 0.3801 | 0.4495 | 0.4731 | 0.2965 | 0.5021 | 0.5576 | 0.6133 | 0.6657 | 0.7222 | 0.7524 | 0.8867 |
Henan | 0.2514 | 0.2441 | 0.2964 | 0.3148 | 0.4039 | 0.4340 | 0.4754 | 0.5151 | 0.3357 | 0.5043 | 0.5566 | 0.5792 | 0.6334 | 0.6754 | 0.7163 | 0.8645 |
Hubei | 0.2142 | 0.1955 | 0.2330 | 0.2832 | 0.4327 | 0.4659 | 0.4426 | 0.5791 | 0.5101 | 0.5311 | 0.6206 | 0.6941 | 0.7381 | 0.7583 | 0.8031 | 0.9395 |
Hunan | 0.1628 | 0.1851 | 0.2098 | 0.2724 | 0.3791 | 0.3743 | 0.4172 | 0.4723 | 0.4284 | 0.5766 | 0.6517 | 0.6999 | 0.7278 | 0.7501 | 0.8249 | 0.9548 |
Guangdong | 0.2226 | 0.2236 | 0.1931 | 0.3145 | 0.3990 | 0.4404 | 0.4456 | 0.4930 | 0.3634 | 0.4803 | 0.5276 | 0.5790 | 0.5643 | 0.6811 | 0.6957 | 0.7623 |
Guangxi | 0.2247 | 0.2515 | 0.2303 | 0.3126 | 0.3760 | 0.3969 | 0.4005 | 0.4645 | 0.3967 | 0.5410 | 0.6137 | 0.6605 | 0.6877 | 0.8133 | 0.8024 | 0.8600 |
Hainan | 0.2598 | 0.3189 | 0.2800 | 0.4412 | 0.5234 | 0.5119 | 0.5480 | 0.5732 | 0.4976 | 0.5105 | 0.5295 | 0.6405 | 0.6142 | 0.7405 | 0.6828 | 0.7770 |
Chongqing | 0.1836 | 0.1799 | 0.2731 | 0.3135 | 0.3586 | 0.4022 | 0.4316 | 0.4702 | 0.3463 | 0.5459 | 0.5840 | 0.6504 | 0.6777 | 0.8058 | 0.7716 | 0.8597 |
Sichuan | 0.2863 | 0.1991 | 0.2652 | 0.2838 | 0.3409 | 0.3943 | 0.4409 | 0.4963 | 0.4324 | 0.5500 | 0.6055 | 0.6621 | 0.7168 | 0.7955 | 0.8454 | 0.9329 |
Guizhou | 0.1505 | 0.1389 | 0.1854 | 0.2377 | 0.3285 | 0.3908 | 0.3434 | 0.4299 | 0.3156 | 0.5567 | 0.6473 | 0.6815 | 0.7108 | 0.8263 | 0.8163 | 0.8760 |
Yunnan | 0.2450 | 0.2365 | 0.2860 | 0.2806 | 0.3061 | 0.3565 | 0.4184 | 0.3853 | 0.3503 | 0.5721 | 0.6023 | 0.6944 | 0.7392 | 0.7904 | 0.7975 | 0.9180 |
Tibet | 0.4038 | 0.3302 | 0.3696 | 0.4291 | 0.4532 | 0.4899 | 0.5055 | 0.5015 | 0.5362 | 0.5182 | 0.4997 | 0.5538 | 0.6921 | 0.7936 | 0.8594 | 0.8062 |
Shaanxi | 0.3239 | 0.3182 | 0.3070 | 0.3044 | 0.4841 | 0.5195 | 0.5827 | 0.5966 | 0.4052 | 0.4454 | 0.5566 | 0.5362 | 0.5745 | 0.6674 | 0.7717 | 0.8296 |
Gansu | 0.2319 | 0.1106 | 0.2081 | 0.2428 | 0.3966 | 0.4358 | 0.5071 | 0.5831 | 0.5307 | 0.5676 | 0.6037 | 0.6021 | 0.6474 | 0.7059 | 0.8312 | 0.9244 |
Qinghai | 0.2725 | 0.2342 | 0.1868 | 0.3307 | 0.5151 | 0.5263 | 0.5282 | 0.5036 | 0.3916 | 0.5155 | 0.5362 | 0.5511 | 0.6427 | 0.7138 | 0.8240 | 0.8998 |
Ningxia | 0.1925 | 0.2290 | 0.2288 | 0.2569 | 0.4003 | 0.4454 | 0.4779 | 0.5719 | 0.4476 | 0.5692 | 0.5764 | 0.5875 | 0.5987 | 0.7119 | 0.8080 | 0.8643 |
Xinjiang | 0.2330 | 0.2217 | 0.2684 | 0.2514 | 0.3486 | 0.4108 | 0.4178 | 0.4572 | 0.4367 | 0.5925 | 0.6698 | 0.6430 | 0.6398 | 0.6785 | 0.7368 | 0.7263 |
Region | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.4347 | 0.4660 | 0.4309 | 0.4925 | 0.4990 | 0.4973 | 0.4826 | 0.4475 | 0.4516 | 0.4419 | 0.4429 | 0.4292 | 0.4409 | 0.4219 | 0.4171 | 0.4422 |
Tianjin | 0.4093 | 0.4247 | 0.4055 | 0.3793 | 0.3856 | 0.3916 | 0.4073 | 0.3745 | 0.3721 | 0.3829 | 0.3940 | 0.3871 | 0.3830 | 0.3298 | 0.3676 | 0.3755 |
Hebei | 0.3867 | 0.4102 | 0.3908 | 0.4109 | 0.4175 | 0.4219 | 0.4196 | 0.4064 | 0.3376 | 0.3459 | 0.3685 | 0.3446 | 0.3363 | 0.2827 | 0.3302 | 0.3303 |
Shanxi | 0.2589 | 0.2979 | 0.2757 | 0.2932 | 0.2978 | 0.3155 | 0.3134 | 0.3199 | 0.3115 | 0.3196 | 0.3192 | 0.3043 | 0.2732 | 0.2441 | 0.2712 | 0.2658 |
Neimeng | 0.4434 | 0.4595 | 0.4644 | 0.4787 | 0.4788 | 0.4869 | 0.4911 | 0.4910 | 0.4609 | 0.4601 | 0.4667 | 0.4550 | 0.4343 | 0.4217 | 0.4564 | 0.4352 |
Liaoning | 0.4647 | 0.4729 | 0.4626 | 0.4610 | 0.4625 | 0.4706 | 0.4867 | 0.4745 | 0.4427 | 0.4086 | 0.4130 | 0.4186 | 0.4189 | 0.3820 | 0.4191 | 0.3989 |
Jilin | 0.5219 | 0.5183 | 0.4894 | 0.5027 | 0.4816 | 0.4906 | 0.5081 | 0.4836 | 0.4694 | 0.4595 | 0.4472 | 0.4658 | 0.4547 | 0.4413 | 0.4466 | 0.4310 |
Heilongjiang | 0.4712 | 0.4940 | 0.4846 | 0.5031 | 0.5045 | 0.5224 | 0.5343 | 0.5329 | 0.5338 | 0.5366 | 0.5182 | 0.5328 | 0.5251 | 0.5817 | 0.5386 | 0.5169 |
Jiangsu | 0.3583 | 0.3875 | 0.3790 | 0.3869 | 0.4291 | 0.4210 | 0.4352 | 0.4225 | 0.4281 | 0.4241 | 0.4307 | 0.4229 | 0.4355 | 0.3682 | 0.4175 | 0.4351 |
Zhejiang | 0.5365 | 0.5487 | 0.5296 | 0.5348 | 0.5427 | 0.5357 | 0.5492 | 0.5419 | 0.5503 | 0.5449 | 0.5474 | 0.5429 | 0.5493 | 0.5340 | 0.5475 | 0.5741 |
Anhui | 0.3240 | 0.3435 | 0.3164 | 0.3434 | 0.3434 | 0.3664 | 0.3543 | 0.3694 | 0.3616 | 0.3236 | 0.3630 | 0.3600 | 0.3483 | 0.2891 | 0.3450 | 0.3680 |
Fujian | 0.5524 | 0.5465 | 0.5448 | 0.5341 | 0.5388 | 0.5386 | 0.5434 | 0.5508 | 0.5758 | 0.5600 | 0.5685 | 0.5724 | 0.5619 | 0.5295 | 0.5654 | 0.5703 |
Jiangxi | 0.4697 | 0.4797 | 0.4849 | 0.4923 | 0.4900 | 0.4842 | 0.4923 | 0.4624 | 0.4594 | 0.4898 | 0.4904 | 0.4770 | 0.4685 | 0.4136 | 0.4595 | 0.4644 |
Shandong | 0.3524 | 0.4121 | 0.3973 | 0.3862 | 0.3910 | 0.4025 | 0.4102 | 0.3975 | 0.3396 | 0.3430 | 0.3346 | 0.3348 | 0.3448 | 0.2720 | 0.3212 | 0.3376 |
Henan | 0.3438 | 0.3723 | 0.3715 | 0.3809 | 0.3995 | 0.3869 | 0.3815 | 0.3683 | 0.3425 | 0.3428 | 0.3312 | 0.3198 | 0.3259 | 0.2428 | 0.3111 | 0.3299 |
Hubei | 0.3614 | 0.3712 | 0.3564 | 0.3816 | 0.4139 | 0.4075 | 0.3977 | 0.4355 | 0.4319 | 0.4063 | 0.4091 | 0.4158 | 0.4267 | 0.3695 | 0.4055 | 0.4266 |
Hunan | 0.3614 | 0.3978 | 0.4039 | 0.4369 | 0.4580 | 0.4518 | 0.4605 | 0.4385 | 0.4360 | 0.4528 | 0.4602 | 0.4517 | 0.4532 | 0.3844 | 0.4417 | 0.4607 |
Guangdong | 0.4474 | 0.4673 | 0.4324 | 0.4570 | 0.4663 | 0.4729 | 0.4784 | 0.4742 | 0.4413 | 0.4563 | 0.4593 | 0.4493 | 0.4379 | 0.4032 | 0.4312 | 0.4528 |
Guangxi | 0.4073 | 0.4063 | 0.3828 | 0.3908 | 0.4088 | 0.3927 | 0.3984 | 0.3950 | 0.3963 | 0.4052 | 0.4159 | 0.4161 | 0.4120 | 0.4075 | 0.4129 | 0.4194 |
Hainan | 0.4143 | 0.4326 | 0.4134 | 0.4420 | 0.4425 | 0.4383 | 0.4481 | 0.4512 | 0.4524 | 0.4394 | 0.4385 | 0.4407 | 0.4342 | 0.4209 | 0.4336 | 0.4289 |
Chongqing | 0.3040 | 0.2828 | 0.2735 | 0.2850 | 0.2958 | 0.3108 | 0.3204 | 0.3298 | 0.3017 | 0.3244 | 0.3425 | 0.3374 | 0.3346 | 0.3192 | 0.3491 | 0.3653 |
Sichuan | 0.4035 | 0.3978 | 0.4120 | 0.4031 | 0.4201 | 0.4207 | 0.4298 | 0.3844 | 0.4097 | 0.3992 | 0.3921 | 0.3830 | 0.3966 | 0.3601 | 0.4142 | 0.4124 |
Guizhou | 0.3404 | 0.3302 | 0.3343 | 0.3377 | 0.3193 | 0.3698 | 0.3532 | 0.3707 | 0.3294 | 0.3678 | 0.3907 | 0.3911 | 0.3905 | 0.4011 | 0.3950 | 0.3973 |
Yunnan | 0.4199 | 0.4182 | 0.4261 | 0.4139 | 0.4148 | 0.4171 | 0.4440 | 0.4321 | 0.4466 | 0.4720 | 0.4696 | 0.4721 | 0.4743 | 0.4593 | 0.4760 | 0.4827 |
Tibet | 0.3993 | 0.3915 | 0.3862 | 0.3968 | 0.4015 | 0.4042 | 0.4142 | 0.4105 | 0.4178 | 0.3824 | 0.3810 | 0.3749 | 0.4070 | 0.4001 | 0.4388 | 0.4135 |
Shaanxi | 0.3668 | 0.3765 | 0.3627 | 0.3698 | 0.3814 | 0.3929 | 0.3943 | 0.3809 | 0.3653 | 0.3516 | 0.3799 | 0.3367 | 0.3286 | 0.3118 | 0.3586 | 0.3586 |
Gansu | 0.2298 | 0.2169 | 0.2395 | 0.2113 | 0.2153 | 0.2155 | 0.2205 | 0.2295 | 0.2882 | 0.2910 | 0.2898 | 0.2680 | 0.2678 | 0.2493 | 0.2992 | 0.2991 |
Qinghai | 0.2376 | 0.2322 | 0.2063 | 0.2120 | 0.2227 | 0.2582 | 0.2519 | 0.2356 | 0.2436 | 0.2511 | 0.2609 | 0.2357 | 0.2639 | 0.2567 | 0.2959 | 0.2835 |
Ningxia | 0.3108 | 0.3152 | 0.3016 | 0.3061 | 0.3144 | 0.3252 | 0.3214 | 0.3133 | 0.3198 | 0.3166 | 0.3099 | 0.2921 | 0.2820 | 0.2720 | 0.3239 | 0.3057 |
Xinjiang | 0.2909 | 0.3053 | 0.2818 | 0.2757 | 0.2951 | 0.3164 | 0.3104 | 0.3116 | 0.3557 | 0.3481 | 0.3483 | 0.3324 | 0.3235 | 0.3123 | 0.3347 | 0.3108 |
References
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- MacLaren, C.; Mead, A.; van Balen, D.; Claessens, L.; Etana, A.; de Haan, J.; Haagsma, W.; Jäck, O.; Keller, T.; Labuschagne, J.; et al. Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nat. Sustain. 2022, 5, 770–779. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total. Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Legg, W. Sustainable Agricultural Development for Food Security and Nutrition: What Roles for Livestock? Technical Report No. 1916-2017-1398; Food and Agriculture Organization of the United Nations and the High Level Panel of Experts on Food Security and Nutrition: Washington, DC, USA, 2017. [Google Scholar]
- FAO. The State of Food and Agriculture 2020: Overcoming Water Challenges in Agriculture; Number 2020 in The State of Food and Agriculture (SOFA); FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Jing, J.; Cong, W.F.; Bezemer, T.M. Legacies at work: Plant-soil-microbiome interactions underpinning agricultural sustainability. Trends Plant Sci. 2022, 27, 781–792. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2022; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Marchand, F.; Debruyne, L.; Triste, L.; Gerrard, C.; Padel, S.; Lauwers, L. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 2014, 19, 46. [Google Scholar] [CrossRef] [Green Version]
- de Olde, E.M.; Oudshoorn, F.W.; Sorensen, C.A.G.; Bokkers, E.A.M.; de Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Riera, A.; Duluins, O.; Schuster, M.; Baret, P.V. Accounting for diversity while assessing sustainability: Insights from the Walloon bovine sectors. Agron. Sustain. Dev. 2023, 43, 30. [Google Scholar] [CrossRef]
- von Wirén-Lehr, S. Sustainability in agriculture—An evaluation of principal goal-oriented concepts to close the gap between theory and practice. Agric. Ecosyst. Environ. 2001, 84, 115–129. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, C.; Ma, J.; Yun, W.; Gao, L.; Li, P. Sustainability Assessment of Smallholder Farmland Systems: Healthy Farmland System Assessment Framework. Sustainability 2019, 11, 4525. [Google Scholar] [CrossRef] [Green Version]
- Abdar, Z.K.; Amirtaimoori, S.; Mehrjerdi, M.R.Z.; Boshrabadi, H.M. A composite index for assessment of agricultural sustainability: The case of Iran. Environ. Sci. Pollut. Res. 2022, 29, 47337–47349. [Google Scholar] [CrossRef]
- Peng, W.; Zheng, H.; Robinson, B.E.; Li, C.; Li, R. Comparing the importance of farming resource endowments and agricultural livelihood diversification for agricultural sustainability from the perspective of the food–energy–water nexus. J. Clean. Prod. 2022, 380, 135193. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Garcia Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE—A hierarchical framework for assessing the sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Meul, M.; Van Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Van Hauwermeiren, A. MOTIFS: A monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Scialabba, N. SAFA Guidelines: Sustainability Assessment of Food and Agriculture Systems. Version 3.0; Food and Agriculture Organization of the United Nations: Wanshington, DC, USA, 2013. [Google Scholar]
- Marta-Costa, A.A.; da Silva, E.L.S. Methods and Procedures for Building Sustainable Farming Systems: Application in the European Context; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Talukder, B.; Blay-Palmer, A.; Hipel, K.W.; vanLoon, G.W. Elimination Method of Multi-Criteria Decision Analysis (MCDA): A Simple Methodological Approach for Assessing Agricultural Sustainability. Sustainability 2017, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.W.; Zhong, J.J. Dynamic multicriteria group decision-making method with automatic reliability and weight calculation. Inf. Sci. 2023, 634, 400–422. [Google Scholar] [CrossRef]
- Delnevo, G.; Girau, R.; Ceccarini, C.; Prandi, C. A Deep Learning and Social IoT Approach for Plants Disease Prediction Toward a Sustainable Agriculture. IEEE Internet Things J. 2022, 9, 7243–7250. [Google Scholar] [CrossRef]
- Talukder, B.; Hipel, K.W.; vanLoon, G.W. Using multi-criteria decision analysis for assessing sustainability of agricultural systems. Sustain. Dev. 2018, 26, 781–799. [Google Scholar] [CrossRef]
- Scown, M.W.; Winkler, K.J.; Nicholas, K.A. Aligning research with policy and practice for sustainable agricultural land systems in Europe. Proc. Natl. Acad. Sci. USA 2019, 116, 4911–4916. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Yang, Y.; Zheng, H.; Mi, C.; Ma, T.; Shi, R. A framework for assessing sustainable agriculture and rural development: A case study of the Beijing-Tianjin-Hebei region, China. Environ. Impact Assess. Rev. 2022, 97, 106861. [Google Scholar] [CrossRef]
- Du, Y.W.; Shen, X.L. Group hierarchical DEMATEL method for reaching consensus. Comput. Ind. Eng. 2023, 175, 108842. [Google Scholar] [CrossRef]
- Qin, Y.; He, J.; Wei, M.; Du, X. Challenges Threatening Agricultural Sustainability in Central Asia: Status and Prospect. Int. J. Environ. Res. Public Health 2022, 19, 6200. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Mitchell, P.D.; Colquhoun, J. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. J. Environ. Manag. 2015, 147, 175–183. [Google Scholar] [CrossRef]
- Du, Y.W.; Li, X.X. Hierarchical DEMATEL method for complex systems. Expert Syst. Appl. 2021, 167, 113871. [Google Scholar] [CrossRef]
- Tzouramani, I.; Mantziaris, S.; Karanikolas, P. Assessing Sustainability Performance at the Farm Level: Examples from Greek Agricultural Systems. Sustainability 2020, 12, 2929. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process: The Organization and Prioritization of Complexity; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Jharkharia, S.; Shankar, R. Selection of logistics service provider: An analytic network process (ANP) approach. Omega 2007, 35, 274–289. [Google Scholar] [CrossRef]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Saaty, T.L. The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach. Oper. Res. 2013, 61, 1101–1118. [Google Scholar] [CrossRef]
- Erol, H.; Dikmen, I.; Atasoy, G.; Birgonul, M.T. An analytic network process model for risk quantification of mega construction projects. Expert Syst. Appl. 2022, 191, 116215. [Google Scholar] [CrossRef]
- Lin, W.C. Maritime Environment Assessment and Management Using through Balanced Scorecard by Using DEMATEL and ANP Technique. Int. J. Environ. Res. Public Health 2022, 19, 2873. [Google Scholar] [CrossRef]
- Kheybari, S.; Rezaie, F.M.; Farazmand, H. Analytic network process: An overview of applications. Appl. Math. Comput. 2020, 367, 124780. [Google Scholar] [CrossRef]
- Ghose, B. Food security and food self-sufficiency in China: From past to 2050. Food Energy Secur. 2014, 3, 86–95. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Janker, J.; Mann, S.; Rist, S. What is Sustainable Agriculture? Critical Analysis of the International Political Discourse. Sustainability 2018, 10, 4707. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Gu, F.; Peng, Y.; Deng, X.; Guo, L. Does Digital Inclusive Finance Effectively Promote Agricultural Green Development?—A Case Study of China. Int. J. Environ. Res. Public Health 2022, 19, 6982. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, L.; Yin, L.; Wang, Z.; Zheng, D. Evaluation of Sustainable and Analysis of Influencing Factors for Agriculture Sector: Evidence from Jiangsu Province, China. Front. Environ. Sci. 2022, 10, 836002. [Google Scholar] [CrossRef]
- Vysochyna, A.; Stoyanets, N.; Mentel, G.; Olejarz, T. Environmental Determinants of a Country’s Food Security in Short-Term and Long-Term Perspectives. Sustainability 2020, 12, 4090. [Google Scholar] [CrossRef]
- Nowak, A.; Krukowski, A.; Różańska-Boczula, M. Assessment of Sustainability in Agriculture of the European Union Countries. Agronomy 2019, 9, 890. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.; Donnellan, T.; Finn, J.A.; Dillon, E.; Ryan, M. Potential development of Irish agricultural sustainability indicators for current and future policy evaluation needs. J. Environ. Manag. 2019, 230, 434–445. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 2004, 13, 129–157. [Google Scholar] [CrossRef]
- Li, Q.; Fan, C. Evaluation of Hydraulic-Tunnel-Lining Durability Based on ANP and Cloud-Model-Improved Matter-Element Theory. Sustainability 2022, 14, 11801. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather. Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Jalilibal, Z.; Amiri, A.; Castagliola, P.; Khoo, M.B.C. Monitoring the coefficient of variation: A literature review. Comput. Ind. Eng. 2021, 161, 107600. [Google Scholar] [CrossRef]
- Du, Y.W.; Song, Q. Ecological Security Evaluation for Marine Ranching Based on the PLTS/ANP Method: A Case Study of Rongcheng. Complexity 2022, 2022, 2134296. [Google Scholar] [CrossRef]
- Tong, W.; Qin, G.; Xu, Y.; Fu, C. Sustainable growth, input factors, and technological progress in agriculture: Evidence from 1990 to 2020 in China. Front. Environ. Sci. 2023, 10, 1040356. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote. Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Hou, K.; Li, X.; Wang, J.j.; Zhang, J. An analysis of the impact on land use and ecological vulnerability of the policy of returning farmland to forest in Yan’an, China. Environ. Sci. Pollut. Res. 2016, 23, 4670–4680. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Luo, M.; Zhou, S.; Liu, C. An investigation of the coupling coordination of a regional agricultural economics-ecology-society composite based on a data-driven approach. Ecol. Indic. 2022, 143, 109363. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.; Liu, S.; Liu, Q.; Feng, B.; Tanzer, J. Evaluating Agricultural Sustainability Based on the Water–Energy–Food Nexus in the Chenmengquan Irrigation District of China. Sustainability 2019, 11, 5350. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Lyu, J.; Zhang, X. Evaluating Agricultural Sustainability and Green GDP in China: An Emergy Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16735. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, J.; Song, L.; Cohen, J.B.; Wang, Y. Intra-seasonal differences in the atmospheric systems contributing to interannual variations of autumn haze pollution in the North China Plain. Theor. Appl. Climatol. 2020, 141, 389–403. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Chen, S.; Ma, L.; Gan, M. The development of multifunctional agriculture in farming regions of China: Convergence or divergence? Land Use Policy 2023, 127, 106576. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Y.; Zhang, J.; Gan, M.; Xu, H.; Li, W.; Yuan, S.; Wang, K. Exploring the relationship between rural transition and agricultural eco-environment using a coupling analysis: A case study of Zhejiang Province, China. Ecol. Indic. 2021, 127, 107733. [Google Scholar] [CrossRef]
- Fusco, G.; Campobasso, F.; Laureti, L.; Frittelli, M.; Valente, D.; Petrosillo, I. The environmental impact of agriculture: An instrument to support public policy. Ecol. Indic. 2023, 147, 109961. [Google Scholar] [CrossRef]
- Yang, T.; Sun, Y.; Li, X.; Li, Q. An ecosystem elasticity perspective of paddy ecosystem sustainability evaluation: The case of China. J. Clean. Prod. 2021, 295, 126292. [Google Scholar] [CrossRef]
- Liang, X.; Gong, Q.; Li, S.; Huang, S.; Guo, G. Regional agricultural sustainability assessment in China based on a developed model. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Bao, B.; Jiang, A.; Jin, S. What Drives the Fluctuations of “Green” Development in China’s Agricultural Sector? An Entropy Method Approach. Pol. J. Environ. Stud. 2022, 31, 3491–3507. [Google Scholar] [CrossRef]
Dimensions | Indexes | Description | Units | Direction | References |
---|---|---|---|---|---|
Agricultural Economy | e1: Per labor agricultural gross value | Agricultural, forestry, animal husbandry, and fishery output value/rural population | Yuan/rural labor | + | [15,44] |
Agricultural Economy | e2: Per labor grain output | Total grain output/rural labor | kg/person | + | [15] |
e3: Agricultural mechanization level | Total agricultural machinery power/cultivated land area | kW/hm | + | [15] | |
e4: Agricultural electrification level | Rural electricity consumption/rural population | kW·h/person | + | [43,45] | |
e5: Land productivity | Total grain output/cultivated land area | kg/hm | + | [18] | |
Resource Utilization | e6: Per capita arable land area | Total arable land area at year-end/total population at year-end | hm/person | + | [46] |
e7: Per capita water resource availability | Total water resources availability/total population | m/person | + | [44] | |
e8: Rural power supply level | Total rural power supply generation/rural population | % | + | [26] | |
e9: Effective irrigation rate | Effective irrigation area/sown area | % | + | [12,26] | |
Environmental Quality | e10: Fertilizer use intensity | Fertilizer consumption/sown area | kg/hm | - | [15,43] |
e11: Pesticide use intensity | Pesticide consumption/sown area | kg/hm | - | [12,31] | |
e12: Forest coverage rate | Forest area/land area | % | + | [12,15] | |
e13: Air quality index | Days of good air quality/365 | / | + | [18] | |
e14: Soil and water conservation area | Soil and water conservation area | khm | + | [6] | |
Rural Society | e15: Per capita disposable income | Per capita disposable income of rural residents | Yuan/person | + | [18,26] |
e16: Engel’s coefficient of rural residents | Food expenditure cost/total rural resident consumption expenditure | / | - | [44] | |
e17: Rural healthcare level | Average health personnel per thousand rural population | / | + | [15] | |
e18: Education level of rural residents | Average years of education | years | + | [24,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.-W.; Fan, Y.-P. Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces. Sustainability 2023, 15, 9066. https://doi.org/10.3390/su15119066
Du Y-W, Fan Y-P. Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces. Sustainability. 2023; 15(11):9066. https://doi.org/10.3390/su15119066
Chicago/Turabian StyleDu, Yuan-Wei, and Yi-Pin Fan. 2023. "Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces" Sustainability 15, no. 11: 9066. https://doi.org/10.3390/su15119066
APA StyleDu, Y. -W., & Fan, Y. -P. (2023). Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces. Sustainability, 15(11), 9066. https://doi.org/10.3390/su15119066