Study of the Spatial Spillover Effects of the Efficiency of Agricultural Product Circulation in Provinces along the Belt and Road under the Green Total Factor Productivity Framework
Abstract
:1. Introduction
2. Literature Review and Theoretical Analysis
2.1. Literature Review
2.2. Research Hypotheses
3. Research Methods and Data Sources
3.1. SBM-DEA Model
3.2. Analysis of the GML Index
3.3. Dynamic-Panel-Model-Based Empirical Analysis
3.4. Global Moran’s I Index
3.5. Modelling Spatial Measurements
3.6. Variable Selection and Sources
3.6.1. Explained Variable
3.6.2. Explanatory Variable
3.6.3. Variable Descriptive Statistics
3.6.4. Data Sources
4. Development Characteristics of Green Total Factor Productivity in the Circulation of Agricultural Products in Provinces along the Belt and Road
4.1. Green Total Factor Productivity in the Agricultural Product Circulation of Provinces along the Belt and Road Initiative from a National Perspective
4.2. Green Total Factor Productivity in Agricultural Product Circulation in Provinces Along the Belt and Road Initiative
5. An Empirical Analysis of the Green Total Factor Productivity of the Circulation of Agricultural Products in the Provinces along the Belt and Road
5.1. Dynamic-Panel-Model-Based Empirical Analysis
5.2. Spatial Autocorrelation Test
5.3. LM Spatial Econometric Model Test
5.4. Spatial Durbin Model Regression Analysis
6. Conclusions and Policy Implications
6.1. Enhance Technological Innovation and Improve Green Total Factor Productivity
6.2. Optimise Environmental Regulations and Establish Interdepartmental Coordination Mechanisms
6.3. Ensure Stable Agricultural Production and Prices
6.4. Establish Green Demonstration Zones and Promote Coordinated Development between Regions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.8811 | 0.8385 | 0.8401 | 0.8299 | 0.7454 | 0.6092 | 0.5056 | 0.4298 | 0.3915 | 0.3214 | 0.2981 | 0.2764 |
Tianjin | 1.5782 | 1.4125 | 1.3309 | 1.3114 | 1.2711 | 1.2627 | 1.2313 | 0.9109 | 0.9182 | 1.3133 | 1.4924 | 1.4361 |
Hebei | 12.5663 | 11.8525 | 11.9912 | 12.3684 | 11.7176 | 11.5394 | 10.8911 | 9.2014 | 9.2696 | 10.0228 | 10.7166 | 9.9781 |
Shanxi | 6.0264 | 5.7078 | 5.7651 | 6.1403 | 6.1818 | 6.1345 | 6.0135 | 4.6313 | 4.4038 | 4.8437 | 5.3630 | 5.6967 |
Inner Mongolia | 9.3838 | 9.0969 | 9.1217 | 9.5020 | 9.1606 | 9.0706 | 9.0323 | 10.2494 | 10.1440 | 10.8246 | 11.6656 | 10.8471 |
Liao Ning | 8.8371 | 8.6183 | 8.6766 | 8.5740 | 7.9847 | 8.3157 | 9.7679 | 8.1262 | 8.0319 | 8.7427 | 9.0966 | 8.9247 |
Jilin | 12.1158 | 12.0869 | 11.8275 | 11.6269 | 11.0410 | 11.3508 | 10.1410 | 7.3295 | 7.7000 | 10.9776 | 12.6144 | 11.7396 |
Heilongjiang | 12.5658 | 13.5233 | 15.4377 | 17.4985 | 17.3635 | 17.4593 | 17.3563 | 18.6462 | 18.3415 | 23.3786 | 25.0998 | 23.2741 |
Shanghai | 0.6650 | 0.6509 | 0.6332 | 0.5985 | 0.5272 | 0.4371 | 0.3885 | 0.3616 | 0.3194 | 0.2723 | 0.2676 | 0.2314 |
Jiang Su | 6.1317 | 6.2406 | 6.3233 | 6.1629 | 5.5837 | 5.6849 | 5.2685 | 4.7108 | 4.4729 | 4.3122 | 4.4166 | 4.0583 |
Zhejiang | 4.9078 | 4.8982 | 4.8114 | 4.7503 | 4.4238 | 4.2739 | 4.1590 | 3.7357 | 3.5002 | 3.3638 | 3.3572 | 3.0049 |
Anhui | 13.9896 | 13.1714 | 12.6582 | 12.3331 | 11.4750 | 11.1639 | 10.5202 | 9.5576 | 8.7914 | 7.8561 | 8.2333 | 7.8228 |
Fujian | 9.2533 | 9.1812 | 9.0180 | 8.8986 | 8.3755 | 8.1529 | 8.2026 | 6.8831 | 6.6468 | 6.1239 | 6.2234 | 5.9366 |
Jiangxi | 12.7706 | 11.8866 | 11.7402 | 11.4133 | 10.7143 | 10.6016 | 10.2953 | 9.1734 | 8.5392 | 8.3109 | 8.7250 | 7.8809 |
Shandong | 9.1608 | 8.7603 | 8.5611 | 8.6727 | 8.0744 | 7.9030 | 7.2461 | 6.6535 | 6.4738 | 7.1994 | 7.3347 | 7.2555 |
Henan | 14.1090 | 13.0416 | 12.7352 | 12.6228 | 11.9068 | 11.3765 | 10.5906 | 9.2907 | 8.9258 | 8.5431 | 9.7346 | 9.5450 |
Hubei | 13.4460 | 13.0871 | 12.8032 | 12.5592 | 11.6033 | 11.2007 | 11.2025 | 9.9469 | 9.0115 | 8.3117 | 9.5110 | 9.3210 |
Hunan | 14.5000 | 14.0727 | 13.5604 | 12.6491 | 11.6459 | 11.5272 | 11.3414 | 8.8441 | 8.4654 | 9.1742 | 10.1491 | 9.3847 |
Guang Dong | 4.9703 | 5.0088 | 4.9892 | 4.9024 | 4.6701 | 4.5947 | 4.5691 | 4.0259 | 3.9387 | 4.0413 | 4.3066 | 4.0232 |
Guangxi | 17.5035 | 17.4665 | 16.6655 | 16.2997 | 15.3988 | 15.2677 | 15.2683 | 15.5388 | 14.8354 | 15.9520 | 16.0485 | 16.2302 |
Hainan | 26.1482 | 26.1323 | 24.9179 | 24.0419 | 23.1244 | 23.0833 | 23.3976 | 21.5761 | 20.6974 | 20.3499 | 20.5333 | 19.3724 |
Chongqing | 8.6477 | 8.4356 | 8.2388 | 8.0332 | 7.4392 | 7.3177 | 7.3461 | 6.5694 | 6.7685 | 6.5722 | 7.2125 | 6.8904 |
Sichuan | 14.4476 | 14.1892 | 13.8116 | 13.0446 | 12.3737 | 12.2360 | 11.9307 | 11.5260 | 10.8822 | 10.3125 | 11.4336 | 10.5140 |
Guizhou | 13.5812 | 12.7366 | 13.0164 | 12.8522 | 13.8182 | 15.6210 | 15.6766 | 15.0085 | 14.5851 | 13.5996 | 14.2477 | 13.9428 |
Yunnan | 15.3426 | 15.8663 | 16.0488 | 16.1706 | 15.5297 | 15.0948 | 14.8434 | 14.2790 | 13.9749 | 13.0798 | 14.6763 | 14.2566 |
Shanxi | 9.7639 | 9.7576 | 9.4797 | 9.5109 | 8.8465 | 8.8650 | 8.7314 | 7.9523 | 7.4890 | 7.7188 | 8.6607 | 8.0850 |
Gansu | 14.5430 | 13.5199 | 13.8137 | 14.0295 | 13.1751 | 14.0507 | 13.6575 | 11.5250 | 11.1727 | 12.0491 | 13.2880 | 13.3229 |
Qinghai | 9.9909 | 9.2838 | 9.3428 | 9.8803 | 9.3747 | 8.6440 | 8.5983 | 9.0829 | 9.3570 | 10.1789 | 11.1214 | 10.5391 |
Ningxia | 9.4274 | 8.7594 | 8.5167 | 8.6930 | 7.8845 | 8.1655 | 7.6248 | 7.2779 | 7.5529 | 7.4678 | 8.6215 | 8.0601 |
Xinjiang | 19.8370 | 17.2318 | 17.5951 | 17.5628 | 16.5914 | 16.7197 | 17.0883 | 14.2607 | 13.8706 | 13.1039 | 14.3596 | 14.7407 |
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 14.400 | 13.800 | 13.800 | 13.700 | 13.650 | 13.500 | 13.500 | 13.500 | 13.500 | 13.400 | 12.960 | 12.520 |
Tianjin | 20.745 | 19.500 | 18.450 | 17.990 | 17.730 | 17.360 | 17.070 | 17.070 | 16.850 | 16.520 | 15.835 | 15.150 |
Hebei | 55.700 | 54.400 | 53.200 | 51.880 | 50.670 | 48.670 | 46.680 | 44.990 | 43.570 | 42.380 | 40.620 | 38.860 |
Shanxi | 52.165 | 50.320 | 48.740 | 47.440 | 46.210 | 44.970 | 43.790 | 42.660 | 41.590 | 40.450 | 38.515 | 36.580 |
Inner Mongolia | 44.990 | 43.380 | 42.260 | 41.290 | 40.490 | 39.700 | 38.810 | 37.980 | 37.290 | 36.630 | 34.210 | 31.790 |
Liao Ning | 37.800 | 35.950 | 34.350 | 33.550 | 32.950 | 32.650 | 32.630 | 32.510 | 31.900 | 31.890 | 29.540 | 27.190 |
Jilin | 46.640 | 46.600 | 46.300 | 45.800 | 45.190 | 44.690 | 44.030 | 43.350 | 42.470 | 41.730 | 39.180 | 36.630 |
Heilongjiang | 44.000 | 43.500 | 43.100 | 42.600 | 41.990 | 41.200 | 40.800 | 40.600 | 39.900 | 39.100 | 36.700 | 34.300 |
Shanghai | 11.050 | 10.700 | 10.700 | 10.400 | 10.400 | 12.400 | 12.100 | 12.300 | 11.900 | 11.700 | 11.195 | 10.690 |
Jiang Su | 41.250 | 38.100 | 37.000 | 35.890 | 34.790 | 33.480 | 32.280 | 31.240 | 30.390 | 29.390 | 27.725 | 26.060 |
Zhejiang | 39.900 | 37.700 | 36.800 | 36.000 | 35.130 | 34.200 | 33.000 | 32.000 | 31.100 | 30.000 | 28.670 | 27.340 |
Anhui | 56.550 | 55.200 | 53.500 | 52.140 | 50.850 | 49.500 | 48.010 | 46.510 | 45.310 | 44.190 | 42.395 | 40.600 |
Fujian | 45.250 | 41.900 | 40.400 | 39.230 | 38.200 | 37.400 | 36.400 | 35.200 | 34.180 | 33.500 | 31.905 | 30.310 |
Jiangxi | 55.560 | 54.300 | 52.490 | 51.130 | 49.780 | 48.380 | 46.900 | 45.400 | 43.980 | 42.580 | 40.560 | 38.540 |
Shandong | 50.365 | 49.050 | 47.570 | 46.250 | 44.990 | 42.990 | 40.980 | 39.420 | 38.820 | 38.490 | 37.275 | 36.060 |
Henan | 60.865 | 59.430 | 57.570 | 56.200 | 54.800 | 53.150 | 51.500 | 49.840 | 48.290 | 46.790 | 45.170 | 43.550 |
Hubei | 51.085 | 48.170 | 46.500 | 45.490 | 44.330 | 43.150 | 41.900 | 40.700 | 39.700 | 39.000 | 37.460 | 35.920 |
Hunan | 55.850 | 54.900 | 53.350 | 52.040 | 50.720 | 49.110 | 47.250 | 45.380 | 43.980 | 42.780 | 41.535 | 40.290 |
Guang Dong | 35.050 | 33.500 | 32.600 | 32.240 | 32.000 | 31.290 | 30.800 | 30.150 | 29.300 | 28.600 | 26.985 | 25.370 |
Guangxi | 59.500 | 58.200 | 56.470 | 55.190 | 53.990 | 52.940 | 51.920 | 50.790 | 49.780 | 48.910 | 46.920 | 44.930 |
Hainan | 50.185 | 49.500 | 48.400 | 47.260 | 46.240 | 44.880 | 43.220 | 41.960 | 40.940 | 40.770 | 39.895 | 39.020 |
Chongqing | 46.695 | 44.980 | 43.020 | 41.660 | 40.400 | 39.060 | 37.400 | 35.920 | 34.500 | 33.200 | 31.435 | 29.670 |
Sichuan | 59.735 | 58.170 | 56.470 | 55.100 | 53.700 | 52.310 | 50.790 | 49.210 | 47.710 | 46.210 | 44.195 | 42.180 |
Guizhou | 67.575 | 65.040 | 63.590 | 62.170 | 59.990 | 57.990 | 55.850 | 53.980 | 52.480 | 50.980 | 48.320 | 45.660 |
Yunnan | 64.600 | 63.200 | 60.690 | 59.520 | 58.270 | 56.670 | 54.970 | 53.310 | 52.190 | 51.090 | 50.025 | 48.960 |
Shanxi | 54.600 | 52.700 | 49.979 | 48.689 | 47.429 | 46.080 | 44.660 | 43.210 | 41.870 | 40.570 | 38.470 | 36.370 |
Gansu | 65.100 | 62.850 | 61.250 | 59.870 | 58.320 | 56.810 | 55.310 | 53.610 | 52.310 | 51.510 | 49.090 | 46.670 |
Qinghai | 55.940 | 53.780 | 52.560 | 51.490 | 50.220 | 49.700 | 48.370 | 46.930 | 45.530 | 44.480 | 41.770 | 39.060 |
Ningxia | 52.040 | 50.180 | 49.330 | 47.990 | 46.390 | 44.770 | 43.710 | 42.020 | 41.120 | 40.140 | 37.035 | 33.930 |
Xinjiang | 58.305 | 56.460 | 56.020 | 55.530 | 53.930 | 52.770 | 51.650 | 50.620 | 49.090 | 48.130 | 45.445 | 42.760 |
References
- Ge, P.-F.; Wang, S.-J.; Huang, X.-L. Measurement for Chin’s agricultural green TFP. China Populat. Resour. Environ. 2018, 28, 66–74. [Google Scholar]
- Li, C.F.; Guo, G.Q. The Influence of Large-Scale Agricultural Land Management on the Modernization of Agricultural Product Circulation: Based on Field Investigation and Empirical Study. Sustainability 2022, 14, 13967. [Google Scholar] [CrossRef]
- Ma, Y.J.; Jiang, Z.Q.; Dai, Y.H.; Dai, P.F.; Wang, L.; Zhou, W.X. Understanding the circulation network of agro-products in China based on the freight big data. Ann. Operat. Res. 2023, 1–31. [Google Scholar] [CrossRef]
- Zhong, F. Approach to Reconstruct Agricultural Economics. Issues Agric. Econ. 2023, 3, 001. [Google Scholar]
- Dai, M.; Wang, G.; Gao, Y. Visual analysis of modern agricultural products circulation development based on Citespace. Price Theory Pract. 2022, 09, 110–113. [Google Scholar]
- Wang, Y. Changes Unseen in a Century, High—Quality Development, and the Construction of a New Development Pattern. J. Manag. World 2020, 36, 1–13. [Google Scholar]
- Zhao, L.; Huang, G.; Wang, X. Labor Market Segmentation, Factor Allocation Efficiency and Agric-ultural Product Circulation Industry Growth—An Investigation of the Moderated Mediation Effects. J. Agrotechn. Econ. 2021, 03, 4–19. [Google Scholar]
- Qi, F.; Feng, M.-L. Perfecting Agricultural Product Supply Chain and Promoting Rural Economic Development. Theoret. Investig. 2020, 04, 101–107. [Google Scholar]
- Tone, K. Aslacks-based measure of efficiency in data envelopment analysis. Eur. J. Operat. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Liu, H. Indicators and empirical analysis of the measurement of agricultural distribution efficiency in China. Rural Econ. 2017, 04, 93–99. [Google Scholar]
- Cheng, S.-Q.; Liu, Y.-N.; Xu, H. An Analysis on Agricultural Products Circulation Efficiency and Influence Factors in Western Region of China. J. Xi’an Univ. Fin. Econ. 2017, 30, 88–94. [Google Scholar]
- Wang, R.-X.; Kong, D.-S. On Chinese Agricultural Produce Circulation Efficiency Model and its Application. J. Liaoning Univ. (Philos. Soc. Sci. Ed.) 2014, 42, 64–73. [Google Scholar]
- Ren, S.; Li, E.; Deng, Q.; He, H.; Li, S. Analysis of the Impact of Rural Households’ Behaviors on Heavy Metal Pollution of Arable Soil: Taking Lankao County as an Example. Sustainability 2018, 10, 4368. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, W.; Park, M. Reliability Analysis and Optimization of Cold Chain Distribution System for Fresh Agricultural Products. Sustainability 2019, 11, 3618. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z. Study on Efficiency Evaluation and Influencing Factors of Agricultural Products Circulation System in Beijing-Tianjin-Hebei. J. Beijing Technol. Bus. Univ. (Soc. Sci.) 2019, 34, 41–50. [Google Scholar]
- Huang, W.-H.; Qi, C.-J.; Fang, G.-Z.; Lei, Q.-Y. Does the Agricultural Environment Regulation P-romote the Improvement of Wheaten GTFP? Resour. Environ. Yangtze Basin 2021, 30, 459–471. [Google Scholar]
- Hu, X. Does Environmental Regulation Improve Agricultural Total Factor Productivity? Jianghan Trib. 2022, 11, 42–51. [Google Scholar]
- Zhan, J.-T.; Xu, Y.-J. Environmental regulation, agricultural green TFP and grain security. China Populat. Resour. Environ. 2019, 29, 167–176. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environmental. Q. J. Econ. 1997, 110, 353–377. [Google Scholar] [CrossRef]
- Jha, V.; Bhanu Murth, K.V. An inverse global environmental Kuznets Curve. J. Comp. Econ. 2003, 31, 352–368. [Google Scholar] [CrossRef]
- Magnani, E. The Environmental Kuznets Curve, environmental policy and income distribution. Ecol. Econ. 2000, 32, 431–443. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linder, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J. Study on the Effect of “One Belt and One Road” on China’s Export Trade along. J. Hebei Univ. Econ. Bus. 2019, 40, 67–74. [Google Scholar]
- Zhang, J.-Q.; Dong, J.-M. The Impact of Foreign Trade on the Level of Green Total Factor Productivity in the Provinces along ”the Belt and Road”. J. Yunnan Univ. Fin. Econ. 2019, 35, 63–72. [Google Scholar]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 59–66. [Google Scholar] [CrossRef]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Wu, X. Spatial-Temporal Characteristics and Influence Factors of Provincial Logistics Development Level; Lanzhou Jiaotong University: Lanzhou, China, 2022. [Google Scholar]
- Lesage, J.P.; Pacw, R.K. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar]
- Holtzeakin, D.; Schwartz, A.E. Spatial Productivity Spillovers from Public Infrastructure: Evidence, from State Highways; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1998; pp. 459–468. [Google Scholar]
- Biagini, L.; Antonioli, F.; Severini, S. The impact of CAP subsidies on the productivity of cereal farms in six European countries: A historical perspective (2008–2018). Food Policy 2023, 119, 102473. [Google Scholar] [CrossRef]
Type of Indicator | Content of Indicator | Description of Indicator | Symbol | Unit |
---|---|---|---|---|
Inputs | Circulation of agricultural products fixed capital | Fixed capital input of transport, storage and postal services, wholesale and retail trade, hotels and restaurants × Final consumption rate × Share of household consumption in final consumption × Engel coefficient (national average) | CNY 100 million | |
Number of enterprises involved in the circulation of agricultural products | Number of enterprises involved in the circulation of agricultural products from the Wind and Tonghuashun databases | Units | ||
Development of transport infrastructure | Total kilometres of railways, motorways and waterways | Kilometre (km) | ||
Desired outputs | Circulation of agricultural products gross output value | Gross output value of transport, storage and postal services, wholesale and retail trade, accommodation and food services × Final consumption rate × Share of household final consumption in final consumption × Engel coefficient (national average) | CNY 100 million | |
Total import and export trade volume of agricultural products | Total import and export trade volume of agricultural products in different regions from statistical yearbooks | USD 10,000 | ||
Undesired outputs | CO2 and COD emissions in the circulation stage of agricultural products | Total CO2 and COD emissions from transport, storage and postal services, wholesale and retail trade, accommodation and food services | Ten thousand metric tonnes (MT) |
Type of Indicator | Content of Indicator | Description of Indicator | Symbol | Unit |
---|---|---|---|---|
Explanatory variable | The lagged development level of green total factor productivity of China’s agriculture | Calculated results of the study | L.GTFPCH | / |
Government support | Government fiscal expenditure in the relevant aspects of agricultural product circulation | GP | CNY 100 million | |
Foreign investment level | Foreign direct investment (FDI) as a percentage of GDP | FDI | CNY | |
Environmental regulation | The number of environmental protection proposals in the two sessions | ER | Units | |
Industrial structure | Total value of primary industry/Total value of secondary and tertiary industry | ST | CNY | |
Agricultural product prices | Price index for food in retail trade (previous year = 100) | AP | / |
Type of Indicator | Symbol | Content of Indicator | Sample Size | Mean | Standard Deviation | Min. | Max. |
---|---|---|---|---|---|---|---|
Inputs | Circulation of agricultural products fixed capital | 360 | 236.166 | 154.939 | 14.740 | 700.782 | |
Number of enterprises involved in the circulation of agricultural products | 360 | 1072.944 | 1045.098 | 46 | 6698 | ||
Development of transport infrastructure | 360 | 159,915.1 | 84,839.11 | 14,584.39 | 467,973.3 | ||
Desired outputs | Circulation of agricultural products gross output value | 360 | 456.613 | 374.784 | 18.125 | 1776.084 | |
Total import and export trade volume of agricultural products | 360 | 401.467 | 654.043 | 0.533 | 3795.685 | ||
Undesired outputs | CO2 and COD emissions in the circulation stage of agricultural products | 360 | 428.465 | 586.451 | 4.963 | 3106.204 | |
Explained variable | GTFPCG | Green total factor productivity of agricultural product circulation | 204 | 0.996 | 0.087 | 0.613 | 1.560 |
Explanatory variable | L.GTFPCH | The lagged development level of green total factor productivity of China’s agriculture | 187 | 0.997 | 0.090 | 0.613 | 1.560 |
ER | Environmental regulation | 204 | 405.270 | 365.176 | 16.000 | 2471.000 | |
GP | Government support | 204 | 827.693 | 439.360 | 123.368 | 3009.98 | |
FDI | Foreign investment level | 204 | 56.437 | 73.883 | 0.045 | 290.400 | |
ST | Industrial structure | 204 | 0.890 | 0.059 | 0.742 | 0.997 | |
AP | Agricultural product prices | 204 | 105.758 | 4.156 | 97.000 | 122.500 |
Province | 2010–2013 | 2014–2021 | ||||
---|---|---|---|---|---|---|
GTFPCH | GTC | GEC | GTFPCH | GTC | GEC | |
Inner Mongolia | 1.098 | 1.110 | 0.988 | 0.916 | 1.000 | 0.916 |
Liaoning | 1.054 | 1.069 | 0.986 | 0.960 | 0.957 | 1.003 |
Jilin | 0.972 | 0.964 | 1.008 | 1.000 | 1.023 | 0.978 |
Heilongjiang | 1.072 | 1.107 | 0.968 | 0.929 | 1.000 | 0.929 |
Shanghai | 1.002 | 1.000 | 1.002 | 1.000 | 1.000 | 1.000 |
Zhejiang | 1.035 | 0.968 | 1.069 | 0.981 | 0.975 | 1.006 |
Fujian | 1.015 | 1.005 | 1.009 | 0.984 | 0.984 | 1.000 |
Guangdong | 1.029 | 0.996 | 1.033 | 0.954 | 0.970 | 0.983 |
Guangxi | 1.002 | 1.013 | 0.988 | 0.952 | 0.954 | 0.999 |
Hainan | 1.047 | 0.971 | 1.078 | 0.994 | 1.036 | 0.959 |
Chongqing | 1.031 | 1.022 | 1.009 | 0.985 | 0.995 | 0.990 |
Yunnan | 1.028 | 1.047 | 0.982 | 0.970 | 0.960 | 1.010 |
Shaanxi | 1.003 | 0.986 | 1.017 | 0.994 | 1.002 | 0.992 |
Gansu | 1.013 | 1.027 | 0.986 | 0.979 | 0.978 | 1.001 |
Qinghai | 1.008 | 1.004 | 1.003 | 1.001 | 1.024 | 0.978 |
Ningxia | 0.952 | 0.947 | 1.005 | 0.988 | 0.995 | 0.993 |
Xinjiang | 1.002 | 0.999 | 1.004 | 1.001 | 1.004 | 0.997 |
Mean | 1.021 | 1.013 | 1.008 | 0.976 | 0.991 | 0.984 |
Variable | System GMM Model | |
---|---|---|
Coefficient (Z-Value) | p-Value | |
L.GTFPCH | −0.1139 *** (−1.840) | 0.003 |
ER | −0.00001 *** (−2.79) | 0.005 |
GP | −0.00003 *** (−6.75) | 0.000 |
FDI | 0.0002 *** (4.72) | 0.004 |
ST | −0.1087 ** (−2.48) | 0.013 |
AP | −0.0011 ** (−2.06) | 0.039 |
Constant | 1.3436 *** (11.23) | 0.000 |
Wald statistic | 6,800,000 | |
Wald associated probability | 0.000 | |
Arellano–Bond (1) | 0.091 | |
Arellano–Bond (2) | 0.174 | |
Sargan tests | 0.268 | |
Hansen tests | 1.000 |
Variable | Moran’s I Coefficient | Expected | Variance | Z-Score | p-Value |
---|---|---|---|---|---|
GTFPCH | −0.097 | −0.005 | 0.066 | −1.395 | 0.081 * |
ER | 0.658 | −0.005 | 0.067 | 9.932 | 0.000 *** |
GP | 0.590 | −0.005 | 0.067 | 8.844 | 0.000 *** |
FDI | 0.757 | −0.005 | 0.068 | 11.279 | 0.000 *** |
ST | 0.767 | −0.005 | 0.068 | 11.381 | 0.000 *** |
AP | 0.374 | −0.005 | 0.068 | 5.598 | 0.000 *** |
Statistic | Coefficient | p-Value |
---|---|---|
LM test no spatial error | 8.3419 *** | 0.0039 |
Robust LM test no spatial error | 8.1357 *** | 0.0043 |
LM test no spatial lag | 8.3425 *** | 0.0154 |
Robust LM test no spatial lag | 8.3425 *** | 0.0154 |
Variable | Coefficient | p-Value |
---|---|---|
0.0682 ** | 0.017 | |
ER | 0.00002 | 0.982 |
0.00003 | 0.877 | |
GP | −0.00002 | 0.106 |
−0.00002 ** | 0.037 | |
FDI | 0.0001 | 0.180 |
0.0001 * | 0.096 | |
ST | 0.1438 | 0.430 |
0.2387 | 0.796 | |
AP | 0.0035 | 0.273 |
0.0036 | 0.366 | |
Sigma2_e | 0.0006 *** | 0.000 |
Log-likelihood | 217.6703 | |
0.1120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M.; Wang, G.; Wang, J.; Gao, Y.; Lu, Q. Study of the Spatial Spillover Effects of the Efficiency of Agricultural Product Circulation in Provinces along the Belt and Road under the Green Total Factor Productivity Framework. Sustainability 2023, 15, 12560. https://doi.org/10.3390/su151612560
Dai M, Wang G, Wang J, Gao Y, Lu Q. Study of the Spatial Spillover Effects of the Efficiency of Agricultural Product Circulation in Provinces along the Belt and Road under the Green Total Factor Productivity Framework. Sustainability. 2023; 15(16):12560. https://doi.org/10.3390/su151612560
Chicago/Turabian StyleDai, Minghua, Guanwei Wang, Jiaqiu Wang, Yuhan Gao, and Quanzhen Lu. 2023. "Study of the Spatial Spillover Effects of the Efficiency of Agricultural Product Circulation in Provinces along the Belt and Road under the Green Total Factor Productivity Framework" Sustainability 15, no. 16: 12560. https://doi.org/10.3390/su151612560
APA StyleDai, M., Wang, G., Wang, J., Gao, Y., & Lu, Q. (2023). Study of the Spatial Spillover Effects of the Efficiency of Agricultural Product Circulation in Provinces along the Belt and Road under the Green Total Factor Productivity Framework. Sustainability, 15(16), 12560. https://doi.org/10.3390/su151612560