Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Façade Mock-Up
LSC Panel Assembly
2.2. FEM Models
2.3. Model Domains
2.3.1. Boundary Conditions
2.3.2. Model Meshing
2.4. Optical Measurements
2.5. Uncertainties Estimation
3. Results and Discussion
3.1. Model Validation
3.2. Data Comparison
3.3. LSC Panel Electrical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, X.; Ma, M.; Ma, X.; Chen, L.; Cai, W.; Feng, W.; Ma, Z. Historical Decarbonization of Global Commercial Building Operations in the 21st Century. Appl. Energy 2022, 322, 119401. [Google Scholar] [CrossRef]
- Ma, M.; Feng, W.; Huo, J.; Xiang, X. Operational Carbon Transition in the Megalopolises’ Commercial Buildings. Build. Environ. 2022, 226, 109705. [Google Scholar] [CrossRef]
- Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Brocato, M.; Calabrese, G.; Guidi, V.; Mondardini, L.; Pozzetti, L.; Tonezzer, M.; Vincenzi, D. Building Integrated Low Concentration Solar System for a Self-Sustainable Mediterranean Villa: The Astonyshine House. Energy Build. 2014, 77, 355–363. [Google Scholar] [CrossRef]
- Zarcone, R.; Brocato, M.; Bernardoni, P.; Vincenzi, D. Building Integrated Photovoltaic System for a Solar Infrastructure: Liv-Lib’ Project. Energy Procedia 2016, 91, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L. Low Concentration Solar Louvres for Building Integration. AIP Conf. Proc. 2013, 1556, 110–113. [Google Scholar]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A.G. Building-Integrated Photovoltaic/Thermal (BIPVT) Systems: Applications and Challenges. Sustain. Energy Technol. Assess. 2021, 45, 101151. [Google Scholar] [CrossRef]
- Boschetti, M.; Vincenzi, D.; Mangherini, G.; Bernardoni, P.; Andreoli, A.; Gjestila, M.; Camattari, R.; Fugattini, S.; Caramori, S.; Cristino, V.; et al. Modular Stand-Alone Photoelectrocatalytic Reactor for Emergent Contaminant Degradation via Solar Radiation. Sol. Energy 2021, 228, 120–127. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Das, D. Multi-Objective Dynamic and Static Reconfiguration with Optimized Allocation of PV-DG and Battery Energy Storage System. Renew. Sustain. Energy Rev. 2020, 124, 109777. [Google Scholar] [CrossRef]
- Diolaiti, V.; Andreoli, A.; Bernardoni, P.; Mangherini, G.; Ouelhazi, M.A.; Venezia, E.; Ricci, M.; Proietti, R.Z.; Vincenzi, D. Nanostructured Germanium Anode for Lithium-Ion Batteries for Aerospace Technologies. In Proceedings of the 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 4–8 July 2022; pp. 56–59. [Google Scholar]
- Fugattini, S.; Gulzar, U.; Andreoli, A.; Carbone, L.; Boschetti, M.; Bernardoni, P.; Gjestila, M.; Mangherini, G.; Camattari, R.; Li, T.; et al. Binder-Free Nanostructured Germanium Anode for High Resilience Lithium-Ion Battery. Electrochim. Acta 2022, 411, 139832. [Google Scholar] [CrossRef]
- Athienitis, A.K.; Barone, G.; Buonomano, A.; Palombo, A. Assessing Active and Passive Effects of Façade Building Integrated Photovoltaics/Thermal Systems: Dynamic Modelling and Simulation. Appl. Energy 2018, 209, 355–382. [Google Scholar] [CrossRef]
- Ortiz Lizcano, J.C.; Haghighi, Z.; Wapperom, S.; Infante Ferreira, C.; Isabella, O.; vd Dobbelsteen, A.; Zeman, M. Photovoltaic Chimney: Thermal Modeling and Concept Demonstration for Integration in Buildings. Prog. Photovolt. Res. Appl. 2020, 28, 465–482. [Google Scholar] [CrossRef]
- Corrao, R.; La Placa, E. Plaster Ventilated Fa Ade System for Renovating Modern and Ancient Buildings. A CFD Analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 863, 012046. [Google Scholar] [CrossRef]
- De Boeck, L.; Verbeke, S.; Audenaert, A.; De Mesmaeker, L. Improving the Energy Performance of Residential Buildings: A Literature Review. Renew. Sustain. Energy Rev. 2015, 52, 960–975. [Google Scholar] [CrossRef]
- Onbasioglu, H.; Egrican, A.N. Experimental Approach to the Thermal Response of Passive Systems. Energy Convers. Manag. 2002, 43, 2053–2065. [Google Scholar] [CrossRef]
- Shameri, M.A.; Alghoul, M.A.; Sopian, K.; Zain, M.F.M.; Elayeb, O. Perspectives of Double Skin Façade Systems in Buildings and Energy Saving. Renew. Sustain. Energy Rev. 2011, 15, 1468–1475. [Google Scholar] [CrossRef]
- Pomponi, F.; Piroozfar, P.A.E.; Southall, R.; Ashton, P.; Farr, E.R.P. Energy Performance of Double-Skin Façades in Temperate Climates: A Systematic Review and Meta-Analysis. Renew. Sustain. Energy Rev. 2016, 54, 1525–1536. [Google Scholar] [CrossRef] [Green Version]
- Pappas, A.; Zhai, Z. Numerical Investigation on Thermal Performance and Correlations of Double Skin Façade with Buoyancy-Driven Airflow. Energy Build. 2008, 40, 466–475. [Google Scholar] [CrossRef]
- Parhizkar, H.; Khoraskani, R.A.; Tahbaz, M. Double Skin Façade with Azolla; Ventilation, Indoor Air Quality and Thermal Performance Assessment. J. Clean. Prod. 2020, 249, 119313. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A Key Review of Building Integrated Photovoltaic (BIPV) Systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Pérez-Grande, I.; Meseguer, J.; Alonso, G. Influence of Glass Properties on the Performance of Double-Glazed Facades. Appl. Therm. Eng. 2005, 25, 3163–3175. [Google Scholar] [CrossRef]
- Chan, A.L.S.; Chow, T.T.; Fong, K.F.; Lin, Z. Investigation on Energy Performance of Double Skin Façade in Hong Kong. Energy Build. 2009, 41, 1135–1142. [Google Scholar] [CrossRef]
- Gregório-Atem, C.; Aparicio-Fernández, C.; Coch, H.; Vivancos, J.L. Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil. Sustainability 2020, 12, 7635. [Google Scholar] [CrossRef]
- Gonçalves, J.E.; van Hooff, T.; Saelens, D. Simulating Building Integrated Photovoltaic Facades: Comparison to Experimental Data and Evaluation of Modelling Complexity. Appl. Energy 2021, 281, 116032. [Google Scholar] [CrossRef]
- Gratia, E.; De Herde, A. Natural Ventilation in a Double-Skin Facade. Energy Build. 2004, 36, 137–146. [Google Scholar] [CrossRef]
- Rahmani, B.; Kandar, M.Z.; Rahmani, P. How Double Skin Façade’s Air-Gap Sizes Effect on Lowering Solar Heat Gain in Tropical Climate? World Appl. Sci. J. 2012, 18, 774–778. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A Comprehensive Review of Solar Facades. Opaque Solar Facades. Renew. Sustain. Energy Rev. 2012, 16, 2820–2832. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A Comprehensive Review of Solar Facades. Transparent and Translucent Solar Facades. Renew. Sustain. Energy Rev. 2012, 16, 2643–2651. [Google Scholar] [CrossRef]
- Visa, I.; Comsit, M.; Duta, A. Urban Acceptance of Facade Integrated Novel Solar Thermal Collectors. Energy Procedia 2014, 48, 1429–1435. [Google Scholar] [CrossRef] [Green Version]
- Escarre, J.; Li, H.Y.; Sansonnens, L.; Galliano, F.; Cattaneo, G.; Heinstein, P.; Nicolay, S.; Bailat, J.; Eberhard, S.; Ballif, C.; et al. When PV Modules Are Becoming Real Building Elements: White Solar Module, a Revolution for BIPV. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Morlier, A.; Lim, B.; Blankemeyer, S.; Schulte-huxel, H.; Witteck, R.; Daschinger, T.; Bräunig, S.; Köntges, M.; Brendel, R. Photovoltaic Modules with the Look and Feel of a Stone Façade for Building Integration. Solar RRL 2021, 6, 2100356. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Q.; Lu, C.; Wei, C. The Research on a New Type of BIPV Modules Constructed by Thin-Film Photovoltaic Panel (or Module)/PU/Color Organic-Coated Steel Plate. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 2724–2727. [Google Scholar] [CrossRef]
- Dhere, N.G.; Shiradkar, N.; Schneller, E.; Gade, V. The Reliability of Bypass Diodes in PV Modules. Reliab. Photovolt. Cells Modul. Compon. Syst. VI 2013, 8825, 88250I. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Palmisano, G. BIPV: Merging the Photovoltaic with the Construction Industry. Prog. Photovolt. Res. Appl. 2010, 18, 61–72. [Google Scholar] [CrossRef]
- Maggioni, G.; Campagnaro, A.; Carturan, S.; Quaranta, A. Dye-Doped Parylene-Based Thin Film Materials: Application to Luminescent Solar Concentrators. Sol. Energy Mater. Sol. Cells 2013, 108, 27–37. [Google Scholar] [CrossRef]
- Correia, S.F.H.; De Zea Bermudez, V.; Ribeiro, S.J.L.; André, P.S.; Ferreira, R.A.S.; Carlos, L.D. Luminescent Solar Concentrators: Challenges for Lanthanide-Based Organic-Inorganic Hybrid Materials. J. Mater. Chem. A 2014, 2, 5580–5596. [Google Scholar] [CrossRef]
- Bomm, J.; Büchtemann, A.; Chatten, A.J.; Bose, R.; Farrell, D.J.; Chan, N.L.A.; Xiao, Y.; Slooff, L.H.; Meyer, T.; Meyer, A.; et al. Fabrication and Full Characterization of State-of-the-Art Quantum Dot Luminescent Solar Concentrators. Sol. Energy Mater. Sol. Cells 2011, 95, 2087–2094. [Google Scholar] [CrossRef] [Green Version]
- Bernardoni, P.; Mangherini, G.; Gjestila, M.; Andreoli, A.; Vincenzi, D. Performance Optimization of Luminescent Solar Concentrators under Several Shading Conditions. Energies 2021, 14, 816. [Google Scholar] [CrossRef]
- SunPower. Technical Data Sheet: C50 Solar Cell Mono Crystalline Silicon; SunPower Inc.: San Jose, CA, USA, 2010. [Google Scholar]
- Tonezzer, M.; Gutierrez, D.; Vincenzi, D. Luminescent Solar Concentrators—State of the Art and Future Perspectives. In Solar Cell Nanotechnology; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 293–315. ISBN 9781118845721. [Google Scholar]
- Rafiee, M.; Chandra, S.; Ahmed, H.; McCormack, S.J. An Overview of Various Configurations of Luminescent Solar Concentrators for Photovoltaic Applications. Opt. Mater. 2019, 91, 212–227. [Google Scholar] [CrossRef]
- Bognár, Á.; Kusnadi, S.; Slooff, L.H.; Tzikas, C.; Loonen, R.C.G.M.; de Jong, M.M.; Hensen, J.L.M.; Debije, M.G. The Solar Noise Barrier Project 4: Modeling of Full-Scale Luminescent Solar Concentrator Noise Barrier Panels. Renew. Energy 2020, 151, 1141–1149. [Google Scholar] [CrossRef]
- Aste, N.; Buzzetti, M.; Del Pero, C.; Fusco, R.; Leonforte, F.; Testa, D. Triggering a Large Scale Luminescent Solar Concentrators Market: The Smart Window Project. J. Clean. Prod. 2019, 219, 35–45. [Google Scholar] [CrossRef]
- COMSOL. Multiphysics Reference Manual; COMSOL Inc.: Stockholm, Sweden, 2021. [Google Scholar]
- De Gracia, A.; Castell, A.; Navarro, L.; Oró, E.; Cabeza, L.F. Numerical Modelling of Ventilated Facades: A Review. Renew. Sustain. Energy Rev. 2013, 22, 539–549. [Google Scholar] [CrossRef]
- DELO Industrial Adhesives. Technical Data Sheet: DELO-PHOTOBOND GB368; DELO Industrial Adhesives: Windach, Germnay, 2014. [Google Scholar]
- 3M. Technical Data Sheet: DF2000MA Release B; 3M: St. Paul, MN, USA, 2015. [Google Scholar]
- Schlegel, F. COMSOL: Using the Boussinesq Approximation for Natural Convection. Available online: https://www.comsol.com/blogs/using-the-boussinesq-approximation-for-natural-convection/ (accessed on 13 January 2022).
- Porotherm Technical Datasheet Porotherm. BIO Inc. 12. Available online: https://www.wienerberger.it/content/dam/wienerberger/italy/marketing/documents-magazines/technical/technical-product-info-sheet/wall/Sch_tec_Pth_BIO_inc_12x50x19_BUB.pdf (accessed on 15 February 2022).
- MIT. PMMA Properties. Available online: http://www.mit.edu/~6.777/matprops/pmma.htm (accessed on 3 May 2022).
- Li, Q.; Wu, A.-p.; Li, Y.-j.; Wang, G.-q.; Qi, B.-j.; Yan, D.-y.; Xiong, L.-y. Segregation in Fusion Weld of 2219 Aluminum Alloy and Its Influence on Mechanical Properties of Weld. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2017, 27, 258–271. [Google Scholar] [CrossRef]
- Brandt, R.; Neuer, G. Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys up to and above the Melting Temperature. Int. J. Thermophys. 2007, 28, 1429–1446. [Google Scholar] [CrossRef]
- Borgohain, C.; Acharyya, K.; Sarma, S.; Senapati, K.K.; Sarma, K.C.; Phukan, P. A New Aluminum-Based Metal Matrix Composite Reinforced with Cobalt Ferrite Magnetic Nanoparticle. J. Mater. Sci. 2013, 48, 162–171. [Google Scholar] [CrossRef]
- IUAV. Materiali Isolanti Nuove Tendenze in Architettura. Available online: https://www.iuav.it/SISTEMA-DE/Archivio-d/approfondi/materiali-/Materiali_Isolanti.pdf (accessed on 17 February 2022).
- COMSOL. Greenhouse Effect. Available online: https://www.comsol.it/model/greenhouse-effect-98061 (accessed on 2 January 2022).
- Rashidian, M.; Dorranian, D. Low-Intensity UV Effects on Optical Constants of PMMA Film. J. Theor. Appl. Phys. 2014, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Ayieko, C.O.; Musembi, R.J.; Ogacho, A.A.; Aduda, B.O.; Muthoka, B.M.; Jain, P.K. Controlled Texturing of Aluminum Sheet for Solar Energy Applications. Adv. Mater. Phys. Chem. 2015, 05, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.M. Optical Study on Poly(Methyl Methacrylate)/Poly(Vinyl Acetate) Blends. Int. J. Photoenergy 2009, 2009, 150389. [Google Scholar] [CrossRef]
- Wen, C.-D.; Mudawar, I. Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models. Int. J. Heat Mass Transf. 2005, 48, 1316–1329. [Google Scholar] [CrossRef]
- Estalote, E.A.; Ramanathan, K.G. Low-Temperature Emissivities of Copper and Aluminum. J. Opt. Soc. Am. 1977, 67, 39. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. On the Sky Temperature Models and Their Influence on Buildings Energy Performance: A Critical Review. Energy Build. 2019, 183, 607–625. [Google Scholar] [CrossRef]
- Albatayneh, A.; Alterman, D.; Page, A.; Moghtaderi, B. The Significance of Sky Temperature in the Assessment of the Thermal Performance of Buildings. Appl. Sci. 2020, 10, 8057. [Google Scholar] [CrossRef]
- COMSOL. Radiative Cooling. Available online: https://www.comsol.it/model/radiative-cooling-75021 (accessed on 22 December 2021).
- Ong, K.S. A Mathematical Model of a Solar Chimney. Renew. Energy 2003, 28, 1047–1060. [Google Scholar] [CrossRef]
- Pasut, W.; De Carli, M. Evaluation of Various CFD Modelling Strategies in Predicting Airflow and Temperature in a Naturally Ventilated Double Skin Faade. Appl. Therm. Eng. 2012, 37, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, T.; White, N.; Dahari, M.; Hooman, K. On the Electrical and Thermal Contact Resistance of Metal Foam. Int. J. Heat Mass Transf. 2014, 72, 565–571. [Google Scholar] [CrossRef]
- Casalegno, V.; Vavassori, P.; Valle, M.; Ferraris, M.; Salvo, M.; Pintsuk, G. Measurement of Thermal Properties of a Ceramic/Metal Joint by Laser Flash Method. J. Nucl. Mater. 2010, 407, 83–87. [Google Scholar] [CrossRef]
- Baccega, E.; Bottarelli, M.; Su, Y. Alternative Experimental Characterization of Phase Change Material Plasterboard Using Two-Step Temperature Ramping Technique. Energy Build. 2022, 267, 112153. [Google Scholar] [CrossRef]
- Wijesuriya, S.; Tabares-Velasco, P.C.; Biswas, K.; Heim, D. Empirical Validation and Comparison of PCM Modeling Algorithms Commonly Used in Building Energy and Hygrothermal Software. Build. Environ. 2020, 173, 106750. [Google Scholar] [CrossRef]
- Sun, V.; Asanakham, A.; Deethayat, T.; Kiatsiriroat, T. A New Method for Evaluating Nominal Operating Cell Temperature (NOCT) of Unglazed Photovoltaic Thermal Module. Energy Rep. 2020, 6, 1029–1042. [Google Scholar] [CrossRef]
Model Typology | FEM Model | Domain | Dimensions (t × h) | COMSOL Layout | |
---|---|---|---|---|---|
Calibration Model | Closed Façade Model | LSC | 0.5 cm × 100 cm | ||
Air Cavity | 9 cm × 100 cm | ||||
Back Panel | 0.3 cm × 100 cm | ||||
Insulating Layer | 5.5 cm × 100 cm | ||||
Hollow Bricks | 12 cm × 100 cm | ||||
Validation Model | Open Façade Model | LSC | 0.5 cm × 100 cm | ||
Air Cavity | 9 cm × 100 cm | ||||
Back Panel | 0.3 cm × 100 cm | ||||
Insulating Layer | 5.5 cm × 100 cm | ||||
Hollow Bricks | 12 cm × 100 cm | ||||
Top Add-on 1 | 9 cm × 50 cm | ||||
Bottom Add-on 1 | 9 cm × 13 cm |
Measured Physical Quantity | Uncertainty |
---|---|
Temperature | ±0.5 °C |
Wind velocity | ±0.5 m/s |
Irradiance | ±20 W/m2 |
Configuration | Daytime | GNI (W/m2) | vwind (m/s) | TLSC (°C) | TAl (°C) | ||||
---|---|---|---|---|---|---|---|---|---|
L | C | R | L | C | R | ||||
Closed Channel 1 | 00:00 | 0 | 1.29 | 21.6 | 21.0 | 21.8 | 25.4 | 24.1 | 25.3 |
06:00 | 94 | 3.84 | 24.7 | 24.9 | 24.6 | 25.4 | 25.5 | 25.5 | |
12:00 | 553 | 1.27 | 47.5 | 47.1 | 47.7 | 51.1 | 51.1 | 51.1 | |
18:00 | 32 | 1.36 | 24.8 | 25.2 | 25.4 | 30.2 | 30.1 | 30.3 | |
Naturally Ventilated Channel 2 | 00:00 | 0 | 0.79 | 17.3 | 17.4 | 17.1 | 20.3 | 20.2 | 20.3 |
06:00 | 60 | 0.24 | 15.0 | 15.8 | 16.2 | 17.3 | 17.1 | 17.2 | |
12:00 | 767 | 0.75 | 51.0 | 51.7 | 51.1 | 46.7 | 46.9 | 46.1 | |
18:00 | 1 | 1.90 | 23.4 | 23.3 | 23.3 | 26.1 | 25.7 | 25.5 |
Mock-Up Component | Physical Parameter | ||
---|---|---|---|
λ (W/(m∙K)) | ρ (kg/m3) | Cp (J/(kg∙K)) | |
LSC | 0.19 | 1180 | 1466 |
Back Panel | 237 | 2700 | 900 |
XPS | 0.037 | 1300 | 80 |
Hollow Bricks | 0.24 | 840 | 500 |
λstart (μm) | λend (μm) | ɛLSC | ɛAl | ɛamb | LSCOpacity | AlOpacity |
---|---|---|---|---|---|---|
0 | 0.38 | 0.90 | 0.06 | 1 | OP | OP |
0.38 | 0.42 | 0.75 | 0.06 | 1 | OP | OP |
0.42 | 0.46 | 0.93 | 0.06 | 1 | OP | OP |
0.46 | 0.5 | 0.83 | 0.06 | 1 | OP | OP |
0.5 | 0.61 | 0.95 | 0.06 | 1 | OP | OP |
0.61 | 2.5 | 0.05 | 0.07 | 1 | TR | OP |
2.5 | 8 | 0.05 | 0.05 | 1 | TR | OP |
8 | 13 | 0.05 | 0.01 | 0.3 | TR | OP |
13 | 25 | 0.05 | 0.01 | 0.9 | TR | OP |
Estimator | Closed Façade Configuration | Open Façade Configuration | ||||||
---|---|---|---|---|---|---|---|---|
LSC | Back | XPS | Bricks | LSC | Back | XPS | Bricks | |
RMSE | 1.4 °C | 0.8 °C | 0.5 °C | 0.4 °C | 1.2 °C | 0.7 °C | 0.3 °C | 0.2 °C |
NMBE | −2.9% | 0.9% | 0.6% | 1.2% | −2.5% | −1.5% | −0.9% | 0.5% |
CV(RMSE) | 4.9% | 2.8% | 1.9% | 1.7% | 4.1% | 2.3% | 1.3% | 0.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangherini, G.; Bernardoni, P.; Baccega, E.; Andreoli, A.; Diolaiti, V.; Vincenzi, D. Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel. Sustainability 2023, 15, 9146. https://doi.org/10.3390/su15129146
Mangherini G, Bernardoni P, Baccega E, Andreoli A, Diolaiti V, Vincenzi D. Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel. Sustainability. 2023; 15(12):9146. https://doi.org/10.3390/su15129146
Chicago/Turabian StyleMangherini, Giulio, Paolo Bernardoni, Eleonora Baccega, Alfredo Andreoli, Valentina Diolaiti, and Donato Vincenzi. 2023. "Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel" Sustainability 15, no. 12: 9146. https://doi.org/10.3390/su15129146
APA StyleMangherini, G., Bernardoni, P., Baccega, E., Andreoli, A., Diolaiti, V., & Vincenzi, D. (2023). Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel. Sustainability, 15(12), 9146. https://doi.org/10.3390/su15129146