Ice Core Methane Analytical Techniques, Chronology and Concentration History Changes: A Review
Abstract
:1. Introduction
2. Ice Core Gas Testing Technology
3. Ice Core Dating
4. Historical Records of CH4 Concentration in Ice Cores and Its Influence Factors
4.1. Antarctic Ice Core
4.2. Greenland Ice Core
4.3. Non-Polar Ice Core
4.4. Alpine Colle Gnifetti Ice Cores
4.5. Dunde Ice Core on the Qinghai-Tibet Plateau
4.6. Dasuopu Ice Core on the Qinghai-Tibet Plateau
4.7. East Rongbuk Ice Core of the Qinghai-Tibet Plateau
5. Current Research Problems
6. Future Prospects
Funding
Conflicts of Interest
References
- Derwent, R.G. Global warming potential (GWP) for methane: Monte Carlo analysis of the uncertainties in global tropospheric model predictions. Atmosphere 2020, 11, 486. [Google Scholar] [CrossRef]
- Prather, M.; Ehhalt, D.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P. Atmospheric Chemistry and Greenhouse Gases; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. IPCC Fourth Assessment Report (AR4). Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Tollefson, J. Scientists raise alarm over’dangerously fast’growth in atmospheric methane. Nature 2022. Available online: https://www.nature.com/articles/d41586-022-00312-2 (accessed on 20 May 2022). [CrossRef]
- Droege, S. The Paris Agreement 2015. Turning Point for the International Climate Regime; Stiftung Wissenschaft und Politik: Berlin, Germany, 2016; Available online: https://www.ssoar.info/ssoar/handle/document/46462 (accessed on 20 May 2022).
- Rasmussen, R.; Khalil, M.; Hoyt, S. Methane and carbon monoxide in snow. J. Air. Pollut. 1982, 32, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.F. Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. Geophys. Res-Atmos. 1992, 97, 3787–3804. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Xin, F.; Zhang, Y.; Qin, Y.; Doughty, R.B.; Moore, B., III. Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 2020, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, D.M.; Steele, L.P.; Francey, R.; Langenfelds, R. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geopehys. Res-Atmos. 1998, 103, 15979–15993. [Google Scholar] [CrossRef]
- Alley, R.B. Reliability of ice-core science: Historical insights. J. Glaciol. 2010, 56, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Schulz, M.; Abe-Ouchi, A.; Beer, J.; Ganopolski, A.; Gonzáles Rouco, J.; Jansen, E.; Lambeck, K.; Luterbacher, J.; Naish, T. Information from Paleoclimate Archives; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Petit, J.-R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Parrenin, F.; Barnola, J.-M.; Beer, J.; Blunier, T.; Castellano, E.; Chappellaz, J.; Dreyfus, G.; Fischer, H.; Fujita, S.; Jouzel, J. The EDC3 chronology for the EPICA Dome C ice core. Clim. Past. 2007, 3, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Loulergue, L.; Schilt, A.; Spahni, R.; Delmotte, V.M.; Blunier, T.; Lemieux, B.; Barnola, J.-M.; Raynaud, D.; Stocker, T.F.; Chappellaz, J. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 2008, 453, 383–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etheridge, D.; Pearman, G.; Fraser, P. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus. B. 1992, 44, 282–294. [Google Scholar] [CrossRef]
- Stauffer, B.; Fischer, G.; Neftel, A.; Oeschger, H. Increase of atmospheric methane recorded in Antarctic ice core. Science 1985, 229, 1386–1388. [Google Scholar] [CrossRef]
- Flückiger, J.; Blunier, T.; Stauffer, B.; Chappellaz, J.; Spahni, R.; Kawamura, K.; Schwander, J.; Stocker, T.F.; Dahl-Jensen, D. N2O and CH4 variations during the last glacial epoch: Insight into global processes. Glob. Biogeochem. Cy. 2004, 18. [Google Scholar] [CrossRef]
- Flückiger, J.; Monnin, E.; Stauffer, B.; Schwander, J.; Stocker, T.F.; Chappellaz, J.; Raynaud, D.; Barnola, J.M. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Glob. Biogeochem. Cy. 2002, 16, 10–11. [Google Scholar] [CrossRef]
- Stauffer, B.; Fluckiger, J.; Monnin, E.; Nakazawa, T.; Aoki, S. Discussion of the reliability of CO2, CH4 and N2O records from polar ice cores. Mem. Natl. Inst. Polar Res. Spec. Issue 2003, 57, 139–152. [Google Scholar]
- Schilt, A.; Baumgartner, M.; Schwander, J.; Buiron, D.; Capron, E.; Chappellaz, J.; Loulergue, L.; Schüpbach, S.; Spahni, R.; Fischer, H. Atmospheric nitrous oxide during the last 140,000 years. Earth Planet Sc. Lett. 2010, 300, 33–43. [Google Scholar] [CrossRef]
- Mitchell, L.; Brook, E.; Lee, J.E.; Buizert, C.; Sowers, T. Constraints on the late Holocene anthropogenic contribution to the atmospheric methane budget. Science 2013, 342, 964–966. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.E.; Brook, E.J.; Sowers, T.; McConnell, J.; Taylor, K. Multidecadal variability of atmospheric methane, 1000–1800 CE. J. Geophys. Res. Biogeosci. 2011, 116, G2. [Google Scholar] [CrossRef]
- Bock, M.; Schmitt, J.; Beck, J.; Seth, B.; Chappellaz, J.; Fischer, H. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proc. Natl. Acad. Sci. USA 2017, 114, E5778–E5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, J.; Bock, M.; Schmitt, J.; Seth, B.; Blunier, T.; Fischer, H. Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget. Biogeosciences 2018, 15, 7155–7175. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, R.H.; Brook, E.J.; Chiang, J.C.H.; Blunier, T.; Maselli, O.J.; Mcconnell, J.R.; Romanini, D.; Severinghaus, J.P. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 2015, 348, 1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, P.R.; Federer, U.; Hutterli, M.A.; Bigler, M.; Schüpbach, S.; Ruth, U.; Schmitt, J.; Stocker, T.F. An improved continuous flow analysis system for high-resolution field measurements on ice cores. Environ. Sci. Technol. 2008, 42, 8044–8050. [Google Scholar] [CrossRef] [PubMed]
- Schlütz, F.; Lehmkuhl, F. Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: Palynological and geomorphological results from the Nianbaoyeze Mountains. Quat. Sci. Rev. 2009, 28, 1449–1471. [Google Scholar] [CrossRef]
- Rhodes, R.H.; Faïn, X.; Stowasser, C.; Blunier, T.; Chappellaz, J.; McConnell, J.R.; Romanini, D.; Mitchell, L.E.; Brook, E.J. Continuous methane measurements from a late Holocene Greenland ice core: Atmospheric and in-situ signals. Earth Planet. Sci. Lett. 2013, 368, 9–19. [Google Scholar] [CrossRef]
- Schmitt, J.; Seth, B.; Bock, M.; Fischer, H. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample. Atmos. Meas. Tech. 2014, 7, 2645–2665. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Edwards, J.S.; Schmitt, J.; Fischer, H.; Bock, M.; Brook, E.J. Excess methane in Greenland ice cores associated with high dust concentrations. Geochim. Cosmochim. Acta 2020, 270, 409–430. [Google Scholar] [CrossRef]
- Schmitt, J.; Lee, J.; Edwards, J.; Brook, E.; Blunier, T.; Mühl, M.; Seth, B.; Beck, J.; Fischer, H. Coupled Artefact Production of Methane, Ethane, and Propane in Polar Ice Cores. In Proceedings of the 22nd EGU General Assembly, Online, 4–8 May 2020; EGU General Assembly Conference Abstracts. p. 3583. [Google Scholar]
- Schmitt, J.; Schneider, R.; Fischer, H. A sublimation technique for high-precision measurements of d13CO2 and mixing ratios of CO2 and N2O from air trapped in ice cores. Atmos. Meas. Tech. 2011, 4, 1445–1461. [Google Scholar] [CrossRef] [Green Version]
- Schmidely, L.; Nehrbass-Ahles, C.; Schmitt, J.; Han, J.; Silva, L.; Shin, J.; Joos, F.; Chappellaz, J.; Fischer, H.; Stocker, T.F. CH4 and N2O fluctuations during the penultimate deglaciation. Clim. Past 2021, 17, 1627–1643. [Google Scholar] [CrossRef]
- Mächler, L.; Baggenstos, D.; Krauss, F.; Schmitt, J.; Bereiter, B.; Walther, R.; Reinhard, C.; Tuzson, B.; Emmenegger, L.; Fischer, H. Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores. Atmos. Meas. Tech. 2023, 16, 355–372. [Google Scholar] [CrossRef]
- Pyne, R.L.; Keller, E.D.; Canessa, S.; Bertler, N.A.; Pyne, A.R.; Mandeno, D.; Vallelonga, P.; Semper, S.; Kjær, H.A.; Hutchinson, E. A novel approach to process brittle ice for continuous flow analysis of stable water isotopes. J. Glaciol. 2018, 64, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Faïn, X.; Chappellaz, J.; Rhodes, R.; Stowasser, C.; Blunie, T.; Mcconnell, J.; Brook, E.; Preunkert, S.; Legrand, M.; Debois, T. High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: Evidence for in situ production. Clim. Past 2014, 10, 987–1000. [Google Scholar] [CrossRef] [Green Version]
- Blunier, T.; Chappellaz, J.; Schwander, J.; Barnola, J.M.; Desperts, T.; Stauffer, B.; Raynaud, D. Atmospheric methane, record from a Greenland ice core over the last 1000 year. Geophys. Res. Lett. 1993, 20, 2219–2222. [Google Scholar] [CrossRef] [Green Version]
- Blunier, T.; Chappellaz, J.; Schwander, J.; Stauffer, B.; Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 1995, 374, 46–49. [Google Scholar] [CrossRef]
- Sowers, T.; Brook, E.; Etheridge, D.; Blunier, T.; Fuchs, A.; Leuenberger, M.; Chappellaz, J.; Barnola, J.M.; Wahlen, M.; Deck, B. An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores. J. Geophys. Res. Ocean. 1997, 102, 26527–26538. [Google Scholar] [CrossRef]
- Chappellaz, J.; Blunier, T.; Kints, S.; Dällenbach, A.; Barnola, J.M.; Schwander, J.; Raynaud, D.; Stauffer, B. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. Atmos. 1997, 102, 15987–15997. [Google Scholar] [CrossRef]
- Spahni, R.; Schwander, J.; Flückiger, J.; Stauffer, B.; Chappellaz, J.; Raynaud, D. The attenuation of fast atmospheric CH4 variations recorded in polar ice cores. Geophys. Res. Lett. 2003, 30, 11. [Google Scholar] [CrossRef] [Green Version]
- Spahni, R.; Chappellaz, J.; Stocker, T.F.; Loulergue, L.; Hausammann, G.; Kawamura, K.; Flückiger, J.; Schwander, J.; Raynaud, D.; Masson-Delmotte, V. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 2005, 310, 1317–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, E.J.; Sowers, T.; Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 1996, 273, 1087–1091. [Google Scholar] [CrossRef]
- Brook, E.J.; Harder, S.; Severinghaus, J.; Steig, E.J.; Sucher, C.M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Glob. Biogeochem. Cy. 2000, 14, 559–572. [Google Scholar] [CrossRef]
- Grachev, A.M.; Brook, E.J.; Severinghaus, J.P. Abrupt changes in atmospheric methane at the MIS 5b–5a transition. Geophys. Res. Lett. 2007, 34, 20. [Google Scholar] [CrossRef]
- Grachev, A.M.; Brook, E.J.; Severinghaus, J.P.; Pisias, N.G. Relative timing and variability of atmospheric methane and GISP2 oxygen isotopes between 68 and 86 ka. Glob. Biogeochem. Cy. 2009, 23, 2. [Google Scholar] [CrossRef]
- Schüpbach, S.; Federer, U.; Kaufmann, P.R.; Hutterli, M.A.; Buiron, D.; Blunier, T.; Fischer, H.; Stocker, T.F. A new method for high-resolution methane measurements on polar ice cores using continuous flow analysis. Environ. Sci. Technol. 2009, 43, 5371–5376. [Google Scholar] [PubMed]
- Stowasser, C.; Buizert, C.; Gkinis, V.; Chappellaz, J.; Schüpbach, S.; Bigler, M.; Fa?N, X.; Sperlich, P.; Baumgartner, M.; Schilt, A. Continuous measurements of methane mixing ratios from ice cores. Atmos. Meas. Tech. 2012, 5, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Chappellaz, J.; Stowasser, C.; Blunier, T.; Baslev-Clausen, D.; Brook, E.J.; Dallmayr, R.; Faien, X.; Lee, J.E.; Mitchell, L.E.; Pascual, O. High-resolution glacial and deglacial record of atmospheric methane by continuous-flow and laser spectrometer analysis along the NEEM ice core. Clim. Past 2013, 9, 2517–2556. [Google Scholar] [CrossRef] [Green Version]
- Sowers, T. Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 2006, 311, 838–840. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, H.; Whiticar, M.J.; Brook, E.J.; Petrenko, V.V.; Ferretti, D.F.; Severinghaus, J.P. Ice record of δ13C for atmospheric CH4 across the Younger Dryas-Preboreal transition. Science 2006, 313, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Behrens, M.; Bock, M.; Richter, U.; Schmitt, J.; Loulergue, L.; Chappellaz, J.; Spahni, R.; Blunier, T.; Leuenberger, M. Changing boreal methane sources and constant biomass burning during the last termination. Nature 2008, 452, 864–867. [Google Scholar] [CrossRef] [Green Version]
- Bock, M.; Schmitt, J.; Möller, L.; Spahni, R.; Blunier, T.; Fischer, H. Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of Dansgaard-Oeschger events. Science 2010, 328, 1686–1689. [Google Scholar] [CrossRef] [Green Version]
- Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H. Improving accuracy and precision of ice core δD (CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation. Atmos. Meas. Tech. 2014, 7, 1999–2012. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Lin, P.-N.; Henderson, K.A.; Cole-Dai, J.; Bolzan, J.F.; Liu, K.-B. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 1995, 269, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Henderson, K.A.; Brecher, H.H.; Zagorodnov, V.S.; Mashiotta, T.A.; Lin, P.-N.; Mikhalenko, V.N.; Hardy, D.R. Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science 2002, 298, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohleber, P.; Erhardt, T.; Spaulding, N.; Hoffmann, H.; Fischer, H.; Mayewski, P. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Clim. Past 2018, 14, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Zhang, W.; Fang, L.; Jenk, T.M.; Wu, S.; Pang, H.; Schwikowski, M. Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene. Cryosphere 2021, 15, 2109–2114. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, W.; Pang, H.; Wu, S.; Jenk, T.M.; Schwikowski, M.; Wang, Y. Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology. Cryosphere 2019, 13, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Jenk, T.M.; Zhang, W.; Wang, C.; Wu, S.; Wang, Y.; Pang, H.; Schwikowski, M. Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere 2018, 12, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Osterberg, E.C.; Mayewski, P.A.; Fisher, D.A.; Kreutz, K.J.; Maasch, K.A.; Sneed, S.B.; Kelsey, E. Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 AD. J. Geophys. Res. Atmos. 2014, 119, 11189–11204. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.; Zagorodnov, V.; Howat, I.; Mikhalenko, V.; Lin, P.-N. Annually resolved ice core records of tropical climate variability over the past~ 1800 years. Science 2013, 340, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Tian, L.; Wu, G.; Naftz, D.; Cai, Z.; Wang, C.; Li, Y.; Palcsu, L. Dating of an alpine ice core from the interior of the Tibetan Plateau. Quat. Int. 2020, 544, 88–95. [Google Scholar] [CrossRef]
- Ritterbusch, F.; Tian, L.; Tong, A.-M.; Gu, J.-Q.; Jiang, W.; Lu, Z.-T.; Shao, L.; Tang, M.-X.; Yang, G.-M.; Zhang, M.-J. A Tibetan ice core covering the past 1,300 years radiometrically dated with 39Ar. Proc. Natl. Acad. Sci. USA 2022, 119, e2200835119. [Google Scholar] [CrossRef] [PubMed]
- Clausen, H.; Gundestrup, N.; Johnsen, S.; Bindschadler, R.; Zwally, J. Glaciological investigations in the crete area, central Greenland: A search for a new deep-drilling site. Ann. Glaciol. 1988, 10, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, J.; Blackwell, P.; Abram, N.; McConnell, J.; Thomas, E.; Wolff, E. Automated ice-core layer-counting with strong univariate signals. Clim. Past 2012, 8, 1869–1879. [Google Scholar] [CrossRef] [Green Version]
- Winstrup, M.; Svensson, A.; Rasmussen, S.; Winther, O.; Steig, E.; Axelrod, A. An automated approach for annual layer counting in ice cores. Clim. Past 2012, 8, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, B.; Ljungqvist, F.C. A millennial summer temperature reconstruction for the eastern Tibetan Plateau from tree-ring width. J. Climate. 2015, 28, 5289–5304. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E.; Brecher, H.; Davis, M.; León, B.; Les, D.; Lin, P.-N.; Mashiotta, T.; Mountain, K. Abrupt tropical climate change: Past and present. Proc. Natl. Acad. Sci. USA 2006, 103, 10536–10543. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Yang, X.; Xu, B.; Zhao, H.; Li, J.; Li, Z.; Wu, G.; Yao, P.; You, C.; Zhu, M. Warming and wetting climate during last century revealed by an ice core in northwest Tibetan Plateau. Palaeogeogr. Palaeocl. 2017, 487, 270–277. [Google Scholar]
- Jenk, T.M.; Szidat, S.; Bolius, D.; Sigl, M.; Gaeggeler, H.W.; Wacker, L.; Ruff, M.; Barbante, C.; Boutron, C.F.; Schwikowski, M. A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. J. Geophys. Res. Atmos. 2009, 114, D14305. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Bolzan, J.; Dai, J.; Klein, L.; Gundestrup, N.; Yao, T.; Wu, X.; Xie, Z. Glacial stage ice-core records from the subtropical Dunde ice cap, China. Ann. Glaciol. 1990, 14, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Hou, S.; Zhang, W.; Wu, S.; Jenk, T.M.; Schwikowski, M.; Jouzel, J. Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7000 years. J. Geophys. Res. Atmos. 2020, 125, 2020JD032560. [Google Scholar] [CrossRef]
- Thompson, L.G.; Tandong, Y.; Davis, M.E.; Mosley-Thompson, E.; Mashiotta, T.A.; Lin, P.-N.; Mikhalenko, V.N.; Zagorodnov, V.S. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau. Ann. Glaciol 2006, 43, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Blunier, T.; Spahni, R.; Barnola, J.M.; Chappellaz, J.; Loulergue, L.; Schwander, J. Synchronization of ice core records via atmospheric gases. Clim. Past 2007, 3, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.G.; Davis, M.E.; Mosley-Thompson, E.; Sowers, T.A.; Henderson, K.A.; Zagorodnov, V.S.; Lin, P.-N.; Mikhalenko, V.N.; Campen, R.K.; Bolzan, J.F. A 25,000-year tropical climate history from Bolivian ice cores. Science 1998, 282, 1858–1864. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, E.; Hoffmann, G.; Taupin, J.-D.; Francou, B.; Ribstein, P.; Caillon, N.; Ferron, F.; Landais, A.; Petit, J.; Pouyaud, B. A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet. Sc. Lett. 2003, 212, 337–350. [Google Scholar] [CrossRef]
- Hong, S.; Lee, K.; Hou, S.; Hur, S.D.; Ren, J.; Burn, L.J.; Rosman, K.J.; Barbante, C.; Boutron, C.F. An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas. Environ. Sci. Technol. 2009, 43, 8060–8065. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, Q.; Zhang, W.; Wu, S.Y.; Song, J.; Liu, K.; Zou, X.; Pang, H.; Yan, M.; Hou, S. δ18O of O2 in a Tibetan ice core constrains its chronology to the Holocene. Geophys. Res. Lett. 2022, 49, e2022GL098368. [Google Scholar] [CrossRef]
- Thompson, L.G.; Severinghaus, J.P.; Yao, T.; Davis, M.E.; Mosley-Thompson, E.; Beaudon, E.; Sierra-Hernández, M.R.; Porter, S.E. Use of δ18Oatm in dating a Tibetan ice core record of Holocene/Late Glacial climate. Proc. Natl. Acad. Sci. USA 2022, 119, e2205545119. [Google Scholar] [CrossRef]
- Buizert, C.; Cuffey, K.M.; Severinghaus, J.P.; Baggenstos, D.; Fudge, T.J.; Steig, E.J.; Markle, B.R.; Winstrup, M.; Rhodes, R.H.; Brook, E.J. The WAIS Divide deep ice core WD2014 chronology–Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Clim. Past 2014, 11, 153–173. [Google Scholar] [CrossRef]
- Delmotte, M.; Chappellaz, J.; Brook, E.; Yiou, P.; Barnola, J.-M.; Goujon, C.; Raynaud, D.; Lipenkov, V. Atmospheric methane during the last four glacial-interglacial cycles: Rapid changes and their link with Antarctic temperature. J. Geophys. Res. Atmos. 2004, 109, D12. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, X.; Wu, H. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Clim. Dynam. 2012, 39, 1073–1092. [Google Scholar] [CrossRef]
- Sun, Y.; Clemens, S.C.; Guo, F.; Liu, X.; Wang, Y.; Yan, Y.; Liang, L. High-sedimentation-rate loess records: A new window into understanding orbital-and millennial-scale monsoon variability. Earth Sci. Rev. 2021, 220, 103731. [Google Scholar] [CrossRef]
- Guo, Z.; Berger, A.; Yin, Q.; Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim. Past 2009, 5, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Wolff, E.W.; Chappellaz, J.; Blunier, T.; Rasmussen, S.O.; Svensson, A. Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev. 2010, 29, 2828–2838. [Google Scholar] [CrossRef]
- Alley, R.B. Ice-core evidence of abrupt climate changes. Proc. Natl. Acad. Sci. USA 2000, 97, 1331–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunier, T.; Chappellaz, J.; Schwander, J.; Dällenbach, A.; Stauffer, B.; Stocker, T.; Raynaud, D.; Jouzel, J.; Clausen, H.; Hammer, C. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 1998, 394, 739–743. [Google Scholar] [CrossRef]
- Steig, E.J.; Brook, E.; White, J.; Sucher, C.; Bender, M.; Lehman, S.; Morse, D.; Waddington, E.; Clow, G. Synchronous climate changes in Antarctica and the North Atlantic. Science 1998, 282, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Lemieux-Dudon, B.; Blayo, E.; Petit, J.-R.; Waelbroeck, C.; Svensson, A.; Ritz, C.; Barnola, J.-M.; Narcisi, B.M.; Parrenin, F. Consistent dating for Antarctic and Greenland ice cores. Quat. Sci. Rev. 2010, 29, 8–20. [Google Scholar] [CrossRef]
- Dällenbach, A.; Blunier, T.; Flückiger, J.; Stauffer, B.; Chappellaz, J.; Raynaud, D. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett. 2000, 27, 1005–1008. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, M.; Schilt, A.; Eicher, O.; Schmitt, J.; Schwander, J.; Spahni, R.; Fischer, H.; Stocker, T. High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences 2012, 9, 3961–3977. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Chappellaz, J.; Raynaud, D.; Masson-Delmotte, V.; Jouzel, J.; Bousquet, P.; Hauglustaine, D. A new Himalayan ice core CH4 record: Possible hints at the preindustrial latitudinal gradient. Clim. Past 2013, 9, 2549–2554. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Yao, T. Enclosure of air in the firn at 7100 m altitude at Dasuopu glacier. J. Glaciol. Geocryol. 1999, 21, 380–384. [Google Scholar]
- Yao, T.; Thompson, L.; Duan, K.; Xu, B.; Wang, N.; Pu, J.; Tian, L.; Sun, W.; Kang, S.; Qin, X. Temperature and methane records over the last 2 ka in Dasuopu ice core. Sci. China Earth Sci. 2002, 45, 1068–1074. [Google Scholar] [CrossRef]
- Hou, S.; Chappellaz, J.; Jouzel, J.; Chu, P.C.; Masson-Delmotte, V.; Qin, D.; Raynaud, D.; Mayewski, P.A.; Lipenkov, V.; Kang, S. Summer temperature trend over the past two millennia using air content in Himalayan ice. Clim. Past 2007, 3, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Campen, R.K.; Sowers, T.; Alley, R.B. Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 2003, 31, 231–234. [Google Scholar] [CrossRef]
- Rohdes, R.A.; Price, P.B.; Bay, R.C.; Bramall, N.E. In situ microbial metabolism as a cause of gas anomalies in ice. Proc. Natl. Acad. Sci. USA 2008, 105, 8667–8672. [Google Scholar] [CrossRef] [Green Version]
- Miteva, V.; Sheridan, P.; Brenchley, J. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl. Environ. Microb. 2004, 70, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Tung, H.; Bramall, N.; Price, P. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci. USA 2005, 102, 18292–18296. [Google Scholar] [CrossRef] [Green Version]
- Fourteau, K.; Faïn, X.; Martinerie, P.; Landais, A.; Ekaykin, A.A.; Lipenkov, V.Y.; Chappellaz, J. Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions. Clim. Past 2017, 13, 1815–1830. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, T.; Sugawara, S.; Kawamura, K.; Oyabu, I.; Andrews, S.J.; Saito, T.; Aoki, S.; Nakazawa, T. Towards reconstructing the Arctic atmospheric methane history over the 20th century: Measurement and modelling results for the North Greenland Ice Core Project firn. Atmos. Chem. Phys. 2022, 22, 6899–6917. [Google Scholar] [CrossRef]
- Bory, A.J.M.; Biscaye, P.E.; Grousset, F.E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 2003, 30, 4. [Google Scholar] [CrossRef]
- R Rhodes, R.H.; Faïn, X.; Brook, E.J.; McConnell, J.R.; Maselli, O.J.; Sigl, M.; Edwards, J.; Buizert, C.; Blunier, T.; Chappellaz, J. Local artifacts in ice core methane records caused by layered bubble trapping and in situ production: A multi-site investigation. Clim. Past 2016, 12, 1061–1077. [Google Scholar] [CrossRef] [Green Version]
Ice Core | Test Object | Institution | Test Method | Instrument | Sample Weight | SD | Resolution | References |
---|---|---|---|---|---|---|---|---|
Greenland Eurocore | CH4 | IGE | melt-refreeze | GC-FID | 40 g | 40 ppb | NA | [38] |
Greenland GRIP | CH4 | IGE | melt-refreeze | GC-FID | 40 g | 37 ppb | NA | [39] |
Greenland GISP2 | CH4 | IGE | melt-refreeze | GC-FID | 12–20 g | 10 ppb | NA | [40] |
Antarctica D47 and Byrd, Greenland GRIP | CH4 | IGE | melt-refreeze | GC-FID | 40–50 g | 20 ppb | NA | [41] |
Antarctica Dome C | CH4 | U-Bern | melt-refreeze | GC-FID | ~40 g | 10 ppb | NA | [19] |
Greenland NGRIP and GRIP | CH4 | U-Bern | melt-refreeze | GC-FID | ~40 g | 10 ppb | NA | [18] |
Greenland NGRIP and GRIP | CH4 | U-Bern | melt-refreeze | GC-FID | ~40 g | 10 ppb | NA | [42] |
Antarctica Dome C | CH4 | IGE&U-Bern | melt-refreeze | GC-FID | 40–50 g | 10 ppb | NA | [43] |
Antarctica Dome C | CH4 | IGE&U-Bern | melt-refreeze | GC-FID | 40–50 g | 10 ppb | NA | [15] |
Antarctica Talos Dome, Greenland NGRIP | CH4 | IGE&U-Bern | melt-refreeze | GC-FID | 40–50 g | 10 ppb | NA | [21] |
Greenland GISP2 | CH4 | OSU | melt-refreeze | GC-FID | 35 g | 15 ppb | NA | [44] |
Greenland GISP2 | CH4 | OSU | melt-refreeze | GC-FID | 35 g | 15 ppb | NA | [45] |
Greenland GISP2 | CH4 | OSU | melt-refreeze | GC-FID | 62 g | ~2 ppb | NA | [46] |
Greenland GISP2 | CH4 | OSU | melt-refreeze | GC-FID | 62 | ~2 ppb | NA | [47] |
Antarctica WAIS | CH4 | OSU | melt-refreeze | GC-FID | 50–63g | 2.8 ppb | NA | [23] |
Antarctica WAIS Divide, Greenland GISP2 | CH4 | OSU | melt-refreeze | GC-FID | 60.5 g | 2.4 ppb | NA | [22] |
Greenland Eurocore | CH4 | U-Bern | crack | GC-FID | 15 g | 28 ppb | NA | [38] |
Greenland GRIP | CH4 | U-Bern | crack | GC-FID | 15 g | 20 ppb | NA | [39] |
Greenland GISP2 | CH4 | U-Bern | crack | GC-FID | 12–20 g | 10 ppb | NA | [40] |
Antarctica WAIS Divide | CH4 | U-Bern | crack | GC-FID | NA | 5 ppb | NA | [10] |
Greenland NEEM | CH4 | U-Bern | melt-activated carbon adsorption | GC-IRMS | ~160 g | NA | NA | [30] |
Antarctica Talos Dome | CH4 | U-Bern | CFA | GC-FID | NA | 15 ppb | 15 cm | [48] |
Greenland NEEM-S1 | CH4 | U-Bern | CFA | WS-CRDS | NA | 8 ppb | 5 cm | [49] |
Greenland NEEM | CH4 | IGE&OSU | CFA& melt-refreeze | OF-CEAS, etc. | NA | 3 ppb | 5 cm | [50] |
Greenland NEEM-S1 | CH4 | IGE&OSU | CFA& melt-refreeze | OF-CEAS | NA | 3 ppb | 5.3 cm | [29] |
Antarctica WAIS Divide | CH4 | IGE&OSU | CFA& melt-refreeze | OF-CEAS | NA | 3 ppb | 5.5 cm | [26] |
Greenland GISP2 | δD-CH4 | PSU | NA | XP-MS | 1.1 kg | 4.2‰ | NA | [51] |
Antarctica Taylor, Greenland GISP2 | δ13CH4 | NIWA | NA | GC-IRMS | 75–100 L | 0.4‰ | NA | [52] |
Antarctica Dome C, Greenland NGRIP | δ13CH4 | U-Bern | NA | GC-IRMS | 150–200 g | 0.15‰ | NA | [53] |
Antarctica Dome C, Greenland NGRIP | δD-CH4 | U-Bern | NA | GC/P/IRMS | 500 g | 3.4‰ | NA | [54] |
Antarctica WAIS Divide, Greenland NGRIP | δD-CH4 | U-Bern | NA | GC/P/IRMS | 500 g | 2.3‰ | NA | [55] |
Antarctica Dome C, Talos Dome etc. | δ13CH4 | U-Bern | infrared radiation melting | GC-IRMS | ~160 g | 0.15‰ | NA | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J. Ice Core Methane Analytical Techniques, Chronology and Concentration History Changes: A Review. Sustainability 2023, 15, 9346. https://doi.org/10.3390/su15129346
Song J. Ice Core Methane Analytical Techniques, Chronology and Concentration History Changes: A Review. Sustainability. 2023; 15(12):9346. https://doi.org/10.3390/su15129346
Chicago/Turabian StyleSong, Jing. 2023. "Ice Core Methane Analytical Techniques, Chronology and Concentration History Changes: A Review" Sustainability 15, no. 12: 9346. https://doi.org/10.3390/su15129346
APA StyleSong, J. (2023). Ice Core Methane Analytical Techniques, Chronology and Concentration History Changes: A Review. Sustainability, 15(12), 9346. https://doi.org/10.3390/su15129346