Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors
Abstract
:1. Introduction
2. Related Work
3. Intelligent Control Scheme of Environmental Factors for C. paliurus Cutting and Breeding
3.1. The Significance of Intelligent Algorithm for Control of Environmental Factors for Cuttings and Raising Seedlings
3.2. Control of Environmental Factors Using MPCNN and LSTM Methods in C. paliurus Cuttings and Seedlings
3.3. The Related Theory of MPCNN and LSTM Algorithm
3.4. Theoretical Derivation of MPCNN and LSTM Algorithms
4. Result Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, M.Y.; Xie, J.H. Review about the research on Cyclocarya paliurus (Batal.) Iljinskaja. J. Food Sci. Biotechnol. 2008, 27, 113–121. [Google Scholar]
- Zhou, M.; Chen, P.; Shang, X.; Yang, W.; Fang, S. Genotype–environment interactions for tree growth and leaf phytochemical content of Cyclocarya paliurus (Batal.) Iljinskaja. Forests 2021, 12, 735. [Google Scholar] [CrossRef]
- Xie, J.H.; Xie, M.Y.; Nie, S.P.; Shen, M.Y.; Wang, Y.X.; Li, C. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem. 2010, 119, 1626–1632. [Google Scholar] [CrossRef]
- eFloras. Cyclocarya paliurus (Batalin) Iljinskaya, Trudy. Bot. Inst. Acad. Nauk. SSSR 1953, 10, 115. [Google Scholar]
- Wang, H.; Tang, C.; Gao, Z.; Huang, Y.; Zhang, B.; Wei, J.; Zhao, L.; Tong, X. Potential role of natural plant medicine Cyclocarya paliurus in the treatment of type 2 diabetes mellitus. J. Diabetes Res. 2021, 2021, 1655336. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Peng, Y.; Zhu, X.; Li, H.; Zhang, L.; Kong, F.; Wang, J.; Yu, D. The phytochemicals and health benefits of Cyclocarya paliurus (Batalin) Iljinskaja. Front. Nutr. 2023, 10, 1158158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, B.; Chen, X.; Mao, X.; Fu, X. Squalene epoxidase (SE) gene related to triterpenoid biosynthesis assists to select elite genotypes in medicinal plant: Cyclocarya paliurus (Batal.) Iljinskaja. Plant Physiol. Biochem. 2023, 199, 107726. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, M.; Shang, X.; Fang, S.; Chen, F. Etiology of Cyclocarya paliurus Anthracnose in Jiangsu Province, China. Front. Plant Sci. 2021, 11, 613499. [Google Scholar] [CrossRef]
- Chen, Y.J.; Na, L.; Fan, J.L.; Zhao, J.P.; Nusrat, H.; Jian, Y.Q. Seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus. Phytochemistry 2018, 145, 85–92. [Google Scholar] [CrossRef]
- Chikawa, E.; Fernandes, A.; Mota, L. Rooting of sweet potato seedlings submitted to supplemental calcium and phosphorus nutrition on substrate. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.H.; Tan, J.; Lv, W.Y.; Li, J.; Wu, J.P.; Xu, J.L.; Zhu, H. Hypoglycemic triterpenoid glycosides from Cyclocarya paliurus (Sweet Tea Tree). Bioorg. Chem. 2020, 95, 103493. [Google Scholar] [CrossRef]
- Nasser, M.; Cardoso, A.; Rós, A.; Mariano-Nasser, F.; Colombari, L. Productivity and quality of sweet potato roots propagated by different sizes of mini cuttings. Sci. Plena 2020, 16, 070204. [Google Scholar]
- Fang, S.; Wang, J.; Wei, Z.; Zhu, Z. Methods to break seed dormancy in Cyclocarya paliurus (Batal) Iljinskaja. Sci. Hort. Amst. 2006, 110, 305–309. [Google Scholar] [CrossRef]
- Li, C.; Wan, Y.; Shang, X.; Fang, S. Responses of microstructure, ultrastructure and antioxidant enzyme activity to PEG-induced drought stress in Cyclocarya paliurus seedlings. Forests 2022, 13, 836. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, J.; Zhang, L.; Jin, H.; Fang, S. Genome-wide identification of bHLH transcription factors and their response to salt stress in Cyclocarya paliurus. Front. Plant Sci. 2023, 14, 1117246. [Google Scholar] [CrossRef]
- Chen, P.; Yang, W.; Minxue, W.; Songheng, J.; Liu, Y. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. Plant Physiol. Biochem. 2021, 167, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Qu, Y.; Wang, S.; Wang, Q.; Shang, X.; Fu, X. An integrative analysis of metabolome and transcriptome reveals the molecular regulatory mechanism of the accumulation of flavonoid glycosides in different Cyclocarya paliurus ploidies. Forests 2023, 14, 770. [Google Scholar] [CrossRef]
- Mo, J.; Tong, Y.; Ma, J.; Wang, K.; Feng, Y.; Wang, L.; Jiang, H.; Jin, C.; Li, J. The mechanism of flavonoids from Cyclocarya paliurus on inhibiting liver cancer based on in vitro experiments and network pharmacology. Front. Pharmacol. 2023, 14, 1049953. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Shen, M.; Huang, R.; Liu, X.; Yu, Y.; Lu, H.; Xie, J. Apoptosis of colon cancer CT-26 cells induced polysaccharide from Cyclocarya paliurus and its phosphorylated derivative via intrinsic mitochondrial passway. Food Sci. Hum. Wellness 2023, 12, 1545–1556. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Lei, G.; Liu, G. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus. Plant Physiol. Biochem. 2019, 135, 111–118. [Google Scholar] [CrossRef]
- Ye, Z.J.; Sun, H.H.; Chen, Z.H.; Wu, J.P.; Li, J.; Zhu, H.; Huang, L.L.; Chang, X.W.; Ou, S.Y.; Wang, W.X.; et al. Four new prenylflavonol glycosides from the leaves of Cyclocarya paliurus. Nat. Prod. Res. 2022, 36, 772–779. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Dangitsis, C. Impact of scion and rootstock seedling quality selection on the vigor of watermelon–interspecific squash grafted seedlings. Agriculture 2020, 10, 326. [Google Scholar] [CrossRef]
- Kakar, M.U.; Naveed, M.; Saeed, M.; Zhao, S.; Rasheed, M.; Firdoos, S. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. Int. J. Biol. Macromol. 2020, 156, 420–429. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Yue, D.J. Production status and technology trend of vegetable seedling industry in China. Agric. Eng. Technol. 2019, 39, 34–38. [Google Scholar]
- Liu, Y.; Chen, P.; Zhou, M.; Wang, T.; Fang, S.; Shang, X. Geographic variation in the chemical composition and antioxidant properties of phenolic compounds from Cyclocarya paliurus (Batal) Iljinskaja leaves. Molecules 2018, 23, 2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.C.; Ji, Y.H.; Wu, Z.H.; He, W.M. Current situation and development trend of vegetable seedling industry in China. China Veg. 2018, 11, 1–7. [Google Scholar]
- Liang, H.; Jiang, K.; Shi, X.; Zhu, J.; Liu, J.; Wang, D.; Ge, M.; Zhou, M.; Shan, F. An experimental study on the effect of cutting angle on the growth of grafted watermelon seedlings using the one-cotyledon grafting method. Agronomy 2023, 13, 250. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, W.; Wang, Y.; Ma, G.; Zhao, H.; Li, P. Chinese herbal medicine and its active compounds in attenuating renal injury via regulating autophagy in diabetic kidney disease. Front. Endocrinol. 2023, 3, 1142805. [Google Scholar] [CrossRef]
- Mohamed, A.; Najafabadi, M.K.; Wah, Y.B. The state of the art and taxonomy of big data analytics: View from new big data framework. Artif. Intell. Rev. 2020, 53, 989–1037. [Google Scholar] [CrossRef]
- Qiu, C.; Huang, Q.; Pan, G.; Xing, H. Multi-path deep learning framework on discrete pressure points to predict velocity field of pump-jet propulsor. Appl. Ocean. Res. 2022, 123, 103173. [Google Scholar] [CrossRef]
- Parwez, M.S.; Rawat, D.B.; Garuba, M. Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network. IEEE Trans. Ind. Inform. 2017, 13, 2058–2065. [Google Scholar] [CrossRef]
- Alarifi, A.; Tolba, A.; Al-Makhadmeh, Z.; Said, W. A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks. J. Supercomput. 2020, 76, 4414–4429. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Fan, C.; Fang, X.; Li, F.; Wu, Y. Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions. J. Build. Eng. 2021, 43, 103182. [Google Scholar] [CrossRef]
- Toharudin, T.; Pontoh, R.S.; Caraka, R.E.; Zahroh, S.; Lee, Y.; Chen, R.C. Employing long short-term memory and Facebook prophet model in air temperature forecasting. Commun. Stat. Simul. Comp. 2023, 52, 279–290. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Shen, L.; Zeng, Z. Memristive quantized neural networks: A novel approach to accelerate deep learning on-Chip. IEEE Trans. Cybern. 2021, 51, 1875–1887. [Google Scholar] [CrossRef]
- Sun, J.B.; Li, X.Q.; Li, S.C.; Wang, X.Y. Design optimization and experiment of four-row potato seedling-cutting machine. Appl. Eng. Agric. 2021, 37, 1155–1167. [Google Scholar] [CrossRef]
- Lee, L.-J.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hort. Amst. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Xu, P.Y.; Zhang, T.; Chen, L.P.; Huang, W.Q. Study on the method of matched splice grafting for melon seedlings based on visual Image. Agriculture 2022, 12, 929. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, Q.; Chen, L.P.; Guo, W.; Zheng, W. Design and optimization on rootstock cutting mechanism of grafting robot for cucurbit. Int. J. Agric. Biol. Eng. 2020, 13, 117–124. [Google Scholar] [CrossRef]
- Fu, X.H.; Shi, J.H.; Huang, Y.; Zhu, E.Z. Design and experiment of full-tray grafting device for grafted melon seedling production. Agriculture 2022, 12, 861. [Google Scholar] [CrossRef]
- Yasodha, R.; Sumathi, R.; Gurumurthi, K. Micropropagation for quality propagule production in plantation forestry. Indian J. Biotechnol. 2004, 3, 159–170. [Google Scholar]
- Sandhya, S.; Jegadeeswari, V.; Shoba, N.; Jeyakumar, P. A preliminary study to check the graft compatibility and success percentage of curry leaf (Murraya koenigii Spreng.). J. Pharmacogn. Phytochem. 2020, 9, 3479–3483. [Google Scholar]
- Hansson, S.; Trouillet, V.; Tischer, T.; Goldmann, A.S.; Carlmark, A.; Barner-Kowollik, C.; Malmström, E. Grafting efficiency of synthetic polymers onto biomaterials: A comparative study of grafting-from versus grafting-to. Biomacromolecules 2013, 14, 64–74. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Li, Y.; Li, X. V-Shaped amphiphilic polymer brushes grafted on cellulose nanocrystals: Synthesis, characterization and properties. J. Phys. Chem. Solids 2021, 154, 110056. [Google Scholar] [CrossRef]
- Bhilare, R.R.; Kanade, N.M.; Ghule, V.S.; Pawar, B.G. Effect of season and polytube cover cap on softwood grafting in lemon (Citrus limon L.) cv. Konkan lemon. J. Pharmacogn. Phytochem. 2018, 7, 2803–2807. [Google Scholar]
- Nazir, F.; Ahmad, T.; Bashir, M.A.; Rafique, R.; Ali, I.; Silvestri, C.; Rugini, E.; Siddiqui, S.U. Validation of in vitro grafting using indigenous wild grapevines as rootstock with commercial scion varieties. Acta Physiol. Plant 2022, 44, 70. [Google Scholar] [CrossRef]
- Pompelli, M.F.; Arrieta, D.V.; Rodríguez, Y.Y.P.; Ramírez, A.M.J.; Bettin, A.M.V.; Avilez, M.A.Q.; Cárcamo, J.A.A.; Castaño, S.G.G.; González, L.M.M.; Cordero, E.D.F.; et al. Can Chlorophyll a fluorescence and photobleaching be a stress signal under abiotic stress in Vigna unguiculata L.? Sustainability 2022, 14, 15503. [Google Scholar] [CrossRef]
- Araki, H.; Hossain, M.A.; Takahashi, T. Waterlogging and hypoxia have permanent effects on wheat root growth and respiration. J. Agron. Crop Sci. 2012, 198, 264–275. [Google Scholar] [CrossRef]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhuang, J.; Tian, Y.; Wan, S.; Ding, S.; Zhang, M.; Fang, S. Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors. Sustainability 2023, 15, 10690. https://doi.org/10.3390/su151310690
Yang W, Zhuang J, Tian Y, Wan S, Ding S, Zhang M, Fang S. Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors. Sustainability. 2023; 15(13):10690. https://doi.org/10.3390/su151310690
Chicago/Turabian StyleYang, Wanxia, Jiaqi Zhuang, Yuan Tian, Shiying Wan, Siyu Ding, Mei Zhang, and Shengzuo Fang. 2023. "Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors" Sustainability 15, no. 13: 10690. https://doi.org/10.3390/su151310690
APA StyleYang, W., Zhuang, J., Tian, Y., Wan, S., Ding, S., Zhang, M., & Fang, S. (2023). Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors. Sustainability, 15(13), 10690. https://doi.org/10.3390/su151310690