Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Soil Analysis
2.3. Experimental Design, Cultural Practices, and Irrigation System
2.4. Collection of the Data
2.4.1. Measurements of Plant’s Morphological Traits
2.4.2. Fresh Fruit Yield, Yield Components, and Water Productivity
2.4.3. Determination of Fruit Quality
2.4.4. Uniformity Coefficient (UC) and Distribution Uniformity (DU) of Exiting Drip System for Tomato Plants
2.5. Statistical Analysis
3. Results
3.1. Effect of Irrigation Regime and Planting Geometry on the Growth of Tomato
3.2. Impact of Different Water Regimes and Planting Geometries on Fresh Yield and Tomato Yield Components
3.3. Effect of Different Watering Regimes and Planting Geometries on Water Use (WU) and Water Productivity (WP)
3.4. Effect of Different Watering Regimes and Planting Geometries on Tomato Fruit Quality
3.5. Uniformity Coefficient of Exiting Drip System for the Tomato Crop
3.6. Distribution Uniformity of Exiting Drip System for Tomato Crop
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naheed, S. An overview of the influence of climate change on food security and human health. Life 2023, 3, 15. [Google Scholar]
- Hamoud, Y.A.; Guo, X.; Wang, Z.; Shaghaleh, H.; Chen, S.; Hassan, A.; Bakour, A. Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China. Agric. Water Manag. 2019, 213, 934–946. [Google Scholar] [CrossRef]
- Attri, M.; Bharti, V.; Ahmad Nesar, N.; Mehta, S.; Bochalya, R.S.; Kumar Bansal, K.; Sandhu, R. Improved irrigation practices for higher agricultural productivity: A review. Int. J. Environ. Clim. Chang. 2022, 12, 51–61. [Google Scholar] [CrossRef]
- Ignaciuk, A.; D’Croz, D.; Islam, S. Better drip than flood: Reaping the benefits of efficient irrigation. EuroChoices 2015, 14, 26–32. [Google Scholar] [CrossRef]
- Payero, O.; Tarkalson, D.; Irmak, S.; Davison, D.; Petersen, L. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agric. Water Manag. 2008, 95, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.K.; Poddar, R.; Pramanik, S.; Gaber, A.; Hossain, A. Crop and water productivity and profitability of broccoli (Brassica oleracea L. var. italica) under gravity drip irrigation with mulching condition in a humid sub-tropical climate. PLoS ONE 2022, 17, e0265439. [Google Scholar] [CrossRef]
- Hamoud, Y.A.; Shaghaleh, H.; Sheteiwy, M.; Guo, X.; Elshaikh, N.A.; Khan, N.U.; Oumarou, A.; Rahim, S.F. Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency. Agric. Water Manag. 2019, 223, 105706. [Google Scholar] [CrossRef]
- Cao, T.; Wang, S.; Chen, B. Water shortage risk transferred through interprovincial trade in Northeast China. Energy Procedia 2019, 158, 3865–3871. [Google Scholar] [CrossRef]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Murad, K.F.I.; Hossain, A.; Fakir, O.A.; Biswas, S.K.; Sarker, K.K.; Rannu, R.P.; Timsina, J. Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh. Agric. Water Manag. 2018, 204, 262–270. [Google Scholar] [CrossRef]
- Çetin, Ö.; Uygan, D. The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return. Agric. Water Manag. 2008, 95, 949–958. [Google Scholar] [CrossRef]
- Gerçek, S.; Demirkaya, M.; Işik, D. Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region. Agric. Water Manag. 2017, 180, 172–177. [Google Scholar] [CrossRef]
- Sinha, B. Hydraulic performance evaluation of drip irrigation system under field condition in Chhattisgarh plain. J. Pharmacogn. Phytochem. 2021, 10, 79–83. [Google Scholar]
- Dutta, D.; Mudi, D.D.; Thentu, T. Effect of irrigation levels and planting geometry on growth, cob yield and water use efficiency of baby corn (Zea mays L.). J. Crop Weed 2015, 11, 105–110. [Google Scholar]
- Jensen, M.E. Beyond irrigation efficiency. Irrig. Sci. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Zhai, Y.; Shao, X.; Xing, W.; Wang, Y.; Hung, T.; Xu, H. Effects of drip irrigation regimes on tomato fruit yield and water use efficiency. J. Food Agric. Environ. 2010, 8, 709–713. [Google Scholar]
- Li, J.; Gao, Y.; Zhang, X.; Tian, P.; Li, J.; Tian, Y. Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality. Agric. Water Manag. 2019, 213, 521–533. [Google Scholar] [CrossRef]
- Badr, M.; Abou-Hussein, S.; El-Tohamy, W. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agric. Water Manag. 2016, 169, 90–97. [Google Scholar] [CrossRef]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of drip irrigation emitter density with various irrigation levels on physiological parameters, root, yield, and quality of cherry tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Chanthini, K.M.-P.; Senthil-Nathan, S.; Pavithra, G.-S.; Asahel, A.-S.; Malarvizhi, P.; Murugan, P.; Deva-Andrews, A.; Sivanesh, H.; Stanley-Raja, V.; Ramasubramanian, R. The Macroalgal Biostimulant Improves the Functional Quality of Tomato Fruits Produced from Plants Grown under Salt Stress. Agriculture 2022, 13, 6. [Google Scholar] [CrossRef]
- Chapagain, A.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef]
- Hamoud, Y.A.; Shaghaleh, H.; Wang, R.; Gouertoumbo, W.F.; Hamad, A.A.A.; Sheteiwy, M.S.; Wang, Z.; Xiangping, G. Wheat Straw Burial Improves Physiological Traits, Yield and Grain Quality of Rice by Regulating Antioxidant System and Nitrogen Assimilation Enzymes under Alternate Wetting and Drying Irrigation. Rice Sci. 2022, 29, 473–488. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, Z.; Guo, X.; Rasool, G.; Zhang, J.; Xie, Y.; Yousef, A.H.; Shao, G. Effects of vertically heterogeneous soil salinity on tomato photosynthesis and related physiological parameters. Sci. Hortic. 2019, 249, 120–130. [Google Scholar] [CrossRef]
- Mwendwa, S. Revisiting soil texture analysis: Practices towards a more accurate Bouyoucos method. Heliyon 2022, 8, e09395. [Google Scholar] [CrossRef] [PubMed]
- Libohova, Z.; Seybold, C.; Adhikari, K.; Wills, S.; Beaudette, D.; Peaslee, S.; Lindbo, D.; Owens, P. The anatomy of uncertainty for soil pH measurements and predictions: Implications for modellers and practitioners. Eur. J. Soil Sci. 2019, 70, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Roper, W.R.; Robarge, W.P.; Osmond, D.L.; Heitman, J.L. Comparing four methods of measuring soil organic matter in North Carolina soils. Soil Sci. Soc. Am. J. 2019, 83, 466–474. [Google Scholar] [CrossRef]
- Beugre, E.Y.-M.; Gnagne, T. Vane geometry for measurement of influent rheological behaviour in dry anaerobic digestion. Renew. Sustain. Energy Rev. 2022, 155, 111928. [Google Scholar] [CrossRef]
- Isaac, W.; Na, A. On-the-go soil nitrogen sensor based on near infrared spectroscopy. In Proceedings of the 2016 International Conference on Information Technology (InCITe)-The Next Generation IT Summit on the Theme-Internet of Things: Connect Your Worlds, Noida, India, 6–7 October 2016; pp. 312–315. [Google Scholar]
- Kamble, D.; Chavan, P.; Jondhale, V. Study of potassium and sodium content of mahad-raigad tertiary soil by flame photometry. Asian J. Res. Chem. 2021, 14, 417–420. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Chen, H.; Han, L. Determination of available phosphorus in alkaline soil by molybdenum blue spectrophotometry. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; p. 052003. [Google Scholar]
- Alda, L.M.; Gogoasa, I.; Bordean, D.-M.; Gergen, I.; Alda, S.; Moldovan, C.; Nita, L. Lycopene content of tomatoes and tomato products. J. Agroaliment. Process. Technol. 2009, 15, 540–542. [Google Scholar]
- Sadeghi, S.H.; Peters, T. Analytical determination of distribution uniformity for microirrigation tapered laterals laid on uphill and horizontal slopes. J. Irrig. Drain. Eng. 2013, 139, 483–489. [Google Scholar] [CrossRef]
- Kara, T.; Ekmekci, E.; Apan, M. Determining the uniformity coefficient and water distribution characteristics of some sprinklers. Pak. J. Biol. Sci. PJBS 2008, 11, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, V.; Ranganathan, C.; Bosu, S. Closure to “Analytical Equation for Variation of Discharge in Drip Irrigation Laterals,” by V. Ravikumar, CR Ranganathan, and S. Santhana Bosu. J. Irrig. Drain. Eng. 2005, 131, 302–303. [Google Scholar] [CrossRef]
- Jamrey, P.; Nigam, G. Performance evaluation of drip irrigation systems. Pharma Innov. J. 2018, 7, 346–348. [Google Scholar]
- Mashandudze, W. A performance evaluation of a one hectare gravity fed drip irrigation system under varying vertical head. Natl. Res. Database Zimb. 2015, 114, 1825. [Google Scholar]
- Hernandez-Espinoza, L.H.; Barrios-Masias, F.H. Physiological and anatomical changes in tomato roots in response to low water stress. Sci. Hortic. 2020, 265, 109208. [Google Scholar] [CrossRef]
- Narolia, R.; Bhunia, S.; Yadav, P. Effect of Irrigation Levels and Plant Growth Regulators on Cucumber (Cucumis sativus L.) under Poly House. Int. J. Plant Soil Sci. 2021, 33, 36–41. [Google Scholar]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Patel, A.; Gohel, T.; Davara, D.; Solanki, M. Effect of drip irrigation and mulching on growth, yield and water use efficiency of rabi pigeon pea (Cajanus cajan L.). Trends Biosci. 2015, 8, 4275–4279. [Google Scholar]
- Attia, M.; Swelam, A.; Sallam, A.; Osman, A. Effect of Irrigation Regimes, Nitrogen, and Mulching Treatments on Water Productivity of Tomato under Drip Irrigation System. Misr J. Agric. Eng. 2019, 36, 861–878. [Google Scholar] [CrossRef]
- Parameshwarareddy, R.; Angadi, S.; Biradar, M.; Patil, R. Water productivity of tomato as influenced by drip irrigation levels and substrates. J. Pharmacogn. Phytochem. 2018, 7, 1343–1346. [Google Scholar]
- Lei, S.; Yunzhou, Q.; Fengchao, J.; Changhai, S.; Chao, Y.; Yuxin, L.; Mengyu, L.; Baodi, D. Physiological mechanism contributing to efficient use of water in field tomato under different irrigation. Plant Soil Environ. 2009, 55, 128. [Google Scholar] [CrossRef] [Green Version]
- Nahar, K.; Ullah, S.M. Drought stress effects on plant water relations, growth, fruit quality and osmotic adjustment of tomato (Solanum lycopersicum) under subtropical condition. Asian J. Agric. Hortic. Res 2018, 1, 1–14. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Wang, Z.; Guo, X.; Liu, M.; Hamoud, Y.A.; Zheng, J.; Qiu, R. Effects of uneven vertical distribution of soil salinity under a buried straw layer on the growth, fruit yield, and fruit quality of tomato plants. Sci. Hortic. 2016, 203, 131–142. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Tarifa, D.F.; Rodríguez, B.C.; Ruiz, B.G.; Sacristán, P.C.; Tavira, S.C.; García-Tejero, I.F. Mango fruit quality improvements in response to water stress: Implications for adaptation under environmental constraints. Hortic. Sci. 2021, 48, 1–11. [Google Scholar] [CrossRef]
- Darko, R.O.; Yuan, S.; Liu, J.; Yan, H.; Zhu, X. Overview of advances in improving uniformity and water use efficiency of sprinkler irrigation. Int. J. Agric. Biol. Eng. 2017, 10, 1–15. [Google Scholar]
- Wallace, D.C.; Young, F.J. Black walnut suitability index: A natural resources conservation service national soil information system based interpretive model. In Proceedings of the 16th Central Hardwood Forest Conference, West Lafayette, IN, USA, 8–9 April 2008; Gen. Tech. Rep. NRS-P-24. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2008; pp. 589–595. [Google Scholar]
- Selvaperumal, A.; Sujitha, E.; Muthuchamy, I. Evaluation of uniformity coefficient and soil moisture distribution under drip irrigation system. Curr. J. Appl. Sci. Technol. 2019, 34, 1–9. [Google Scholar] [CrossRef]
Month | September | October | November | December |
---|---|---|---|---|
Min. temp °C | 22 | 17 | 12 | 8 |
Max. temp °C | 40 | 41 | 40 | 33 |
Max. relative humidity% | 90 | 49 | 8 | 1 |
Min. relative humidity% | 51 | 8 | 1 | 0 |
Solar Rad. MJ m−2 day−1 | 32.9 | 27.1 | 21.9 | 19.51 |
Sunshine (h) | 12 | 11 | 11 | 10 |
Property | Soil | Irrigation Water |
---|---|---|
Clay% | 47.1 | |
Silt% | 9.3 | |
Sand% | 43 | |
Field capacity% | 36.2 | |
Porosity% | 47.8 | |
Plant extractable water% | 12 | |
Permanent wilting point% | 24.2 | |
Bulk density g/m3 | 1.15 | |
Organic matter% | 0.70 | |
CEC cmol/kg | 0.64 | 1.1 |
pH value | 8.2 | 8.3 |
Total nitrogen% | 0.019 | |
Phosphorus g/kg | 2.50 | |
Potassium g k/g | 246 | 0.03 |
Lateral Sections | The Emitter’s Flow Rate of Different Lateral Lines | ||||||||
---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L1 | L2 | L3 | L1 | L2 | L3 | |
Head | 12 | 12 | 12 | 11.97 | 11.99 | 12 | 11.92 | 11.90 | 11.91 |
Middle | 11.95 | 11.96 | 11.95 | 11.94 | 11.93 | 11.92 | 11.91 | 11.89 | 11.9 |
Tail | 11.92 | 11.94 | 11.91 | 11.92 | 11.90 | 11.91 | 11.88 | 11.89 | 11.91 |
Sub-average | 11.96 | 11.97 | 11.95 | 11.94 | 11.94 | 11.94 | 11.90 | 11.89 | 11.91 |
Average | 11.96 | 11.94 | 11.90 |
Water Regime | Lateral Lines | qm (L/h) | qavg | Σ (q − qav)2 | σ | CV | CU | DU |
---|---|---|---|---|---|---|---|---|
I1 | L1 | 11.39 | 11.957 | 0.321 | 0.444 | 0.024 | 95.26 | 0.96 |
L2 | 11.41 | 11.967 | 0.31 | 0.434 | 0.024 | 95.35 | 0.95 | |
L3 | 11.47 | 11.953 | 0.233 | 0.358 | 0.021 | 95.96 | 0.96 | |
Overall | 11.42 | 11.959 | 0.288 | 0.412 | 0.023 | 95.52 | 0.96 | |
I3 | L1 | 11.43 | 11.943 | 0.263 | 0.388 | 0.022 | 95.70 | 0.95 |
L2 | 11.35 | 11.940 | 0.388 | 0.469 | 0.025 | 95.06 | 0.95 | |
L3 | 11.32 | 11.943 | 0.386 | 0.506 | 0.027 | 94.78 | 0.95 | |
Overall | 11.37 | 11.942 | 0.346 | 0.454 | 0.025 | 95.18 | 0.95 | |
I2 | L1 | 11.41 | 11.903 | 0.243 | 0.3680 | 0.021 | 95.86 | 0.95 |
L2 | 11.29 | 11.893 | 0.363 | 0.3015 | 0.026 | 94.93 | 0.95 | |
L3 | 11.31 | 11.907 | 0.356 | 0.2985 | 0.026 | 94.99 | 0.95 | |
Overall | 11.34 | 11.901 | 0.321 | 0.3227 | 0.024 | 95.26 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talpur, M.M.A.; Shaghaleh, H.; Ali Adam Hamad, A.; Chang, T.; Zia-ur-Rehman, M.; Usman, M.; Alhaj Hamoud, Y. Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes. Sustainability 2023, 15, 9526. https://doi.org/10.3390/su15129526
Talpur MMA, Shaghaleh H, Ali Adam Hamad A, Chang T, Zia-ur-Rehman M, Usman M, Alhaj Hamoud Y. Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes. Sustainability. 2023; 15(12):9526. https://doi.org/10.3390/su15129526
Chicago/Turabian StyleTalpur, Mir Moazzam Ali, Hiba Shaghaleh, Amar Ali Adam Hamad, Tingting Chang, Muhammad Zia-ur-Rehman, Muhammad Usman, and Yousef Alhaj Hamoud. 2023. "Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes" Sustainability 15, no. 12: 9526. https://doi.org/10.3390/su15129526
APA StyleTalpur, M. M. A., Shaghaleh, H., Ali Adam Hamad, A., Chang, T., Zia-ur-Rehman, M., Usman, M., & Alhaj Hamoud, Y. (2023). Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes. Sustainability, 15(12), 9526. https://doi.org/10.3390/su15129526