Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Treatments and Methods
2.3. Measurement and Methods
2.3.1. Gas Sample Collection and Determination
2.3.2. Biological Nitrification Inhibitor (BNI) Hydroponics and Application Method
2.3.3. DNA Extraction and Quantitative PCR
2.4. High–Throughput Sequencing and Processing
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Dynamics of Soil N2O Emission Fluxes, Emission Reduction, and Rice Yield Increase in Paddy Fields under Different Treatments
Effect of Different Treatments on the Quality of Rice
3.2. Effects of Different Treatments on Bacterial Abundance and Diversity in Paddy Soils
3.3. Community Composition and Microbial Interactions of NosZ, NirS, and NirK Denitrifying Bacteria
3.4. Changes in Average Relative Abundances of Bacteria in Soil under Different Treatments
3.5. Correlation Analysis of Core Bacteria and N2O Emissions
4. Discussion
4.1. Effect of Biological Nitrification Inhibitors on N2O Emission Flux and Rice Yield Quality in Paddy Soils
4.2. Changes in Community Composition of nosZ−, nirS−, and nirK−type Denitrifying Bacteria
4.3. Effect of Biological Nitrification Inhibitors on Core Bacteria at the Level of Bacterial Genera in Paddy Soil
5. Conclusions
- (1)
- The application of biological nitrification inhibitors not only promoted the yield and quality of rice but also played a critical role in reducing N2O emissions;
- (2)
- Biological nitrification inhibitors affect nosZ, nirS, and nirK bacterial communities related to the nitrogen cycle in paddy soil. Simultaneously, they can stimulate the reproduction of nosZ−type bacteria and inhibit the growth of nirS− and nirK−type bacteria at the same time;
- (3)
- Core bacteria, Nitrosospira, Rhodanobacter, Bradyrhizobium, Tardiphaga, Rhodopseudomonas, and Paracoccus, positively correlated with N2O emission in paddy soil. Core bacteria, Azospirillum, Burkholderia, and Mesorhizobium, negatively correlated with nitrous oxide emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clough, T.J.; Cardenas, L.M.; Friedl, J.; Wolf, B. Nitrous oxide emissions from ruminant urine: Science and mitigation for intensively managed perennial pastures. Curr. Opin. Environ. Sustain. 2020, 47, 21–27. [Google Scholar] [CrossRef]
- Liu, Y.; Haiying, T.; Aamer, M.; Guoqin, H. Emission mechanism and reduction countermeasures of agricultural greenhouse gases—A review. Greenhouse Gas Sci. Technol. 2019, 268, 1–11. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Qu, Z.; Wang, J.; Almøy, T.; Bakken, L.R. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+ N2) product ratio of denitrification, primarily due to acidification of the soils. Glob. Chang.e Biol. 2014, 20, 1685–1698. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, F.; Wunderlin, P.; Udert, K.M.; Wells, G.F. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 2012, 3, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Ju, X.T.; Zhang, Q.; Christie, P.; Zhang, F.S. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences 2011, 8, 3011–3024. [Google Scholar] [CrossRef] [Green Version]
- Aita, C.; Schirmann, J.; Pujol, S.B.; Giacomini, S.J.; Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gonzatto, R.; Giacomini, D.A.; Doneda, A.A. Reducing nitrous oxide emissions from a maize-wheat sequence by decreasing soil nitrate concentration: Effects of split application of pig slurry and dicyandiamide. Eur. J. Soil Sci. 2015, 66, 359–368. [Google Scholar] [CrossRef]
- Wang, D.Y.; Guo, L.P.; Zheng, L.; Zhang, Y.G.; Yang, R.Q.; Li, M.; Ma, F.; Zhang, X.Y.; Li, Y.C. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China. Agric. Water Manag. 2019, 213, 913–921. [Google Scholar] [CrossRef]
- Putnam, A.R. Allelochemicals from plants as herbicides. Weed Technol. 1988, 2, 510–518. [Google Scholar] [CrossRef]
- Bending, G.D.; Lincoln, S.D. Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol. Biochem. 2000, 32, 1261–1269. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.; Weston, L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant. Soil. 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Zakir, H.A.; Subbarao, G.V.; Pearse, S.J.; Gopalakrishnan, S.; Ito, O.; Ishikawa, T.; Kawano, N.; Nakahara, K.; Yoshihashi, T.; Ono, H.; et al. Detection, isolation and characterization of a root-exuded compound, methyl 3- (4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol. 2008, 180, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M.; et al. Scope and strategies for regulation of nitrification in agricultural systems–Challenges and opportunities. Crit. Rev. Plant. Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.C. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 1994, 98, 1–7. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Kishii, M.; Nakahara, k.; Ishikawa, T.; Ban, T.; Tsujimoto, H.; George, T.S.; Berry, W.L.; Hash, C.T.; Ito, O. Biological nitrifi cation inhibition (BNI)–Is there potential for genetic interventions in the Triticeae? Breed. Sci. 2009, 59, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, G.V.; Nakahara, K.; Hurtado, M.P.; Ono, H.; Moreta, D.E.; Salcedo, A.F.; Yoshihashi, A.T.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M.; et al. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Nat. Acad. Sci. USA 2009, 106, 17302–17307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Fan, C.H.; Li, Q.L.; Li, B.; Zhu, Y.Y.; Xiong, Z.Q. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015, 201, 43–50. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Aamer, M.; Shaaban, M.; Hassan, M.U.; Guoqin, H.; Ying, L.; Hai Ying, T.; Rasul, F.; Qiaoying, M.; Zhuanling, L.; Rasheed, A.; et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. J. Environ. Manag. 2020, 255, 109891. [Google Scholar] [CrossRef] [PubMed]
- Pajares, S.; Ramos, R. Processes and microorganisms involved in the marine nitrogen cycle: Knowledge and gaps. Front. Mar. Sci. 2019, 6, 739. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Wang, S.; Ma, B.; Ge, S.; Wang, Z.; Huang, H.; Zhang, J.; Zhang, L. Pathways and organisms involved in ammonia oxidation and nitrous oxide emission. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2213–2296. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- Elder, C.D.; Xu, X.; Walker, J.; Schnell, J.L.; Hinkel, K.M.; Townsend-Small, A.; Arp, C.D.; Pohlman, J.W.; Gaglioti, B.V.; Czimczik, C.I. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 2018, 8, 166–171. [Google Scholar] [CrossRef]
- Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 2006, 72, 5181–5189. [Google Scholar] [CrossRef] [Green Version]
- Throbäck, I.N.; Enwall, K.; Jarvis, Ǻ.; Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.R.; Sant’Anna, S.A.C.; Zaman, M.; Santos, R.C.; Monteiro, R.C.; Alves, B.J.R.; Jantalia, C.P.; Boddey, R.M.; Urquiaga, S. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil. Agric. Ecosyst. Environ. 2017, 247, 54–62. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Liu, T.; Cao, C.; Li, C. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, K.; Song, Y. Biological nitrification inhibitor for reducing N2O and NH3 emissions simultaneously under root zone fertilization in a Chinese rice field. Environ. Pollut. 2020, 264, 114821. [Google Scholar] [CrossRef]
- Juhanson, J.; Hallin, S.; Söderström, M.; Stenberg, M.; Jones, C.M. Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biol. Biochem. 2017, 115, 82–91. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Putz, M.; Spor, A.; Bru, D.; Breuil, M.C.; Hallin, S. Non-denitrifying nitrous oxide-reducing bacteria—An effective N2O sink in soil. Soil Biol. Biochem. 2016, 103, 376–379. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.; Spor, A.; Bru, D.; Bizouard, F.; Leonard, J.; Philippot, L. The diversity of the N2O reducers matters for the N2O: N2 denitrification end-product ratio across an annual and a perennial cropping system. Front. Microbiol. 2015, 6, 971. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.B.; Hou, H.J.; Sheng, R.; Chen, Z.; Zhu, Y.J.; Qin, H.L.; Wei, W.X. Denitrifying communities differentially respond to flooding drying cycles in paddy soils. Appl. Soil Ecol. 2012, 62, 155–162. [Google Scholar] [CrossRef]
- Obando, M.; Correa-Galeote, D.; Castellano-Hinojosa, A.; Gualpa, J.; Hidalgo, A.; Alché, J.D.; Bedmar, E.; Cassán, F. Analysis of the denitrification pathway and greenhouse gases emissions in Bradyrhizobium sp. strains used as biofertilizers in South America. J. Appl. Microbiol. 2019, 127, 739–749. [Google Scholar] [CrossRef]
- Van Den Heuvel, R.N.; Van Der Biezen, E.; Jetten, M.S.M.; Hefting, M.M.; Kartal, B. Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community. Environ. Microbiol. 2010, 12, 3264–3271. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, M.; Ding, K.; Zhou, S. Iron oxides affect denitrifying bacterial communities with the nirS and nirK genes and potential N2O emission rates from paddy soil. Eur. J. Soil Biol. 2019, 93, 103093. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Hu, H.W.; Chen, D.L.; He, J.Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Shen, W.; Nishizawa, T.; Isobe, K.; Guo, Y.; Ying, H.; Senoo, K. Genome sequences of two Azospirillum sp. strains, TSA2S and TSH100, plant growth-promoting rhizobacteria with N2O mitigation abilities. Microbiol. Resour. Ann. 2009, 8, e00459. [Google Scholar] [CrossRef] [Green Version]
- Gao, N.; Zhou, C.W.; Shen, W.S.; Ota, S.; Shiratori, Y.; Nishizawa, T.; Isobe, K.; He, X.H.; Ying, H.J.; Senoo, K. Genome sequence of Novoherbaspirillum sp. UKPF54, a plant growth-promoting rhizobacterial strain with N2O-mitigating abilities, isolated from paddy soil. Microbiol. Resour. Ann. 2020, 9, e00999-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, S.; Ohno, H.; Tsuboi, M.; Otsuka, S.; Senoo, K. Identification and isolation of active N2O reducers in rice paddy soil. ISME J. 2011, 5, 1936–1945. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liu, X.; Zhang, Q. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Sci. Total Environ. 2019, 686, 199–211. [Google Scholar] [CrossRef] [PubMed]
Treatment | Date | N2O Flux//(μg·m−2·h−1) | Yield/(kg ·hm−2) | Increase Rate (%) | Yield–Scaled N2O Emission/(mg·kg−1) | Reduction Percent (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
06–20 | 07–04 | 07–25 | 08–22 | 09–06 | 09–20 | ||||||
CK | 41.75 ± 27.19 | 151.43 ± 53.63 | 53.76 ± 21.43 | 47.38 ± 11.35 | 32.48 ± 10.32 | 15.77 ± 4.73 | 8830 ± 125b | - | 0.1028 ± 0.07a | - | |
SW | 26.38 ± 15.63 | 84.92 ± 23.28 | 37.28 ± 12.92 | 34.72 ± 9.46 | 28.52 ± 12.62 | 12.49 ± 7.30 | 10,194 ± 276a | 15.45 | 0.0598 ± 0.06b | 41.83 |
Treatment | Protein Content/% | Head Milled Rice Rate/% | Brown Rice Rate/% | Chalkiness Degree/% | Chalkiness Rate/% | Amylose Content/% |
---|---|---|---|---|---|---|
CK | 7.38 ± 0.45 a | 72.58 ± 0.14 b | 80.58 ± 0.45 a | 22.53 ± 0.26 a | 27.48 ± 0.24 a | 16.29 ± 0.57 a |
SW | 7.59 ± 0.27 a | 76.93 ± 0.38 a | 76.70 ± 0.82 b | 16.55 ± 0.32 b | 19.79 ± 0.29 b | 15.84 ± 0.39 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zou, Y.; Qiao, C.; Liu, Q.; Liu, J.; Kang, R.; Ren, L.; Wu, W. Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils. Sustainability 2023, 15, 5348. https://doi.org/10.3390/su15065348
Huang X, Zou Y, Qiao C, Liu Q, Liu J, Kang R, Ren L, Wu W. Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils. Sustainability. 2023; 15(6):5348. https://doi.org/10.3390/su15065348
Chicago/Turabian StyleHuang, Xingchen, Yuning Zou, Cece Qiao, Qiumeng Liu, Jingwen Liu, Rui Kang, Lantian Ren, and Wenge Wu. 2023. "Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils" Sustainability 15, no. 6: 5348. https://doi.org/10.3390/su15065348
APA StyleHuang, X., Zou, Y., Qiao, C., Liu, Q., Liu, J., Kang, R., Ren, L., & Wu, W. (2023). Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils. Sustainability, 15(6), 5348. https://doi.org/10.3390/su15065348