An Agent-Based Model for Land-Use Change Adaptation Strategies in the Context of Climate Change and Land Subsidence in the Mekong Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Model
2.1.1. Purpose of the Model
2.1.2. Entities, State Variables, and Scale
2.1.3. Process Overview
2.2. Implementation of the LUCAS–GEMMES Model
2.2.1. Input Data
2.2.2. Provinces and Agro-Ecological Zones
2.2.3. Land Subsidence and Water Demand as per Land Use
2.2.4. Economic Data
2.2.5. Parameters and Indicators
2.3. Submodels
2.3.1. Province Decisions
2.3.2. Decision of the Farming Unit under Constraints of Province Strategies
2.3.3. Economic Submodel: Computation of Income and Loss
3. Results
3.1. Experimental Design
- -
- Map of land uses in 2050 and area of dominant use types;
- -
- Areas vulnerable to climate change and land subsidence;
- -
- Water-use savings in the dry season to fight land subsidence;
- -
- Incomes from different response levels to the effects of subsidence;
- -
- Total economic losses in the agricultural sector due to environmental changes.
3.1.1. Experiment 1: Baseline 1—No Provincial Adaptation Strategies and No Subsidence Impact
3.1.2. Experiment 2: Baseline 2—No Adaptation Strategies Though Subsidence Impacts the Benefits from Land-Use Production
3.1.3. Experiment 3: Individual Adaptation Strategies against the Impact of Subsidence
3.1.4. Experiment 4: Province and Individual Adaptation under the Impact of Subsidence
3.2. Analyzing Land-Use Maps until 2050
3.3. Vulnerability Assessment
3.4. Water Saving to Mitigate Subsidence
3.5. Analyzing Incomes and Losses with Adaptation Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Espagne, E.; Ngo-Duc, T.; Nguyen, M.-H.; Pannier, E.; Woillez, M.-N.; Drogoul, A.; Huynh, T.P.L.; Le, T.T.; Nguyen, T.T.H.; Nguyen, T.T.; et al. Climate Change in Viet Nam, Impacts and Adaptation: A COP26 Assessment Report of the GEMMES Viet Nam Project; Agence Française de Développement: Paris, France, 2021. [Google Scholar]
- Drogoul, A.; Huynh, N.Q.; Truong, Q.C. Coupling Environmental, Social and Economic Models to Understand Land-Use Change Dynamics in the Mekong Delta. Environ. Inform. 2016, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F. Modelling and Monitoring Land-Cover Change Processes in Tropical Regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Truong, Q.C.; Gaudou, B.; Van Danh, M.; Quang Huynh, N.; Drogoul, A.; Taillandier, P. A Land-Use Change Model to Study Climate Change Adaptation Strategies in the Mekong Delta. In Proceedings of the 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), Hanoi, Vietnam, 19–21 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Vu, T.L. Application of GIS to Assess Climate Change Impact and Propose Adaptation Solutions for Agriculture in Ho Chi Minh City. PhD Thesis, Vietnam National University, Ho Chi Minh City, Vietnam, 2021. [Google Scholar]
- Holman, I.P.; Brown, C.; Carter, T.R.; Harrison, P.A.; Rounsevell, M. Improving the Representation of Adaptation in Climate Change Impact Models. Reg. Environ. Change 2019, 19, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bong, B.B.; Bo, N.V.; Son, N.H.; Tung, L.T.; Tu, T.Q.; Toan, T.Q.; Yen, B.T.; Trung, N.D.; Labios, R.V.; Sebastian, L.S. Adaptation Options for Rice-Based Cropping Systems in Climate Risk-Prone Provinces in the Mekong River Delta: An Assessment Report; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2018. [Google Scholar]
- Vetharaniam, I.; Timar, L.; Stanley, C.J.; Müller, K.; van den Dijssel, C.; Clothier, B. Modelling Climate Change Impacts on Location Suitability and Spatial Footprint of Apple and Kiwifruit. Land 2022, 11, 1639. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Middelkoop, H.; Erkens, G.; Stouthamer, E. Groundwater Extraction May Drown Mega-Delta: Projections of Extraction-Induced Subsidence and Elevation of the Mekong Delta for the 21st Century. Environ. Res. Commun. 2020, 2, 011005. [Google Scholar] [CrossRef]
- The Government of Vietnam. Decree No. 167/2018/ND-CP on Restriction on Groundwater Extraction; No. 167/2018/ND-CP; The Government of Vietnam: Hanoi, Vietnam, 2018.
- MONRE. Circular No. 47/2017/TT-BTNMT on Supervision of Extraction and Use of Water Resources; Circular no. 47/2017/TT-BTNMT; Ministry of Natural Resources and Environment of Vietnam: Hanoi, Vietnam, 2017.
- Bosomworth, K.; Harwood, A.; Leith, P.; Wallis, P. Adaptation Pathways: A Playbook for Developing Options for Climate Change Adaptation in Natural Resource Management; Southern Slopes Climate Change Adaptation Research Partnership (SCARP): Melbourne, Australia, 2015. [Google Scholar]
- Haasnoot, M.; Brown, S.; Scussolini, P.; Jimenez, J.A.; Vafeidis, A.T.; Nicholls, R.J. Generic Adaptation Pathways for Coastal Archetypes under Uncertain Sea-Level Rise. Environ. Res. Commun. 2019, 1, 071006. [Google Scholar] [CrossRef]
- Truong, Q.C.; Nguyen, T.H.; Tatsumi, K.; Pham, V.T.; Tri, V.P.D. A Land-Use Change Model to Support Land-Use Planning in the Mekong Delta (MEKOLUC). Land 2022, 11, 297. [Google Scholar] [CrossRef]
- Çağlıyan, A.; Dağlı, D. Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey. Sustainability 2022, 14, 9180. [Google Scholar] [CrossRef]
- Taillandier, P.; Banos, A.; Drogoul, A.; Gaudou, B.; Marilleau, N.; Truong, Q.C. Simulating Urban Growth with Raster and Vector Models: A Case Study for the City of Can Tho, Vietnam. In Autonomous Agents and Multiagent Systems; Osman, N., Sierra, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 10003, pp. 154–171. ISBN 978-3-319-46839-6. [Google Scholar]
- Truong, Q.C.; Taillandier, P.; Gaudou, B.; Vo, M.Q.; Nguyen, T.H.; Drogoul, A. Exploring Agent Architectures for Farmer Behavior in Land-Use Change. A Case Study in Coastal Area of the Vietnamese Mekong Delta. In Multi-Agent Based Simulation XVI; Gaudou, B., Sichman, J.S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 146–158. ISBN 978-3-319-31446-4. [Google Scholar]
- Truong, Q.C.; Gaudou, B.; Taillandier, P.; Drogoul, A.; Espagne, E.; Huynh, N.Q.; Nguyen, T.H.; Pham, T.T.N.; Nguyen, T.H. Adaptation Strategies in the Mekong Delta. In Climate Change in Viet Nam Impacts and Adaptation; Espagne, E., Ed.; A COP26 assessment report of the GEMMES Viet Nam project; Agence Française de Développement: Paris, France, 2021. [Google Scholar]
- Bonabeau, E. Agent-Based Modeling: Methods and Techniques for Simulating Human Systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7280–7287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espagne, E.; Nguyen, T.T.H.; Tran, T.A.D.; Rieber, A.; Hoai, D.T.T.; Mania, E.; Simioni, M.; Sempé, G.; Yen Ha, B. The Macroeconomics of Climate Change and Adaptation in Viet Nam. In Climate Change in Viet Nam Impacts and Adaptation; Espagne, E., Ed.; A COP26 assessment report of the GEMMES Viet Nam project; Agence Française de Développement: Paris, France, 2021. [Google Scholar]
- Eslami, S.; Hoekstra, P.; Minderhoud, P.S.J.; Trung, N.N.; Hoch, J.M.; Sutanudjaja, E.H.; Dung, D.D.; Tho, T.Q.; Voepel, H.E.; Woillez, M.-N.; et al. Projections of Salt Intrusion in a Mega-Delta under Climatic and Anthropogenic Stressors. Commun. Earth Environ. 2021, 2, 142. [Google Scholar] [CrossRef]
- Tran Anh, Q.; Ngo-Duc, T.; Espagne, E. Statistical Downscaling and Probabilistic Projections for Climate Risk Analysis in Viet Nam. In National Climate Change Impacts and Adaptation, Final Report GEMMES Viet Nam Project; Espagne, E., Magacho, G., Eds.; Final Report; Agence Française de Développement: Paris, France, 2022. [Google Scholar]
- TCVN 8641-2011; Vietnam Standard TCVN 8641-2011 on Hydraulic Structures—Irrigation and Drainage Techniques for Provisions Crops. Ministry of Science and Technology: Hanoi, Vietnam, 2011.
- Vượng, N.Đ.; Thạch, Q.Đ. Assessment of saving watering model and recommendations suitable irrigation methods for green asparagus in Ninh Thuan province. J. Sci. Technol. Irrig. 2019, 59, 71–80. [Google Scholar]
- ATESO. Table of Water Requirements of Fruit Trees. 2018. Available online: https://ateso.vn/bang-nhu-cau-ve-luong-nuoc-cua-cac-loai-cay-an-trai/ (accessed on 21 July 2022).
- Nguyen, H.T.; Nguyen, H.T.; Truong, C.Q.; Pham, T.V.; Phan, H.V.; Vuong, T.H.; Dang, K. Son Application of Optimization Algorithm and Allocation of Agricultural Land Use in the Mekong Delta. Vietnam Soil Sci. 2019, 57, 97–102. [Google Scholar]
- Nguyen, T.H. Analyzing the Relationship between Socio-Economic-Environmental Factors for Building an Integrated System Supporting Agricultural Land Use Planning—A Case Study in Soc Trang Province. Ph.D. Thesis, Can Tho University, Can Tho, Vietnam, 2021. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Allen, R.G., Ed.; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000; ISBN 978-92-5-104219-9. [Google Scholar]
- The Government of Vietnam. Resolution 120/NQ-CP on Sustainable and Climate-Resilient Development of the Mekong River Delta; No. 120/NQ-CP; The Government of Vietnam: Hanoi, Vietnam, 2017.
- The Prime Minister of Vietnam Approving the Master Program for Sustainable Agricultural Development with Climate Change in the Mekong Delta until 2030, with a Vision to 2045; The Prime Minister’s Decision No. 324/QDD-TTg; The Government of Vietnam: Hanoi, Vietnam, 2020.
- Thanh Vu, P.; Trang Hoang Nhu, N.; Tuan Huy, V.; Quang Tri, L. Determination of Socio-Economic and Environment Factors Affected to the Selection of Farming Models in the Bac Lieu Province. J. Sci. Can. Tho Univ. 2013, 27, 68–75. [Google Scholar]
- FAO. A Framework for Land Evaluation, 2nd ed.; Soil Resources, Management and Conservation Service Edition; FAO Soils Bulletin; FAO: Rome, Italy, 1981; ISBN 92-5-100111-1. [Google Scholar]
- Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.-N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, Composing and Experimenting Complex Spatial Models with the GAMA Platform. GeoInformatica 2019, 23, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Maire, J.; Alexander, P.; Anthoni, P.; Huntingford, C.; Pugh, T.A.M.; Rabin, S.; Rounsevell, M.; Arneth, A. A New Modelling Approach to Adaptation-Mitigation in the Land System. In Climate Adaptation Modelling; Kondrup, C., Mercogliano, P., Bosello, F., Mysiak, J., Scoccimarro, E., Rizzo, A., Ebrey, R., de Ruiter, M., Jeuken, A., Watkiss, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 133–140. [Google Scholar]
- Williams, P.A.; Ng’ang’a, S.K.; Crespo, O.; Abu, M. Cost and Benefit Analysis of Adopting Climate Adaptation Practices among Smallholders: The Case of Five Selected Practices in Ghana. Clim. Serv. 2020, 20, 100198. [Google Scholar] [CrossRef]
- Abadie, L.M.; Sainz de Murieta, E.; Galarraga, I. The Costs of Sea-Level Rise: Coastal Adaptation Investments vs. Inaction in Iberian Coastal Cities. Water 2020, 12, 1220. [Google Scholar] [CrossRef]
Land Use | Volume (m3/ha/Season) | Reference |
---|---|---|
3 rice crops | 7500 | Water needed for winter–spring (3 months in the dry season) according to Vietnam Standard 8641-2011 [23] |
Vegetables | 4658 | The water volume of green asparagus 4658 m3/ha/season (80 days) [24] |
Fruit trees (pomelo, mango, longan, etc.) | 13,200 | 100 L/6-year-old tree × 10 times/month × 6 months × 2000 trees/ha (losses compensation 10%) [25] |
Parameter | Explanation |
---|---|
WProfit | The weight of profitability criteria |
WSuitability | The weight of suitability criteria |
WLU_ability | The weight of agriculture technical convertibility criteria |
Winfluence_neigbors | The weight of the influence index of neighbors |
Tolerance temperature for rice | The maximum temperature rice tolerates |
Tolerance precipitation for rice | The minimum precipitation rice tolerates |
Tolerance temperature for shrimp | The maximum temperature shrimp tolerates |
Tolerance precipitation for shrimp | The maximum rainfall sensitivity for shrimp |
Subsidence threshold | The subsidence level at which provinces and individual farmers decide to apply adaptation or mitigation strategies |
Adaptation Strategy | AEZ Name | Subsidence Level Applied | Land-Use Strategy | |||||
---|---|---|---|---|---|---|---|---|
3 Rice Crops | 2 Rice Crops | Vegetables | Shrimp | Fruit Trees | Rice-Shrimp | |||
Living with floods | Upstream zone | Not affected (subsidence level < thresholdAEZ) | S | S | S | N | N | N |
Optimizing farmer income | Middle zone | S | S | S | N | S | N | |
Living with salt water | Coastal zone | N | S | S | S | S | S | |
Living with floods; protecting groundwater | Upstream zone | Subsidence level > thresholdAEZ | N | S | N | N | N | N |
Optimizing income; protecting groundwater | Middle zone | N | S | N | N | N | N | |
Living with salt water; protecting groundwater | Coastal zone | N | S | N | S | N | S |
Experiment | Three Rice Crops (ha) | Two Rice Crops (ha) | Rice-Shrimp (ha) | Aquaculture (ha) | Vegetable (ha) | Fruit Trees (ha) |
---|---|---|---|---|---|---|
EXP1 | 640,425 | 687,875 | - | 799,475 | 70,050 | 800,425 |
EXP2 | 635,500 | 686,750 | - | 799,475 | 69,775 | 806,750 |
EXP3 | 778,050 | 872,425 | - | 755,175 | 118,550 | 474,050 |
EXP4—0.1 m | 544,125 | 1,166,150 | - | 781,950 | 83,200 | 422,825 |
EXP4—0.2 m | 705,000 | 984,900 | - | 775,875 | 103,850 | 428,625 |
EXP4—0.5 m | 745,525 | 912,700 | - | 760,775 | 127,900 | 451,350 |
EXP4—1.0 m | 745,725 | 907,575 | - | 755,625 | 131,350 | 457,975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, Q.C.; Drogoul, A.; Gaudou, B.; Taillandier, P.; Huynh, N.Q.; Nguyen, T.H.; Minderhoud, P.; Nguyen Thi Thu, H.; Espagne, E. An Agent-Based Model for Land-Use Change Adaptation Strategies in the Context of Climate Change and Land Subsidence in the Mekong Delta. Sustainability 2023, 15, 5355. https://doi.org/10.3390/su15065355
Truong QC, Drogoul A, Gaudou B, Taillandier P, Huynh NQ, Nguyen TH, Minderhoud P, Nguyen Thi Thu H, Espagne E. An Agent-Based Model for Land-Use Change Adaptation Strategies in the Context of Climate Change and Land Subsidence in the Mekong Delta. Sustainability. 2023; 15(6):5355. https://doi.org/10.3390/su15065355
Chicago/Turabian StyleTruong, Quang Chi, Alexis Drogoul, Benoit Gaudou, Patrick Taillandier, Nghi Quang Huynh, Thao Hong Nguyen, Philip Minderhoud, Ha Nguyen Thi Thu, and Etienne Espagne. 2023. "An Agent-Based Model for Land-Use Change Adaptation Strategies in the Context of Climate Change and Land Subsidence in the Mekong Delta" Sustainability 15, no. 6: 5355. https://doi.org/10.3390/su15065355
APA StyleTruong, Q. C., Drogoul, A., Gaudou, B., Taillandier, P., Huynh, N. Q., Nguyen, T. H., Minderhoud, P., Nguyen Thi Thu, H., & Espagne, E. (2023). An Agent-Based Model for Land-Use Change Adaptation Strategies in the Context of Climate Change and Land Subsidence in the Mekong Delta. Sustainability, 15(6), 5355. https://doi.org/10.3390/su15065355