Study on the Influence Mechanism and Adjustment Path of Climate Risk on China’s High-Quality Economic Development
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
3. Research Methodology
3.1. Model Selection
3.1.1. Reference Regression Model
3.1.2. Panel Threshold Model
3.1.3. Models with Moderated Mediating Effects
3.2. Variable Selection
3.2.1. Primary Variable
3.2.2. Explained Variable
3.2.3. Explanatory Variable
3.2.4. Control Variable
3.2.5. Threshold Variable
3.2.6. Mediating Variables and Moderating Variables
3.3. Data Source
4. Empirical Analysis
4.1. The Impact of Climate Risk on High-Quality Economic Development in China
4.1.1. Development Trend Analysis
4.1.2. Baseline Regression Result
4.1.3. Endogeneity Test
4.1.4. Robustness Test
4.2. Test of Threshold Effect
4.3. Mediation Effect Analysis
4.3.1. Regression Results of Mediating Effect
4.3.2. The Moderating Effect of Green Innovation Input
4.3.3. The Moderating Effect of Green Innovation Output
5. Discussion, Conclusions, and Implications
5.1. Discussion
5.2. Conclusions
5.3. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, Y.; Lai, L. Effects and Mechanisms of China’s Pilot Free Trade Zones on Green and High-Quality Development from the Dual-Circulation Perspective. Sustainability 2023, 15, 947. [Google Scholar] [CrossRef]
- Fu, Y.; Zhuang, H.; Zhang, X. Do environmental target constraints of local government affect high-quality economic development? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 56620–56640. [Google Scholar] [CrossRef]
- Wang, C.-H.; Chen, H.; Jiang, Z.-Y.; Zhang, X.-X. Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects. Energy 2023, 263, 125735. [Google Scholar] [CrossRef]
- Kim, J.-S.; Jain, S. Precipitation trends over the Korean peninsula: Typhoon-induced changes and a typology for characterizing climate-related risk. Environ. Res. Lett. 2011, 6, 034033. [Google Scholar] [CrossRef]
- Bogmans, C.; Kiyasseh, L.; Matsumoto, A.; Pescatori, A. Energy, Efficiency Gains and Economic Development: When Will Global. Energy Demand Saturate. IMF Work. Pap. 2020, 20, 253. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Y. The strategic process and role transformation of climate change in China: From preventing “black swan” disasters to confronting “gray rhinoceros” risks. China Popul. Resour. Environ. 2018, 28, 1–8. [Google Scholar]
- Sun, C.; Zhang, Q. Climate Change, Government Capacity and Dynasty Rise and Fall: An Empirical Study Based on the historical experience of China in 2000 years. Econ. Q. Rev. 2019, 18, 311–336. [Google Scholar] [CrossRef]
- Peng, W.; Yin, Y.; Kuang, C.; Wen, Z.; Kuang, J. Spatial spillover effect of green innovation on economic development quality in China: Evidence from a panel data of 270 prefecture-level and above cities. Sustain. Cities Soc. 2021, 69, 102863. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, S. Migration mechanism, current situation and countermeasures of climate migration from the perspective of climate risk. China Population. Resour. Environ. 2012, 22, 45–50. [Google Scholar]
- Dominguez, C.; Jaramillo, A.; Cuéllar, P. Are the socioeconomic impacts associated with tropical cyclones in Mexico exacerbated by local vulnerability and ENSO conditions? Int. J. Clim. 2020, 41, E3307–E3324. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Q. Impacts of climate risk on Agricultural economic development in China: Heterogeneity and Mechanism Analysis. Financ. Res. 2022, 11, 111–131. [Google Scholar]
- Liu, Q.; Fan, W.; Zhang, W.; Wang, Y. Financing mechanism and China’s role in global climate public goods supply. China Population. Resour. Environ. 2018, 28, 8–16. [Google Scholar]
- Jianu, I. A comprehensive view on the manifestations of aggregate demand and aggregate supply shocks in Greece, Ireland, Italy and Portugal. Theor. Appl. Econ. 2016, XXIII, 207–224. [Google Scholar]
- Yun, J.J.; Mohan, A.V.; Zhao, X.; Dey, A.; Gupta, A.; Singh, G. Open Innovation at Different Levels for Higher Climate Risk Resilience. Science. Technol. Soc. 2017, 22, 388–406. [Google Scholar] [CrossRef]
- Weryński, P. Resentment Barriers to Innovation Development of Small and Medium Enterprises in Upper Silesia. Sustainability 2022, 14, 15687. [Google Scholar] [CrossRef]
- Liu, X. Analysis of Hebei’s Development Path in the Coordinated Development of Beijing, Tianjin and Hebei. Acad. J. Bus. Manag. 2022, 4, 41–46. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.; Zhang, Y.; Wang, J. The temporal and spatial patterns and contributing factors of green development in the Chinese service industry. Front. Environ. Sci. 2022, 10, 126–131. [Google Scholar] [CrossRef]
- Hunter, A. Making Open Development Inclusive: Lessons from IDRC Research. Can. J. Commun. 2021, 46, 389–391. [Google Scholar] [CrossRef]
- Yan, C. The Generation Mechanism of Relational Rules Consciousness Under the Concept of Shared Development. Soc. Sci. 2022, 11, 126. [Google Scholar] [CrossRef]
- Lin, B. China’s High-Quality Economic Growth in the Process of Carbon Neutrality. China Financ. Econ. Rev. 2022, 11, 3–22. [Google Scholar] [CrossRef]
- Campello, T.; Pedro, H.; Gonçalves, D.A.; de Mendes, A.; Collaço, F.; dos Lopes Santos, K.; Canil, K.; de Cabral, S.J.W.; Jacobi, P.R. Vulnerability of the São Paulo Macro Metropolis to Droughts and Natural Disasters: Local to Regional Climate Risk Assessments and Policy Responses. Sustainability 2020, 13, 114. [Google Scholar] [CrossRef]
- Wei, J.T.; Khan, S. Climate risk, natural resources, and climate change mitigation options in BRICS: Implications for green recovery. Environ. Sci. Pollut. Res. 2023, 30, 29015–29028. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shu, Z.; Wang, G.; Peng, T.; Lin, Q.; Zhou, J. Spatial and temporal evolution of multi-scale meteorological drought in the Hanjiang River Basin from 1961 to 2018. Resour. Environ. Yangtze Basin 2021, 30, 1649–1658. [Google Scholar]
- Fang, X.; Jin, D. Research on green innovation benefits of GEM listed companies. Econ. Res. J. 2020, 55, 106–123. [Google Scholar]
- Zhang, W.; Xu, F.; Wang, X. How Green Transformational Leadership Affects Green Creativity: Creative Process Engagement as Intermediary Bond and Green Innovation Strategy as Boundary Spanner. Sustainability 2020, 12, 3841. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.; Parkhi, C.M. Climate Risk and Technology Adoption in the Midstream of Crop Value Chains: Evidence from Nigerian Maize Traders. J. Agric. Econ. 2020, 72, 158–179. [Google Scholar] [CrossRef]
- Yu, S.; Hu, X.; Yang, J. Housing prices and carbon emissions: A dynamic panel threshold model of 60 Chinese cities. Appl. Econ. Lett. 2020, 28, 170–185. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, B.; Zhang, R. Study on the influence of digital economy on carbon emission intensity under the background of double carbon: Based on the moderated mediation effect test. Mod. Manag. Sci. 2022, 138–147. [Google Scholar]
- Zhang, N.; Sun, J.; Tang, Y.; Zhang, J.; Boamah, V.; Tang, D.; Zhang, X. How Do Green Finance and Green Technology Innovation Impact the Yangtze River Economic Belt’s Industrial Structure Upgrading in China? A Moderated Mediation Effect Model Based on Provincial Panel Data. Sustainability 2023, 15, 2289. [Google Scholar] [CrossRef]
- Sun, H.; Gui, H.; Yang, D. China’s provincial economy in the development of high quality measure and evaluation. J. Zhejiang Acad. Soc. Sci. 2020, 36, 14+4–155. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Zhang, Y. Economic and environmental influences of resource tax: Firm-level evidence from China. Resour. Policy 2022, 77, 102751. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Y.; Zou, H. Non-linear effects of heterogeneous environmental regulations on industrial relocation: Do compliance costs work? J. Environ. Manag. 2022, 323, 116188. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Wei, D.; Su, W.; Lu, J. Association between Regional Digitalization and High-Quality Economic Development. Sustainability 2023, 15, 1909. [Google Scholar] [CrossRef]
- Wratten, E.E.; Cooley, S.W.; Mann, P.J.; Whalen, D.; Fraser, P.; Lim, M. Physiographic Controls on Landfast Ice Variability from 20 Years of Maximum Extents across the Northwest Canadian Arctic. Remote Sens. 2022, 14, 2175. [Google Scholar] [CrossRef]
- Gupta, R.; Nel, J.; Salisu, A.A.; Ji, Q. Predictability of economic slowdowns in advanced countries over eight centuries: The role of climate risks. Finance Res. Lett. 2023, 54, 103795. [Google Scholar] [CrossRef]
- Liu, G.; Duan, Y.; Liu, Y. Economic policy uncertainty, asset reversibility and fixed asset investment. Econ. Res. J. 2019, 54, 53–70. [Google Scholar]
- Mu, G.; Hou, M.; Guo, C.; Zhang, Y. On the Chinese Modernization with huge population Scale: Opportunities, advantages, Risks and Challenges. J. China Agric. Univ. Soc. Sci. Ed. 2023, 40, 5–22. [Google Scholar] [CrossRef]
- Zheng, J.; Jing, J. Based on skill bias the decomposition of economic growth momentum of technological progress. J. South. Econ. 2023, 28–48. [Google Scholar] [CrossRef]
- Li, D.; Zhao, X.; Ke, J. Fiscal adjustment and change of industrial structure and economic growth. J. Jianghuai BBS 2022, 71–79. [Google Scholar] [CrossRef]
- Zhao, Y. Factor Allocation Promoting Common Prosperity?—Based on the perspective of land urbanization and urban-rural income gap. J. Yun-Nan Univ. Financ. Econ. 2022, 38, 22–41. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Sun, Y.; Bai, Y.; Wang, S. Analysis and forecast of China’s Import and export situation in 2021. Proc. Chin. Acad. Sci. 2021, 36, 47–53. [Google Scholar] [CrossRef]
- Benedict, S.J. The effects of hierarchy, centralization and formalization on municipal fiscal health: An empirical test of the bureaucratic ideal. Public Adm. 2017, 95, 791–806. [Google Scholar] [CrossRef]
- Losso, A.; Challis, A.; Gauthey, A.; Nolan, R.H.; Hislop, S.; Roff, A.; Boer, M.M.; Jiang, M.; Medlyn, B.E.; Choat, B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci. Rep. 2022, 12, 21608. [Google Scholar] [CrossRef]
- Wang, Y.G.; Li, X. Promoting or inhibiting: The impact of government R&D subsidies on corporate green innovation performance. China Ind. Econ. 2023, 419, 131–149. [Google Scholar] [CrossRef]
- Ahmed, R.R.; Akbar, W.; Aijaz, M.; Channar, Z.A.; Ahmed, F.; Parmar, V. The role of green innovation on environ-mental and organizational performance: Moderation of human resource practices and management commitment. Heliyon 2023, 9, e12679. [Google Scholar] [CrossRef]
- Stamatios, N.; Michalis, S.; Grigorios, K.; Garyfallos, A.; Miltiadis, C.; Spyros, G.; Athanasios, B.; Apostolia, K. Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability 2018, 10, 2626. [Google Scholar] [CrossRef] [Green Version]
- Smionescu, M.; Păuna, C.B.; Diaconescu, T. Renewable Energy and Economic Performance in the Context of the European Green Deal. Energies 2020, 13, 6440. [Google Scholar] [CrossRef]
- Kose, N.; Bekun, F.V.; Alola, A.A. Criticality of sustainable research and development-led growth in EU: The role of renewable and non-renewable energy. Environ. Sci. Pollut. Res. Int. 2020, 27, 12683–12691. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.R.; Bahadori, Y. Urban Sustainability and Climate Issues: The Effect of Physical Parameters of Streetscape on the Thermal Comfort in Urban Public Spaces; Case Study: Karimkhan-e-Zand Street, Shiraz, Iran. Sustainability 2021, 13, 886. [Google Scholar] [CrossRef]
- Ryzhkov, A.F.; Bogatova, T.F.; Maslennikov, G.E.; Osipov, P.V.; Nizov, V.A. Creation of energy-efficient and environmentally friendly energy sources on fossil fuels to address global climate issues. J. Phys. Conf. Ser. 2020, 1677, 012115. [Google Scholar] [CrossRef]
First-Order Index | Secondary Index | Three-Level Index | Function | Specific Meaning |
---|---|---|---|---|
Economic high quality | Innovative development | GDP growth rate | + | Regional GDP growth rate |
Intensity of R&D investment | + | R&D expenditure/GDP of industrial enterprises above designated size | ||
Investment efficiency | − | Investment rate/GDP growth rate | ||
Technology trading activity | + | Technology transaction volume/GDP | ||
Coordinated development | Demand structure | + | Total retail sales of consumer goods/GDP | |
Urban–rural structure | + | Urbanization rate | ||
Industrial structure | + | Tertiary industry output value/GDP | ||
Government debt burden | − | Government debt balance per GDP | ||
Green development | Elasticity coefficient of energy consumption | − | Energy consumption growth rate/GDP growth rate | |
Wastewater per unit of output | − | Wastewater discharge per GDP | ||
Unit of exhaust gas produced | − | Sulfur dioxide emissions per GDP | ||
Open development | Foreign trade dependence | + | Total imports and exports/GDP | |
Proportion of foreign investment | + | Total foreign investment/GDP | ||
Degree of marketization | + | Regional marketization index | ||
Shared development | Proportion of workers’ remuneration | + | Wages per GDP | |
Elasticity of personal income growth | + | Per capita disposable income growth rate/GDP growth rate | ||
Urban–rural consumption gap | − | Per capita consumption expenditure of urban residents/per capita consumption expenditure of rural residents | ||
Share of private fiscal expenditure | + | The proportion of local expenditure on education, medical and health care, housing security, social and employment in local budget expenditure |
Variable | Obs | Mean | Std | Min | Max |
---|---|---|---|---|---|
HED | 403 | 0.2922 | 0.1298 | 0.1190 | 0.7860 |
SMT | 403 | 0.3174 | 1.0258 | −2.3377 | 2.5698 |
SMP | 403 | 0.2973 | 0.9736 | −2.1188 | 2.6699 |
ID | 403 | 0.1343 | 0.1176 | 0.0163 | 0.8366 |
CD | 403 | 0.4337 | 0.1354 | 0.1978 | 0.9150 |
GD | 403 | 0.7526 | 0.0842 | 0.3839 | 0.9851 |
OD | 403 | 0.1664 | 0.1379 | 0.0096 | 0.6367 |
SD | 403 | 0.5377 | 0.1085 | 0.1412 | 0.8333 |
Drought | 403 | 0.3846 | 0.5464 | 0.0002 | 4.256 |
Flood | 403 | 0.3226 | 0.4486 | 0.0001 | 3.2797 |
GII | 403 | 0.1036 | 0.0437 | 0.0455 | 0.7246 |
GIO | 403 | 0.1046 | 0.0394 | 0.0404 | 0.4825 |
CFIL | 403 | 1.6785 | 1.3403 | 0.0378 | 6.6299 |
PS | 403 | 44.4599 | 28.7511 | 2.9580 | 129.2410 |
LOTP | 403 | 4.7737 | 5.9998 | 0.0115 | 34.7990 |
SOI | 403 | 0.4103 | 0.0830 | 0.1486 | 0.6196 |
Urban | 403 | 25.0624 | 16.8865 | 0.6806 | 93.4361 |
TIAEV | 403 | 17.3394 | 1.6418 | 12.5447 | 20.9995 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
L−HED | 0.8339 *** | ||||||
(27.68) | |||||||
CR | −0.0115 *** | −0.0066 * | −0.0023 ** | −0.0015 ** | −0.0034 ** | −0.0159 *** | −0.0070 ** |
(−2.89) | (−1.79) | (−2.04) | (−2.25) | (−2.03) | (−3.72) | (−2.07) | |
CFIL | −3.1724 *** | −3.1424 *** | −3.4524 | −3.0324 ** | −5.1424 | −2.0824 *** | −3.6324 *** |
(−5.76) | (−6.32) | (−1.14) | (−2.23) | (−0.46) | (−6.05) | (−6.66) | |
PS | −0.0029 *** | −0.0028 *** | −0.0005 | −0.0023 ** | −0.0051 *** | −0.0033 *** | −0.0029 *** |
(−5.28) | (−5.05) | (−1.59) | (−2.05) | (−3.06) | (−5.43) | (−5.27) | |
LOTP | 1.3024 *** | 1.2924 *** | 1.5124 * | 2.2424 *** | 1.124 *** | 1.1824 *** | 1.2824 *** |
(12.19) | (11.06) | (1.94) | (6.84) | (5.36) | (11.18) | (12.06) | |
SOI | −0.2604 *** | −0.2433 *** | −0.0356 | −0.2259 ** | −0.4617 *** | −0.2694 *** | −0.2331 *** |
(−4.93) | (−4.68) | (−1.17) | (−2.42) | (−4.87) | (−4.80) | (−4.43) | |
Urban | 0.0030 ** | 0.0028 ** | 0.0007 | 0.0005 | 0.0057 * | 0.0024 * | 0.0031 ** |
(2.30) | (2.39) | (0.96) | (0.20) | (1.67) | (1.81) | (2.37) | |
TIAEV | 0.0383 *** | 0.0397 *** | 0.0068 *** | −0.2031 ** | 0.0336 *** | 0.0409 *** | 0.0393 *** |
(12.20) | (12.65) | (3.33) | (−2.59) | (6.73) | (11.72) | (12.2) | |
Fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 403 | 372 | 372 | 124 | 124 | 322 | 403 |
R2 | 0.7361 | 0.7330 | 0.9156 | 0.7921 | 0.7746 | 0.7610 | 0.7320 |
Sargan tests of the p-value | 0.665 | 0.998 |
Threshold Variable | Threshold Type | F Value | p Value | Critical Value | Threshold Estimate | 95% Confidence Interval |
---|---|---|---|---|---|---|
ID | Single | 16.82 | 0.017 | 1% | 0.6467 | [0.6338, 0.6708] |
CD | Single | 22.20 | 0.000 | 1% | 0.7643 | [0.6890, 0.7823] |
GD | Single | 14.47 | 0.030 | 1% | 0.8683 | [0.8607, 0.8683] |
OD | Single | 26.62 | 0.007 | 1% | 0.3957 | [0.3885, 0.3998] |
Double | 16.61 | 0.017 | 1% | 0.4771 | [0.4552, 0.5145] | |
SD | Single | 4.54 | 0.353 | 10% | 0.4066 | [0.4024, 0.4081] |
Variable | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
CR | −1.2024 ** | −1.3624 *** | −1.1624 ** | −1.2924 ** | −1.1524 ** |
(−2.34) | (−2.76) | (−2.26) | (−2.60) | (−2.19) | |
PS | −0.0028 * | −0.0029 ** | −0.0024 * | −0.0042 *** | −0.0024 * |
(−1.95) | (−2.04) | (−1.67) | (−2.86) | (−1.66) | |
LOTP | 2.2224 * | 2.8424 ** | 1.8724 * | 2.2824 ** | 6.4124 |
(1.90) | (2.38) | (1.61) | (2.05) | (0.57) | |
SOI | −0.1686 *** | −0.1823 *** | −0.1929 *** | −0.1777 *** | −0.1654 *** |
(−3.06) | (−3.34) | (−3.48) | (−3.28) | (−2.84) | |
Urban | 0.0030 ** | 0.0025 * | 0.0028 ** | 0.0033 ** | 0.0039 *** |
(2.15) | (1.83) | (2.03) | (2.39) | (2.74) | |
TIAEV | 0.0366 *** | 0.0390 *** | 0.0364 *** | 0.0374 *** | 0.0343 *** |
(6.57) | (6.97) | (6.51) | (6.82) | (6.09) | |
Interval one | −0.0710 *** | −0.0380 *** | −0.0570 *** | −0.0405 *** | |
(−4.28) | (−5.05) | (−4.02) | (−5.45) | ||
Interval two | −0.0034 *** | −0.0022 *** | −0.0039 *** | −0.0039 *** | |
(−2.94) | (−2.89) | (−2.99) | (−3.97) | ||
Interval three | 0.0020 *** | ||||
(3.43) | |||||
N | 403 | 403 | 403 | 403 | 403 |
R2 | 0.5935 | 0.5983 | 0.6259 | 0.4806 | 0.6168 |
(1) HED | (2) Drought | (3) HED | (4) HED | (5) Flood | (6) HED | (7) HED | (8) HED | |
---|---|---|---|---|---|---|---|---|
CR | −0.0115 *** | 8.0850 * | −0.0116 *** | 6.8822 * | −0.0117 *** | −0.0126 *** | ||
(−2.89) | (1.45) | (−2.78) | (1.90) | (−2.94) | (−2.85) | |||
Drought | −1.5224 ** | −1.3124 ** | −1.3624 ** | |||||
(−2.87) | (−2.30) | (−2.17) | ||||||
Flood | −0.1010 ** | −0.1110 ** | −0.1201 * | |||||
(−1.97) | (−2.20) | (−1.74) | ||||||
Control variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 403 | 403 | 403 | 403 | 403 | 403 | 403 | 403 |
R2 | 0.7361 | 0.1209 | 0.7296 | 0.7361 | 0.1808 | 0.7303 | 0.7373 | 0.7393 |
(1) HED | (2) Drought | (3) Flood | (4) HED | (5) HED | |
---|---|---|---|---|---|
CR | −0.0266 ** | 5.0125 * | 20.2939 * | ||
(−2.18) | (1.70) | (1.76) | |||
GII | 0.2599 ** | −10.2220 * | −137.8084 *** | 0.2784 * | 0.2270 * |
(2.41) | (−1.91) | (−2.83) | (1.75) | (1.69) | |
Drought | 0.1580 | ||||
(0.75) | |||||
Flood | −0.2560 * | ||||
(−1.76) | |||||
GII × CR | 0.1431 ** | −27.4222 ** | −129.3860 ** | ||
(2.24) | (2.03) | (−1.79) | |||
GII × Drought | −0.1754 ** | ||||
(−2.00) | |||||
GII × Flood | −0.2291 ** | ||||
(2.12) | |||||
Control variable | Yes | Yes | Yes | Yes | Yes |
Fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 403 | 403 | 403 | 403 | 403 |
R2 | 0.7434 | 0.1209 | 0.2031 | 0.7364 | 0.7365 |
(1) HED | (2) Drought | (3) Flood | (4) HED | (5) HED | |
---|---|---|---|---|---|
CR | −0.0176 * | 8.9097 * | 5.39684 * | ||
(−1.53) | (1.79) | (1.68) | |||
GIO | 0.2743 ** | −21.14262 * | −157.1551 *** | 0.3545 ** | 0.2751 ** |
(2.08) | (−1.89) | (−2.77) | (2.16) | (2.00) | |
Drought | 0.3810 * | ||||
(1.66) | |||||
Flood | −0.1570 * | ||||
(−1.73) | |||||
GIO × CR | 0.0610 ** | −13.5510 ** | −68.4120 ** | ||
(2.56) | (−2.02) | (−2.00) | |||
GIO × Drought | −0.1149 ** | ||||
(−2.05) | |||||
GIO × Flood | −0.1130 ** | ||||
(2.58) | |||||
Control variable | Yes | Yes | Yes | Yes | Yes |
Fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 403 | 403 | 403 | 403 | 403 |
R2 | 0.7422 | 0.1211 | 0.2003 | 0.7380 | 0.7365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Sun, F. Study on the Influence Mechanism and Adjustment Path of Climate Risk on China’s High-Quality Economic Development. Sustainability 2023, 15, 9773. https://doi.org/10.3390/su15129773
Zhao J, Sun F. Study on the Influence Mechanism and Adjustment Path of Climate Risk on China’s High-Quality Economic Development. Sustainability. 2023; 15(12):9773. https://doi.org/10.3390/su15129773
Chicago/Turabian StyleZhao, Jingfeng, and Fan Sun. 2023. "Study on the Influence Mechanism and Adjustment Path of Climate Risk on China’s High-Quality Economic Development" Sustainability 15, no. 12: 9773. https://doi.org/10.3390/su15129773
APA StyleZhao, J., & Sun, F. (2023). Study on the Influence Mechanism and Adjustment Path of Climate Risk on China’s High-Quality Economic Development. Sustainability, 15(12), 9773. https://doi.org/10.3390/su15129773