Analysis of Supply–Demand Relationship of Cooling Capacity of Blue–Green Landscape under the Direction of Mitigating Urban Heat Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Overall Workflow
2.3.2. Acquisition of LST and SHUIs
2.3.3. Selection of Optimal Mesh Size
2.3.4. Quantitative Evaluation of CESL and CEDL
- (1)
- Construction of the CESL evaluation system
- (2)
- Construction of the CEDL evaluation system
- (3)
- Indicator processing and weight calculation
2.3.5. The Analysis of the Relationship between the CESL and CEDL
2.3.6. Cooling Efficiency Analysis of UBGLs
3. Results
3.1. Best Mosaic Size
3.2. Spatial Distribution and Variation of SUHIs and UBGLs
3.3. Spatial Distribution and Variation in the CESL, CEDL, and CCD
3.3.1. Coupling Relationship between the CESL and CEDL
3.3.2. Spatiotemporal Dynamic Evolution of CCD
4. Discussion
4.1. Quantitative Evaluation of the CESL and CEDL
4.2. The Improvement in the Cooling Efficiency Enlightens UBGL Planning
4.3. Limitations and Prospects
5. Conclusions
- (1)
- According to the unitary linear regression calculation, the matching of the CESL and CEDL of Qunli New Town showed obvious polarization, and the regions with high supply and low demand and low supply and high demand were mostly similar, which resulted in the lowest slope line of fitting among the four case areas. The results of Jiangbei New Town, Hanan New Town, and the old town were more balanced than those of Qunli New Town;
- (2)
- It can be seen from the spatiotemporal dynamic evolution of the CCD that the percentages in the regions of advanced cooling capacity, balanced system development, and lagging cooling capacity were 48.2%, 24.1%, and 27.8%, respectively. The proportion of moderate-coordination-advancing cooling efficient areas was the highest, reaching 35.3%. Secondly, the moderate-imbalance-hysteretic cooling efficient areas represented 18.4%, the moderate-imbalance-systematic balanced development areas were 13.7%, and the moderate-coordination-systematic balanced development areas were 10%. In terms of spatial distribution, the old town showed different levels of balanced development for supply and demand. From the coordination types of the old town, most areas were developed with a systematic balanced development approach. What merits special notice is that, with the old city highly coordinated area as the core area, the coupling coordination type gradually turned outward into a state of serious imbalance, and then back into a state of high coordination;
- (3)
- The extremely unbalanced areas with low supply and high demand were accompanied by a high population density and socioeconomic level, which are the main reasons for low cooling efficiencies. Therefore, the construction intensity of such areas should be controlled, the coverage of UBGLs should be emphasized, and the population size should be managed. Other major reasons for low cooling efficiency are the extremely disordered areas of high supply and low demand, high coverage rates of UBGLs, and extremely low population densities. Therefore, the degree of utilization for cooling capacities in such areas should be emphasized. In addition, the ecological corridor constructions of UBGL cooling capacity flows can be considered, and these can enter the urban area through the energy transportation of cooling capacities from other areas, which can be achieved with a macro perspective of the city.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ. Res. Lett. 2016, 11, 124027. [Google Scholar] [CrossRef]
- Porto, T.R.; de Figueiredo Lopes Lucena, A.E.; de Moraes, T.M.R.P.; de Medeiros Melo Neto, O.; Costa, D.B.; De Sousa Carvalho, F.D.S.; Torres, P.R.B. The use of iron oxide in asphalt mixtures to reduce the effects of urban heat islands. Case Stud. Constr. Mater. 2023, 18, e01709. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafo, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef]
- Budhiraja, B.; Gawuc, L.; Agrawal, G. Seasonality of Surface Urban Heat Island in Delhi City Region Measured by Local Climate Zones and Conventional Indicators. IEEE J.-STARS 2019, 12, 5223–5232. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban heat island effects of various urban morphologies under regional climate conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef]
- Chapman, E.J.; Small, G.E.; Shrestha, P. Investigating potential hydrological ecosystem services in urban gardens through soil amendment experiments and hydrologic models. Urban Ecosyst. 2022, 25, 867–878. [Google Scholar] [CrossRef]
- Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; De Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, K.E.; Iglesias Rey, P.L.; et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water 2020, 12, 1049. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Mohan, M.; Bhati, S. Industrial heat island mitigation in Angul-Talcher region of India: Evaluation using modified WRF-Single Urban Canopy Model. Sci. Total Environ. 2023, 858, 159949. [Google Scholar] [CrossRef]
- Zhang, H.; Han, J.-J.; Zhou, R.; Zhao, A.-L.; Zhao, X.; Kang, M.-Y. Quantifying the relationship between land parcel design attributes and intra-urban surface heat island effect via the estimated sensible heat flux. Urban Clim. 2022, 41, 101030. [Google Scholar] [CrossRef]
- Xue, J.; Zong, L.; Yang, Y.; Bi, X.; Zhang, Y.; Zhao, M. Diurnal and interannual variations of canopy urban heat island (CUHI) effects over a mountain–valley city with a semi-arid climate. Urban Clim. 2023, 48, 101425. [Google Scholar] [CrossRef]
- Da Silva Espinoza, N.; Dos Santos, C.A.C.; De Oliveira, M.B.L.; Silva, M.T.; Santos, C.A.G.; Silva, R.M.D.; Mishra, M.; Ferreira, R.R. Assessment of urban heat islands and thermal discomfort in the Amazonia biome in Brazil: A case study of Manaus city. Build. Environ. 2023, 227, 109772. [Google Scholar] [CrossRef]
- Reder, A.; Rianna, G.; Mercogliano, P.; Castellari, S. Parametric investigation of Urban Heat Island dynamics through TEB 1D model for a case study: Assessment of adaptation measures. Sustain. Cities Soc. 2018, 39, 662–673. [Google Scholar] [CrossRef]
- Akaraci, S.; Feng, X.; Suesse, T.; Jalaludin, B.; Astell-Burt, T. A Systematic Review and Meta-Analysis of Associations between Green and Blue Spaces and Birth Outcomes. Int. J. Environ. Res. Public. Health 2020, 17, 2989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Lin, C.; Duan, X.; Jin, Z.; Zhang, L. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing metropolitan area, China. Sustain. Cities Soc. 2019, 50, 101637. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Zhang, X.; Zhao, D.; Liu, H.; Zhou, C.; Wang, R. Urban ecological infrastructure: An integrated network for ecosystem services and sustainable urban systems. J. Clean. Prod. 2017, 163, S12–S18. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef] [PubMed]
- Tuofu, H.; Qingyun, H.; Dongxiao, Y.; Xiao, O. Evaluating the Impact of Urban Blue Space Accessibility on Housing Price: A Spatial Quantile Regression Approach Applied in Changsha, China. Front. Environ. Sci. 2021, 9, 696626. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jorgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Shen, Z.-J.; Zhang, B.-H.; Xin, R.-H.; Liu, J.Y. Examining supply and demand of cooling effect of blue and green spaces in mitigating urban heat island effects: A case study of the Fujian Delta urban agglomeration (FDUA), China. Ecol. Indic. 2022, 142, 109187. [Google Scholar] [CrossRef]
- Wang, J.; Qian, Y.; Pringle, W.; Chakraborty, T.C.; Hetland, R.; Yang, Z.; Xue, P. Contrasting effects of lake breeze and urbanization on heat stress in Chicago metropolitan area. Urban. Clim. 2023, 48, 101429. [Google Scholar] [CrossRef]
- Cruz, J.A.; Blanco, A.C.; Garcia, J.J.; Santos, J.A.; Moscoso, A.D. Evaluation of the cooling effect of green and blue spaces on urban microclimate through numerical simulation: A case study of Iloilo River Esplanade, Philippines. Sustain. Cities Soc. 2021, 74, 103184. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Xu, D.; Rogora, A. Correlation between cooling effect of green space and surrounding urban spatial form: Evidence from 36 urban green spaces. Build. Environ. 2022, 222, 109375. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, Q. The Estimation of a Remote Sensing Model of Three-Dimensional Green Space Quantity and Research into Its Cooling Effect in Hohhot, China. Land 2022, 11, 1437. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, H.; Chen, M.; Wang, Q. Socioeconomic disparities in cooling and warming efficiencies of urban vegetation and impervious surfaces. Sustain. Cities Soc. 2023, 92, 104464. [Google Scholar] [CrossRef]
- Li, Y.; Xia, M.; Ma, Q.; Zhou, R.; Liu, D.; Huang, L. Identifying the Influencing Factors of Cooling Effect of Urban Blue Infrastructure Using the Geodetector Model. Remote Sens. 2022, 14, 5495. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa. Sustain. Cities Soc. 2022, 80, 103798. [Google Scholar] [CrossRef]
- Song, J.; Lu, Y.; Zhao, Q.; Zhang, Y.; Yang, X.; Chen, Q.; Guo, Y.; Hu, K. Effect modifications of green space and blue space on heat-mortality association in Hong Kong, 2008–2017. Sci. Total Environ. 2022, 838, 156127. [Google Scholar] [CrossRef] [PubMed]
- Sunita Kumar, D.; Shekhar, S. Spatial distribution analysis of urban blue-green spaces for mitigating excessive heat with earth observation systems. Environ. Chall. 2021, 5, 100390. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The roles of landscape both inside the park and the surroundings in park cooling effect. Sustain. Cities Soc. 2020, 52, 101964. [Google Scholar] [CrossRef]
- Han, D.; Xu, X.; Qiao, Z.; Wang, F.; Cai, H.; An, H.; Jia, K.; Liu, Y.; Sun, Z.; Wang, S.; et al. The roles of surrounding 2D/3D landscapes in park cooling effect: Analysis from extreme hot and normal weather perspectives. Build. Environ. 2023, 231, 110053. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Wang, C.; Cavan, G.; James, P. A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban. For. Urban Green. 2014, 13, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Pradhan, L.; Kumari, M.; Bhattacharya, P. Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban. Clim. 2021, 35, 100751. [Google Scholar] [CrossRef]
- Bekele, N.K.; Hailu, B.T.; Suryabhagavan, K.V. Spatial patterns of urban blue-green landscapes on land surface temperature: A case of Addis Ababa, Ethiopia. Curr. Res. Environ. Sustain. 2022, 4, 100146. [Google Scholar] [CrossRef]
- Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Lin, L.; Lin, L.; Liu, J. The Influence of Green Space Patterns on Land Surface Temperature in Different Seasons: A Case Study of Fuzhou City, China. Remote Sens. 2021, 13, 5114. [Google Scholar] [CrossRef]
- Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study on Hangzhou. Urban. For. Urban Green. 2020, 53, 126719. [Google Scholar] [CrossRef]
- Xue, X.; He, T.; Xu, L.; Tong, C.; Ye, Y.; Liu, H.; Xu, D.; Zheng, X. Quantifying the spatial pattern of urban heat islands and the associated cooling effect of blue-green landscapes using multisource remote sensing data. Sci. Total Environ. 2022, 843, 156829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, F.; Chen, D.; Tan, M.L.; Chan, N.W. Urban local surface temperature prediction using the urban gray-green space landscape and vegetation indices. Build. Environ. 2022, 226, 109723. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Wu, T. An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landsc. Urban Plan. 2022, 225, 104449. [Google Scholar] [CrossRef]
- Shui, T.; Liu, J.; Xiao, Y.; Shi, L. Effects of snow cover on urban surface energy exchange: Observations in Harbin, China during the winter season. Int. J. Climatol. 2018, 39, 1230–1242. [Google Scholar] [CrossRef]
- Huang, M.; Cui, P.; He, X. Study of the Cooling effects of urban green space in Harbin in terms of reducing the heat island effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Y. Study of the Relationships between the Spatial Extent of Surface Urban Heat Islands and Urban Characteristic Factors Based on Landsat ETM+ Data. Sensors 2008, 8, 7453–7468. [Google Scholar] [CrossRef]
- Deng, X.; Gao, F.; Liao, S.; Liu, Y.; Chen, W. Spatiotemporal evolution patterns of urban heat island and its relationship with urbanization in Guangdong-Hong Kong-Macao greater bay area of China from 2000 to 2020. Ecol. Indic. 2023, 146, 109817. [Google Scholar] [CrossRef]
- Yang, J.; Bou-Zeid, E. Scale dependence of the benefits and efficiency of green and cool roofs. Landsc. Urban Plan. 2019, 185, 127–140. [Google Scholar] [CrossRef]
- Foissard, X.; Dubreuil, V.; Quenol, H. Defining scales of the land use effect to map the urban heat island in a mid-size European city: Rennes (France). Urban Clim. 2019, 29, 100490. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F.; Wang, G. Effects of Spatial Pattern of Forest Vegetation on Urban Cooling in a Compact Megacity. Forests 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Niu, D.; Qiu, J.; Wu, M.; Wang, P.; Qian, W.; Jin, X. Comprehensive Evaluation of Coordination Development for Regional Power Grid and Renewable Energy Power Supply Based on Improved Matter Element Extension and TOPSIS Method for Sustainability. Sustainability 2016, 8, 143. [Google Scholar] [CrossRef] [Green Version]
SUHII Degree | Grading Basis |
---|---|
Extreme SUHI area (5) | SUHII > μ + STD |
SUHI area (4) | μ + 0.5 STD < SUHII ≤ μ + STD |
Medium-temperature area (3) | μ − 0.5 STD < SUHII ≤ μ + 0.5 STD |
Weak SUCI area (2) | μ − STD < SUHII ≤ μ − 0.5 STD |
SUCI area (1) | SUHII ≤ μ − STD |
Landscape Pattern Index | Formula | Definition |
---|---|---|
Patch density (PD) | The number of landscape patches per unit area | |
Landscape shape index (LSI) | The shape index of landscape patches | |
Mean patch area (AREA_MN) | The average value of patch area of a certain type of landscape | |
Patch cohesion index (COHESION) | Physical connectivity of the same type of plaque | |
Euclidean nearest neighbor index (ENN_MN) | The dispersion degree of patch distance of the same type | |
Aggregation index (AI) | The degree of landscape patches gathered and connected |
Type | Landscape Pattern Index | 2001 | 2007 | 2015 | 2021 |
---|---|---|---|---|---|
UGL | PD | −0.020 | −0.048 | −0.035 | 0.030 |
LSI | 0.187 ** | −0.001 | −0.006 | 0.432 ** | |
AREA_MN | −0.446 ** | −0.430 ** | −0.343 ** | −0.337 ** | |
COHESION | −0.603 ** | −0.639 ** | −0.638 ** | −0.120 ** | |
ENN_MN | 0.353 ** | 0.412 ** | 0.403 ** | 0.048 | |
AI | −0.708 ** | −0.589 ** | −0.635 ** | −0.316 ** | |
UBL | PD | −0.295 ** | −0.201 ** | −0.174 ** | −0.122 ** |
LSI | −0.198 ** | −0.142 ** | −0.153 ** | −0.234 ** | |
AREA_MN | 0.040 | −0.025 | −0.202 ** | −0.532 ** | |
COHESION | 0.078 | 0.125 * | −0.130 ** | −0.488 ** | |
ENN_MN | 0.086 | −0.047 | 0.035 | 0.225 ** | |
AI | 0.193 ** | 0.151 ** | −0.046 | −0.377 ** | |
UBGL | PD | −0.025 ** | −0.056 * | −0.048 | 0.022 |
LSI | −0.146 ** | −0.026 | −0.041 | 0.361 ** | |
AREA_MN | −0.443 ** | −0.422 ** | −0.366 ** | −0.476 ** | |
COHESION | −0.613 ** | −0.656 ** | −0.752 ** | −0.640 ** | |
ENN_MN | 0.413 ** | 0.480 ** | 0.510 ** | 0.378 ** | |
AI | −0.697 ** | −0.598 ** | −0.718 ** | −0.684 ** |
Type | Landscape Pattern Index | 2001 | 2007 | 2015 | 2021 |
---|---|---|---|---|---|
SUHI | PD | −0.038 | 0.004 | −0.001 | 0.013 |
LSI | −0.218 ** | −0.155 ** | −0.315 ** | −0.164 ** | |
AREA_MN | 0.525 ** | 0.827 ** | 0.872 ** | 0.853 ** | |
COHESION | 0.242 ** | 0.525 ** | 0.486 ** | 0.508 ** | |
ENN_MN | −0.106 ** | −0.385 ** | −0.335 ** | −0.432 ** | |
AI | 0.238 ** | 0.506 ** | 0.498 ** | 0.479 ** |
Destination Layer | Main Index | Secondary Index | Indictor Meaning | Property | Weight |
---|---|---|---|---|---|
CESL | UBGL landscape supply capacity level | AREA_MN (UBGLs) | Reflects the degree of UBGL patch fragmentation per unit area | Positive | 0.675 |
COHESION (UBGLs) | Reflects the physical connectivity of UBGL patches | Positive | 0.019 | ||
AI (UBGLs) | Reflects the aggregation degree of UBGL patches | Positive | 0.022 | ||
ENN_MN (UBGLs) | Reflects the degree of dispersion between UBGL patches | Negative | 0.097 | ||
LULC supply capacity level | PLAND (UBGLs) | Reflects the size of the UBGL patch | Positive | 0.187 | |
CEDL | SUHI landscape demand capacity level | LSI (SUHIs) | Reflects the degree of complexity of the SUHI patch | Negative | 0.018 |
AREA_MN (SUHIs) | Reflects the degree of SUHI patch fragmentation per unit area | Positive | 0.271 | ||
COHESION (SUHIs) | Reflects the physical connectivity of SUHI patches | Positive | 0.009 | ||
AI (SUHIs) | Reflects the aggregation degree of SUHI patches | Positive | 0.008 | ||
ENN_MN (SUHIs) | Reflects the degree of dispersion between SUHI patches | Negative | 0.151 | ||
LULC demand capacity level | PLAND (SUHIs) | Reflects the size of the SUHI patch | Positive | 0.143 | |
Population economic level | POP_density | Reflects the human demand for cooling capacities | Positive | 0.318 | |
DN | Reflects the economic capacity to deal with SUHIs | Negative | 0.082 |
Primary Zoning | SUHII | 2001 | 2007 | 2015 | 2021 |
---|---|---|---|---|---|
Hot zone | 5 | 21.3% | 20.8% | 21.2% | 21.2% |
4 | 14.0% | 15.3% | 14.6% | 15.1% | |
Normal zone | 3 | 29.8% | 27.5% | 30.0% | 26.8% |
Cold zone | 2 | 20.0% | 15.7% | 10.4% | 15.8% |
1 | 14.8% | 20.7% | 23.7% | 21.0% |
Land Use Types | 2001 | 2007 | 2015 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
Area (ha) | Ratio (%) | Area (ha) | Ratio (%) | Area (ha) | Ratio (%) | Area (ha) | Ratio (%) | |
Grassland | 18,172.71 | 11.00 | 8898.26 | 5.39 | 8457.88 | 5.12 | 26,348.09 | 15.95 |
Pond area | 621.81 | 0.38 | 174.87 | 0.11 | 541.44 | 0.33 | 528.75 | 0.32 |
NBGS | 82,768.60 | 50.12 | 92,027.47 | 55.73 | 94,994.48 | 57.52 | 75,928.03 | 45.98 |
Cultivated land | 56,311.38 | 34.10 | 56,781.32 | 34.38 | 48,803.57 | 29.55 | 32,583.02 | 19.73 |
Ditch area | 33.87 | 0.02 | 13.21 | 0.01 | 117.07 | 0.07 | 162.33 | 0.10 |
River area | 2753.46 | 1.67 | 2746.98 | 1.66 | 7148.34 | 4.33 | 13,957.83 | 8.45 |
Pond area | 353.79 | 0.21 | 400.68 | 0.24 | 722.61 | 0.44 | 888.48 | 0.54 |
Forestland | 4128.57 | 2.50 | 4098.39 | 2.48 | 4358.80 | 2.64 | 14,747.66 | 8.93 |
Total | 165,144.18 | 100.00 | 165,144.18 | 100.00 | 165,144.18 | 100.00 | 165,144.18 | 100.00 |
Composite Category | Coordination Level | Subcategory | Specific Exponential Comparison | Subcategory |
---|---|---|---|---|
System coordinated development | CCD2021 − CCD2001 > 0.1 | High coordination | |CESL2021 − CEDL2021|> 0.1 | Advancing cooling efficiency |
|CESL2021 − CEDL2021|≤ 0.1 | Systematic balanced development | |||
|CESL2021 − CEDL2021|< −0.1 | Lagging cooling efficiency | |||
System transformation development | 0.1 ≥ CCD2021 − CD2001 > 0 | Moderate coordination | |CESL2021 − CEDL2021|> 0.1 | Advancing cooling efficiency |
|CESL2021 − CEDL2021|≤ 0.1 | Systematic balanced development | |||
|CESL2021 − CEDL2021|< −0.1 | Lagging cooling efficiency | |||
0 ≥ CCD2021 − CCD2001 > −0.1 | Moderate imbalance | |CESL2021 − CEDL2021|> 0.1 | Advancing cooling efficiency | |
|CESL2021 − CEDL2021|≤ 0.1 | Systematic balanced development | |||
|CESL2021 − CEDL2021|< −0.1 | Lagging cooling efficiency | |||
System uncoordinated development | −0.1 ≥ CCD2021 − CCD2001 | Serious imbalance | |CESL2021 − CEDL2021|> 0.1 | Advancing cooling efficiency |
|CESL2021 − CEDL2021|≤ 0.1 | Systematic balanced development | |||
|CESL2021 − CEDL2021|< −0.1 | Lagging cooling efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Liu, S.; Zhang, X.; Du, X.; Lv, Z.; Hu, H. Analysis of Supply–Demand Relationship of Cooling Capacity of Blue–Green Landscape under the Direction of Mitigating Urban Heat Island. Sustainability 2023, 15, 10919. https://doi.org/10.3390/su151410919
Guan S, Liu S, Zhang X, Du X, Lv Z, Hu H. Analysis of Supply–Demand Relationship of Cooling Capacity of Blue–Green Landscape under the Direction of Mitigating Urban Heat Island. Sustainability. 2023; 15(14):10919. https://doi.org/10.3390/su151410919
Chicago/Turabian StyleGuan, Shengyu, Shuang Liu, Xin Zhang, Xinlei Du, Zhifang Lv, and Haihui Hu. 2023. "Analysis of Supply–Demand Relationship of Cooling Capacity of Blue–Green Landscape under the Direction of Mitigating Urban Heat Island" Sustainability 15, no. 14: 10919. https://doi.org/10.3390/su151410919
APA StyleGuan, S., Liu, S., Zhang, X., Du, X., Lv, Z., & Hu, H. (2023). Analysis of Supply–Demand Relationship of Cooling Capacity of Blue–Green Landscape under the Direction of Mitigating Urban Heat Island. Sustainability, 15(14), 10919. https://doi.org/10.3390/su151410919