Challenges Related to the Transformation of Post-Mining Underground Workings into Underground Laboratories
Abstract
:1. Introduction
2. Underground Mines in Europe and Potential Ways of Their Repurposing
Types of Underground Activities
3. Materials and Methods
- Baltic Sea Underground Innovation Network (BSUIN);
- Empowering Underground Laboratories Network Usage (EUL).
3.1. Data Collection and Identification of Challenges
3.2. Preliminary Risk Evaluation
- Rp—the probability of unwanted event occurrence;
- Ri—expected/predicted consequences of the event.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2021; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2021; p. 115. [Google Scholar]
- Transforming Our World: The 2030 Agenda for Sustainable Development. General Assembly 2015. p. 70. Available online: https://sdgs.un.org/2030agenda (accessed on 15 November 2022).
- European Commission; Statistical Office of the European Union. Sustainable Development in the European Union: Monitoring Report on Progress towards the SDGs in an EU Context, 2021st ed.; Publications Office: Luxembourg, 2021. [Google Scholar]
- Pactwa, K.; Woźniak, J.; Dudek, M. Sustainable Social and Environmental Evaluation of Post-Industrial Facilities in a Closed Loop Perspective in Coal-Mining Areas in Poland. Sustainability 2020, 13, 167. [Google Scholar] [CrossRef]
- Bettini, A. New Underground Laboratories: Europe, Asia and the Americas. Phys. Dark Universe 2014, 4, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Kaliampakos, D.; Mavropoulos, A.; Menegaki, M. Need and Potential for Underground Disposal–Survey of Underground Mines in Europe. In WIT Transactions on State of the Art in Science and Engineering; Popov, V., Pusch, R., Eds.; WIT Press: Southampton, UK, 2006; Volume 1, pp. 33–258. ISBN 9781853127502. [Google Scholar]
- Menéndez, J.; Loredo, J.; Galdo, M.; Fernández-Oro, J.M. Energy Storage in Underground Coal Mines in NW Spain: Assessment of an Underground Lower Water Reservoir and Preliminary Energy Balance. Renew. Energy 2019, 134, 1381–1391. [Google Scholar] [CrossRef]
- Pirkkanen, J.; Zarnke, A.M.; Laframboise, T.; Lees, S.J.; Tai, T.C.; Boreham, D.R.; Thome, C. A Research Environment 2 Km Deep-Underground Impacts Embryonic Development in Lake Whitefish (Coregonus Clupeaformis). Front. Earth Sci. 2020, 8, 327. [Google Scholar] [CrossRef]
- Różycki, P.; Dryglas, D. Mining Tourism, Sacral and Other Forms of Tourism Practiced in Antique Mines—Analysis of the Results. Acta Montan. Slovaca 2017, 22, 58–66. [Google Scholar]
- Kotarska, I.; Mizera, B.; Stefanek, P. Mining Waste in the Circular Economy—Idea Versus Reality. E3S Web Conf. 2018, 41, 02013. [Google Scholar] [CrossRef]
- Fitzgerald, K.M. Hazardous Waste. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2005; pp. 487–490. ISBN 9780123694003. [Google Scholar]
- Da Gama, C.D. Post-Mining Use of Underground Space for Waste Storage. In Proceedings of the 7th ISRM Congress, Aachen, Germany, 16–20 September 1991. [Google Scholar]
- Thurner, E. The Role of Aspo Hard Rock Laboratory for the Swedish Nuclear Fuel and Waste Management’s Research, Developing and Demonstration Programme for a Final Repository of Spent Nuclear Fuel—15378. In Proceedings of the Annual Waste Management Symposium, Phoenix, AZ, USA, 15–19 March 2015. [Google Scholar]
- Kudełko, J.; Wanielista, K.; Wirth, H. Ocena Ekonomiczna Projektów Wydobycia Kopalin z Pól Eksploatacyjnych w Okresie Operacyjnym. J. Sust. Min. 2013, 12, 41. [Google Scholar]
- Espinoza, R.D.; Morris, J.W.F. Towards Sustainable Mining (Part II): Accounting for Mine Reclamation and Post Reclamation Care Liabilities. Resour. Policy 2017, 52, 29–38. [Google Scholar] [CrossRef]
- Pactwa, K.; Konieczna-Fuławka, M.; Fuławka, K.; Aro, P.; Jaśkiewicz-Proć, I.; Kozłowska-Woszczycka, A. Second Life of Post-Mining Infrastructure in Light of the Circular Economy and Sustainable Development—Recent Advances and Perspectives. Energies 2021, 14, 7551. [Google Scholar] [CrossRef]
- Laurence, D. Optimisation of the Mine Closure Process. J. Clean. Prod. 2006, 14, 285–298. [Google Scholar] [CrossRef]
- European Commission. Health and Safety at Work in Europe (1999–2007)—A Statistical Portrait; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Pytel, W.; Fuławka, K.; Pałac-Walko, B.; Mertuszka, P.; Kisiel, J.; Jalas, P.; Joutsenvaara, J.; Shekov, V. Universal Approach for Risk Identification and Evaluation in Underground Facilities. Min. Sci. 2020, 27, 165–181. [Google Scholar] [CrossRef]
- Lööw, J.; Johansson, B.; Andersson, E.; Johansson, J. Designing Ergonomic, Safe, and Attractive Mining Workplaces; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK, 2019. [Google Scholar]
- Elgstrand, K.; Vingård, E. Safety and Health in Mining, In Occupational Safety and Health in Mining: Anthology on the Situation in 16 Mining Countries; Elgstrand, K., Vingård, E., Eds.; Arbete & Hälsa, University of Gothenburg: Gothenburg, Sweden, 2013; pp. 1–14. [Google Scholar]
- EU Strategic Framework on Health and Safety at Work 2021–2027|Safety and Health at Work EU-OSHA. Available online: https://osha.europa.eu/en/safety-and-health-legislation/eu-strategic-framework-health-and-safety-work-2021-2027 (accessed on 25 April 2023).
- Shooks, M.; Johansson, B.; Andersson, E.; Lööw, J. Safety and Health in European Mining—A Report on Safety and Health, Statistics, Tools and Laws, Produced for the I2 Mine (Innovative Technologies and Concepts for the Intelligent Deep Mine of the Future) Project; Division of Human Work Science: Luleå, Sweden, 2014; pp. 3–10. [Google Scholar]
- The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal: Brussels, Belgium, 2019; p. 649. [Google Scholar]
- Minerals Yearbook, Volume III, Area Reports—International—Europe and Central Eurasia. United States Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/europe-and-central-eurasia (accessed on 20 July 2022).
- Ianni, A. Science in Underground Laboratories and DULIA-Bio. Front. Phys. 2021, 9, 612417. [Google Scholar] [CrossRef]
- EUL Website. Available online: https://undergroundlabs.network/about/ (accessed on 25 September 2022).
- Bessone, L.; Sauro, F.; Stevenin, H. Training Safe and Effective Spaceflight Operations Using Terrestrial Analogues. In Space Safety Is No Accident; Sgobba, T., Rongier, I., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 313–318. ISBN 9783319159812/9783319159829. [Google Scholar]
- BBC Website. Available online: www.bbc.com/news/uk-wales-46221656 (accessed on 15 July 2018).
- Langefeld, O.; Tegtmeier, M. Underground Farming. Mining Report Glückauf 2019, 155, 13–17. [Google Scholar]
- Rosenthal, S.; Knudsen, P. Montana Tech’s Underground Mine Education Center. In Proceedings of the SME Annual Meeting, Denver, CO, USA, 24–27 February 2018; p. 13. [Google Scholar]
- Bralewska, K.; Rogula-Kozłowska, W.; Mucha, D.; Badyda, A.J.; Kostrzon, M.; Bralewski, A.; Biedugnis, S. Properties of Particulate Matter in the Air of the Wieliczka Salt Mine and Related Health Benefits for Tourists. Int. J. Environ. Res. Public Health 2022, 19, 826. [Google Scholar] [CrossRef]
- Akbar, D.; Rolfe, J.; Lechner, A.M.; Everingham, J.-A.; Kinnear, S. Workshop Processes to Generate Stakeholder Consensus about Post-Mining Land Uses: An Australian Case Study. J. Environ. Plan. Manag. 2021, 64, 334–358. [Google Scholar] [CrossRef]
- Goodman, M. The Deep Underground Neutrino Experiment. Adv. High Energy Phys. 2015, 2015, 256351. [Google Scholar] [CrossRef] [Green Version]
- Lubsandorzhiev, S.; Enqvist, K.; Hissa, J.; Joutsenvaara, J.; Kutuniva, J.; Virkajärvi, A.; Bezrukov, L.; Kuusiniemi, P.; Kazalov, V.; Krokhaleva, S.; et al. A New Low Background Laboratory in the Pyhäsalmi Mine: Towards 14C Free Liquid Scintillator for Low Energy Neutrino Experiments. In Proceedings of the Proceedings of 35th International Cosmic Ray Conference—PoS (ICRC2017); Busan, Republic of Korea, 16 August 2017, p. 1044.
- Boulby Underground Laboratory Website. Available online: https://www.boulby.stfc.ac.uk/Pages/home.aspx (accessed on 10 February 2022).
- Sanford Underground Research Facility Website. Available online: www.sanfordlab.org (accessed on 1 May 2022).
- Callio Lab. Available online: https://calliolab.com/ (accessed on 25 April 2023).
- Indico CERN. Available online: https://indico.cern.ch/event/493989/contributions/2005327/attachments/1253900/1850955/160407-LBNF.pdf (accessed on 30 September 2022).
- Nuijten, G. Large Underground Experiments: Engineering Point of View Pyhäsalmi + Homestake. In Proceedings of the 15th International Workshop on Next generation Nucleon Decay and Neutrino Detectors (NNN14), Paris, France, 4–6 November 2014. presentation by Guido Nuijten—Rockplan/LBNO-DEMO. [Google Scholar]
- Shekov, V.; Shekov, K.; Ivanov, A.; Fulawka, K.; Witold, P. Safe use of mining-and-industrial heritage and underground space in tourism sector. Int. Multidiscip. Sci. GeoConference SGEM 2019, 19, 569–577. [Google Scholar]
- Shekov, K.; Shekov, V. Ruskeala Mining Park Phenomenon. In Ecology, Economics, Education and Legislation, Proceedings of the16th International Multidisciplinary Scientific Geoconference SGEM Book 5, Albena, Bulgaria, 30 June–6 July 2016; International Multidisciplinary Scientific GeoConferences (SGEM): Albena, Bulgaria; Volume III, pp. 515–522.
- Kramarczyk, B.; Pytlik, M.; Mertuszka, P.; Jaszcz, K.; Jarosz, T. Novel Sensitizing Agent Formulation for Bulk Emulsion Explosives with Improved Energetic Parameters. Materials 2022, 15, 900. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, P.; Mazurkiewicz, Ł.; Małachowski, J.; Pytlik, M. Experimental Testing and Numerical Simulations of Blast-Induced Fracture of Dolomite Rock. Meccanica 2020, 55, 2337–2352. [Google Scholar] [CrossRef]
- Polaczek-Grelik, K.; Walencik-Łata, A.; Szkliniarz, K.; Kisiel, J.; Jȩdrzejczak, K.; Szabelski, J.; Kasztelan, M.; Orzechowski, J.; Tokarski, P.; Marszał, W.; et al. Natural Background Radiation at Lab 2 of Callio Lab, Pyhäsalmi Mine in Finland. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 969, 164015. [Google Scholar] [CrossRef]
- Jalas, P.; Enqvist, T.; Isoherranen, V.; Joutsenvaara, J.; Kutuniva, J.; Kuusiniemi, P. Callio Lab, a New Deep Underground Laboratory in the Pyhäsalmi Mine. J. Phys. Conf. Ser. 2017, 888, 012156. [Google Scholar] [CrossRef]
- Saigustia, C.; Robak, S. Review of Potential Energy Storage in Abandoned Mines in Poland. Energies 2021, 14, 6272. [Google Scholar] [CrossRef]
- Szabłowski, Ł.; Krawczyk, P.; Badyda, K. Energy Storage Using Underground Mining Caverns. E3S Web Conf. 2019, 108, 01004. [Google Scholar] [CrossRef]
- Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]
- EUL Webinar—Many Faces of Underground Laboratories, Helsinki, Finland, 27 January 2022. Available online: https://bsuin.eu/2022/01/19/eul-closing-webinar/ (accessed on 10 December 2022).
- Fuławka, K.; Pytel, W.; Szumny, M.; Mertuszka, P.; Hanzel, S.; Madziarz, M.; Joutsenvaara, J. Health & Safety in Underground Environment, Final Report of Activities Performed under Baltic Sea Underground Innova-Tion Network Project. 2020. Available online: https://bsuin.eu (accessed on 10 July 2022).
- Ghasemi, E.; Ataei, M.; Shahriar, K.; Sereshki, F.; Jalali, S.E.; Ramazanzadeh, A. Assessment of Roof Fall Risk during Retreat Mining in Room and Pillar Coal Mines. Int. J. Rock Mech. Min. Sci. 2012, 54, 80–89. [Google Scholar] [CrossRef]
- Sakhno, I.; Sakhno, S.; Vovna, O. Assesing a Risk of Roof Fall in the Development Mine Workings in the Process of Longwall Coal Mining in Terms of Ukrainian Mines. Min. Miner. Depos. 2020, 14, 72–80. [Google Scholar] [CrossRef]
- Ameri Siahuei, M.R.; Ataei, M.; Rafiee, R.; Sereshki, F. Assessment and management of safety risks through hierarchical analysis in fuzzy sets type 1 and type 2: A case study (faryab chromite underground mines). MGPB 2021, 36, 1–17. [Google Scholar] [CrossRef]
- Paat, A.; Joutsenvaara, J. Underground Laboratories Working Environment Common Standard, Final Report of Activities Performed under Baltic Sea Underground Innovation Network Project; BSUIN: Oulu, Finland, 2020. [Google Scholar]
No. | Country | Number of Mines | Minerals |
---|---|---|---|
1 | Austria | 3 | graphite, magnesite, and wolfram |
2 | Bulgaria | 6 | copper, gold, lead, and manganese, silver and zinc |
3 | Czech Republic | 3 | coal |
4 | Estonia | 2 | oil shale |
5 | Finland | 5 | chromium, gold, and silver |
6 | France | 1 | salt |
7 | Germany | 10 | barite, fluorite, potash, and salt |
8 | Greece | 8 | bauxite, copper, gold, lead, magnesite, and zinc |
9 | Ireland | 3 | gypsum, lead, salt, and zinc |
10 | Italy | 4 | potash, salt, and marble |
11 | Norway | 3 | coal, dolomite, and iron |
12 | Poland | 26 | coal, copper, silver, gypsum, and salt |
13 | Portugal | 2 | copper, tin, silver, and wolfram |
14 | Romania | 6 | coal, copper, salt, and silver |
15 | Slovakia | 6 | gold, magnesite, and talc |
16 | Slovenia | 1 | coal |
17 | Spain | 10 | coal, copper, fluorite, gold, lead, and magnesite, potash, tin, zinc, and wolfram |
18 | Sweden | 8 | copper, gold, iron, lead, and zinc |
19 | United Kingdom | 5 | barite, fluorite, potash, salt, and tin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczna-Fuławka, M.; Szumny, M.; Fuławka, K.; Jaśkiewicz-Proć, I.; Pactwa, K.; Kozłowska-Woszczycka, A.; Joutsenvaara, J.; Aro, P. Challenges Related to the Transformation of Post-Mining Underground Workings into Underground Laboratories. Sustainability 2023, 15, 10274. https://doi.org/10.3390/su151310274
Konieczna-Fuławka M, Szumny M, Fuławka K, Jaśkiewicz-Proć I, Pactwa K, Kozłowska-Woszczycka A, Joutsenvaara J, Aro P. Challenges Related to the Transformation of Post-Mining Underground Workings into Underground Laboratories. Sustainability. 2023; 15(13):10274. https://doi.org/10.3390/su151310274
Chicago/Turabian StyleKonieczna-Fuławka, Martyna, Marcin Szumny, Krzysztof Fuławka, Izabela Jaśkiewicz-Proć, Katarzyna Pactwa, Aleksandra Kozłowska-Woszczycka, Jari Joutsenvaara, and Päivi Aro. 2023. "Challenges Related to the Transformation of Post-Mining Underground Workings into Underground Laboratories" Sustainability 15, no. 13: 10274. https://doi.org/10.3390/su151310274
APA StyleKonieczna-Fuławka, M., Szumny, M., Fuławka, K., Jaśkiewicz-Proć, I., Pactwa, K., Kozłowska-Woszczycka, A., Joutsenvaara, J., & Aro, P. (2023). Challenges Related to the Transformation of Post-Mining Underground Workings into Underground Laboratories. Sustainability, 15(13), 10274. https://doi.org/10.3390/su151310274