Integration of High-Accuracy Geospatial Data and Machine Learning Approaches for Soil Erosion Susceptibility Mapping in the Mediterranean Region: A Case Study of the Macta Basin, Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Machine Learning Methods
- AdaBoost is machine learning technique initiated by Freund and Schapire [51]; many algorithms are derived from AdaBoost either for classification or applied to regression [52,53]. The AdaBoost algorithm is an iterative approach that seeks to construct a robust classifier through the combination of weak learners generated in prior iterations. The algorithm modifies the learning pattern in accordance with the error returned by the weak learners, with the ultimate goal of achieving a final hypothesis that exhibits low error relative to a given distribution [51,54].
- CatBoost is new gradient boosting based on decision tree [55], and its characteristic is that it requires small data training comparing to other models and deals with different data formats [56]. The CatBoost model employs the generation of random permutations of the dataset and gradients to inform the selection of an optimal tree structure, thereby enhancing the robustness of the algorithm and mitigating over-fitting [57].
- CNN is a type of deep learning architecture that imitates the natural visual perception of living beings [58]. CNN comprises several layers, including the convolutional layer, non-linearity layer, pooling layer, and fullyconnected layer. While the convolutional and fullyconnected layers are parameterized, the pooling and non-linearity layers are not.Among the various forms of artificial neural networks, CNN is particularly remarkable [59]. As reported in the literature, the name “Convolutional Neural Network” (CNN) is derived from the mathematical operation of convolution, which involves the multiplication of matrices [60].
- The stacking method was implemented in this study to improve the performance of developed predictive model. By leveraging ensemble learning methods, such as the stacking method, a meta-model is used to combine predictions generated by several base models [61]. Stacking, which is also referred to as stacked generalization, is a widely used ensemble learning technique that combines multiple base models to improve prediction accuracy. Here, three different algorithms were used as base models: CNN as a powerful deep learning architecture that has the ability to capture spatial features from input data and CatBoost and AdaBoostto combine weak learners to create a strong learner. Categorical boosting is specifically designed for categorical data, while Adaptive boosting is a general-purpose method that can be used for both categorical and numerical data.
2.3. GIS and Geospatial Data Processing
2.4. Model Evaluation
2.5. Selection of Variables
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station | Lambert Coordinate | MFI | |||
---|---|---|---|---|---|
No. | Code | Name | X (m) | Y (m) | (mm) |
1 | 110102 | RAS EL MA | 177,450 | 139,500 | 29.68 |
2 | 110201 | SIDI ALI BEN YOUB | 186,550 | 192,200 | 44.18 |
3 | 110202 | MOULAY SLISSENE MF | 181,200 | 171,550 | 41.79 |
4 | 110203 | EL HACAIBA | 183,500 | 161,650 | 35.78 |
5 | 110208 | SLISSENE CENTRE | 183,650 | 174,650 | 42.56 |
6 | 110209 | TAMFOUSSET | 192,900 | 183,350 | 35.93 |
7 | 110305 | SIDI BEL ABBES | 194,250 | 214,150 | 46.33 |
8 | 110306 | SIDI BRAHIM | 203,230 | 222,480 | 46.87 |
9 | 110307 | BEN BADIS | 170,850 | 190,800 | 46.72 |
10 | 110308 | SIDI ALI BOUSSIDI | 178,250 | 206,150 | 46.49 |
11 | 110309 | HASSI DAHO | 204,800 | 204,100 | 44.76 |
12 | 110310 | LAMTAR | 181,400 | 203,000 | 45.96 |
13 | 110311 | SIDI KHALED | 188,500 | 207,500 | 45.24 |
14 | 110312 | MOSTEFA BEN BRAHIM | 221,700 | 214,740 | 49.03 |
15 | 110313 | TESSALA | 184,500 | 222,050 | 46.25 |
16 | 110314 | AIN TRID | 193,000 | 226,000 | 46.28 |
17 | 110315 | AIN EL BERD | 208,400 | 234,300 | 48.62 |
18 | 110317 | HASSI ZEHANA | 172,700 | 198,200 | 46.66 |
19 | 110318 | SIDI LAHCENE | 191,200 | 212,900 | 45.19 |
20 | 110319 | CAID BELARBI | 212,900 | 210,700 | 46.07 |
21 | 110322 | TABIA | 186,800 | 196,700 | 44.52 |
22 | 110328 | SULLY | 201,500 | 206,400 | 44.61 |
23 | 110329 | LES TREMBLES | 204,800 | 227,260 | 47.28 |
24 | 110334 | CHETOUANE | 175,300 | 191,250 | 45.96 |
25 | 110401 | BOUDJEBAA (Dar Esba) | 226,200 | 233,000 | 49.16 |
26 | 110402 | CHEURFAS Bge | 232,100 | 238,300 | 49.47 |
27 | 110501 | MERINE | 216,300 | 170,500 | 28.31 |
28 | 110502 | TELAGH | 200,650 | 170,150 | 32.76 |
29 | 110503 | TEGHALINET | 203,450 | 181,600 | 39.19 |
30 | 110504 | TENIRA | 205,500 | 196,250 | 42.29 |
31 | 110505 | EL HADJIRA | 199,400 | 195,600 | 41.72 |
32 | 110507 | FERME CHABRIER | 194,800 | 190,450 | 41.13 |
33 | 110509 | SIDI AHMED | 204,050 | 190,050 | 42.08 |
34 | 110510 | DOMAINE ZERROUKI | 204,650 | 185,000 | 40.34 |
35 | 110514 | AIN CHAFIA | 210,700 | 185,250 | 38.36 |
36 | 110602 | OUED SEFFIOUN | 221,150 | 201,100 | 46.84 |
37 | 110603 | AIN FRASS | 237,750 | 215,000 | 51.73 |
38 | 110605 | HASSI EL ABD | 226,750 | 189,200 | 43.40 |
39 | 110701 | TOUAZIZINE M.F. (Dhaya) | 191,150 | 155,200 | 32.55 |
40 | 110702 | DOUAHILA | 228,700 | 155,350 | 29.51 |
41 | 110703 | TOUAZIZINE (Dhaya) | 196,300 | 157,450 | 30.36 |
42 | 110802 | DAOUD YOUB | 234,500 | 185,000 | 43.25 |
43 | 110902 | HASSI AYOUN MF | 241,750 | 161,250 | 29.18 |
44 | 110903 | DOUI THABET | 252,100 | 181,700 | 34.21 |
45 | 110904 | BOU EL FERID | 245,730 | 169,150 | 31.44 |
46 | 111002 | FERME EL HARIG | 245,590 | 192,450 | 44.10 |
47 | 111102 | MEFTAH SIDI BOUBEKEUR | 259,500 | 195,750 | 42.94 |
48 | 111103 | AIN EL HADJAR | 266,500 | 165,200 | 31.70 |
49 | 111105 | SID AMAR | 263,850 | 195,100 | 41.28 |
50 | 111106 | KILOMETRE 50 | 268,450 | 192,000 | 38.31 |
51 | 111112 | HAMMAM RABI | 270,400 | 184,500 | 36.44 |
52 | 111113 | DJEBEL KAROUS | 264,700 | 181,200 | 33.87 |
53 | 111114 | REBAHIA FERME 917 | 272,600 | 180,500 | 34.55 |
54 | 111120 | FERME DU SYNDICAT | 263,700 | 165,500 | 31.14 |
55 | 111128 | AIN ZERGA FERME | 273,900 | 176,400 | 33.58 |
56 | 111130 | SAIDA ANRH | 266,750 | 174,400 | 33.80 |
57 | 111201 | OUED TARIA | 262,350 | 204,850 | 45.95 |
58 | 111202 | OUM EL DJIRANE | 283,000 | 173,400 | 34.24 |
59 | 111203 | AIN BALLOUL | 296,850 | 190,550 | 38.90 |
60 | 111204 | AIN TIFRIT | 290,050 | 182,450 | 36.80 |
61 | 111205 | AIN SOLTANE | 281,400 | 188,400 | 37.44 |
62 | 111208 | SIDI MIMOUN | 289,100 | 196,100 | 39.76 |
63 | 111209 | BLED EL BEIDA | 283,300 | 183,100 | 35.98 |
64 | 111210 | TAMESNA | 295,600 | 174,500 | 35.58 |
65 | 111211 | SIDI BEN KADOUR MF | 291,500 | 164,100 | 33.64 |
66 | 111213 | EL HAZEM | 272,200 | 168,600 | 32.20 |
67 | 111215 | BOUCHERID MOHAMED | 276,750 | 172,600 | 32.81 |
68 | 111217 | BENIANE | 275,000 | 203,150 | 44.52 |
69 | 111219 | HASNA Dne BOUCHIKHI | 277,350 | 194,550 | 39.84 |
70 | 111401 | MAOUSSA | 277,300 | 233,920 | 58.17 |
71 | 111402 | FROHA | 266,100 | 226,000 | 54.25 |
72 | 111404 | AOUF M.F. | 287,150 | 211,800 | 45.55 |
73 | 111405 | MATEMORE | 273,970 | 228,350 | 53.66 |
74 | 111407 | TIGHENNIF | 285,100 | 237,900 | 55.75 |
75 | 111408 | KHAOUILA | 282,150 | 243,100 | 60.20 |
76 | 111409 | AIN FARES | 277,500 | 245,100 | 60.20 |
77 | 111413 | TIZI | 261,500 | 227,800 | 54.71 |
78 | 111414 | SIDI KADA | 285,900 | 228,300 | 51.87 |
79 | 111415 | AIN FEKAN MN | 255,600 | 217,200 | 52.53 |
80 | 111416 | SIDI ALI KERROUCHA | 290,100 | 214,600 | 45.66 |
81 | 111418 | NESMOTH M.F. | 289,250 | 219,700 | 49.02 |
82 | 111422 | MASCARA Pedo. | 271,400 | 232,600 | 55.37 |
83 | 111424 | GHRISS | 269,200 | 219,800 | 51.34 |
84 | 111502 | SAHOUET OUIZERT | 247,620 | 215,800 | 50.51 |
85 | 111503 | BOU HANIFIA Bge | 249,000 | 223,600 | 50.38 |
86 | 111508 | SFISSEF | 233,750 | 218,800 | 53.65 |
87 | 111509 | HACINE | 255,550 | 243,500 | 50.20 |
88 | 111512 | FERGOUG | 259,100 | 250,150 | 49.13 |
89 | 111513 | BOUHNIFIA MN | 250,200 | 227,700 | 50.34 |
90 | 111517 | MOHAMMADIA SAEF | 261,750 | 257,370 | 41.49 |
91 | 111601 | MACTA | 245,450 | 279,700 | 41.09 |
92 | 111603 | SIG | 237,720 | 252,000 | 45.20 |
93 | 111604 | OGGAZ | 232,200 | 255,800 | 43.18 |
94 | 111605 | BOU HENNI | 247,500 | 255,400 | 42.44 |
95 | 111606 | FORNAKA | 250,850 | 278,500 | 41.85 |
96 | 111607 | SAMOURIA | 265,950 | 261,200 | 43.27 |
97 | 111608 | EL GHOMRI | 274,000 | 268,000 | 40.85 |
98 | 111609 | BOUGHIRAT | 278,000 | 275,000 | 41.30 |
99 | 111610 | MOCTA DOUZ | 251,250 | 260,200 | 41.41 |
100 | 111611 | FERME BLANCHE | 256,800 | 265,350 | 40.73 |
101 | 111612 | BLED TAOURIA | 277,000 | 284,600 | 44.64 |
102 | 111614 | AIN MOUISSY | 260,300 | 281,500 | 42.87 |
103 | 111615 | FORNAKA | 254,950 | 275,500 | 40.59 |
104 | 111616 | MARAIS DE SIRAT | 269,300 | 275,600 | 39.50 |
105 | 111617 | FERME ASSORAIN | 281,250 | 291,850 | 48.03 |
106 | 111618 | SOUAFFLIOS | 285,200 | 285,650 | 50.88 |
References
- Kettler, T.A.; Doran, J.W.; Gilbert, T.L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 2001, 65, 849–852. [Google Scholar] [CrossRef] [Green Version]
- Bouguerra, H.; Bouanani, A.; Khanchoul, K.; Derdous, O.; Tachi, S.E. Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. J. Water Land Dev. 2017, 32, 13–23. [Google Scholar] [CrossRef]
- Tachi, S.E.; Bouguerra, H.; Derdous, O.; Djabri, L.; Benmamar, S. Estimating suspended sediment concentration at different time scales in Northeastern Algeria. Appl. Water Sci. 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [Google Scholar] [CrossRef]
- Poesen, J.W.; Vandaele, K.; Van Wesemael, B. Contribution of gully erosion to sediment production on cultivated lands and rangelands. IAHS Publ.-Ser. Proc. Rep.-Int. Assoc. Hydrol. Sci. 1996, 236, 251–266. [Google Scholar]
- Jahantigh, M.; Pessarakli, M. Causes and effects of gully erosion on agricultural lands and the environment. Commun. Soil Sci. Plant Anal. 2011, 42, 2250–2255. [Google Scholar] [CrossRef]
- Bouguerra, H.; Tachi, S.E.; Derdous, O.; Bouanani, A.; Khanchoul, K. Suspended sediment discharge modeling during flood events using two different artificial neural network algorithms. Acta Geophys. 2019, 67, 1649–1660. [Google Scholar] [CrossRef]
- Bouhadeb, C.E.; Menani, M.R.; Bouguerra, H.; Derdous, O. Assessing soil loss using GIS based RUSLE methodology. Case of the BouNamoussa watershed–North-East of Algeria. J. Water Land Dev. 2018, 36, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, T.; Liu, B.; Liu, G.; Wilson, G.V. Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China. Environ. Earth Sci. 2013, 68, 1723–1732. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Lal, R. Restoring land degraded by gully erosion in the tropics. Soil Restor. 1992, 17, 123–152. [Google Scholar]
- Xiong, X.; Zhang, K.; Chen, X.; Shi, H.; Luo, Z.; Wu, C. Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environ. Pollut. 2018, 235, 899–906. [Google Scholar] [CrossRef]
- Skidmore, E.L. Soil loss tolerance. Determ. Soil Loss Toler. 1982, 45, 87–93. [Google Scholar]
- Duniway, M.C.; Pfennigwerth, A.A.; Fick, S.E.; Nauman, T.W.; Belnap, J.; Barger, N.N. Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world. Ecosphere 2019, 10, e02650. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Hou, G.; Bi, H.; Huo, Y.; Wei, X.; Zhu, Y.; Wang, X.; Liao, W. Determining the optimal vegetation coverage for controlling soil erosion in Cynodondactylon grassland in North China. J. Clean. Prod. 2020, 244, 118771. [Google Scholar] [CrossRef]
- Mostazo, P.; Asensio-Amador, C.; Asensio, C. Soil Erosion Modeling and Monitoring. Agriculture 2023, 13, 447. [Google Scholar] [CrossRef]
- Gholami, V. The influence of deforestation on runoff generation and soil erosion (Case study: Kasilian Watershed). J. For. Sci. 2013, 59, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Kouassi, J.L.; Gyau, A.; Diby, L.; Bene, Y.; Kouamé, C. Assessing land use and land cover change and farmers’ perceptions of deforestation and land degradation in South-West Côte d’Ivoire, West Africa. Land 2021, 10, 429. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Luyten, E.; Veyret-Picot, M.; Deckers, J.; Haile, M.; Govers, G. Impact of road building on gully erosion risk: A case study from the northern Ethiopian highlands. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2002, 27, 1267–1283. [Google Scholar] [CrossRef]
- Frick, W.F.; Kingston, T.; Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 2020, 1469, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Mosavi, A.; Sajedi-Hosseini, F.; Choubin, B.; Taromideh, F.; Rahi, G.; Dineva, A.A. Susceptibility mapping of soil water erosion using machine learning models. Water 2020, 12, 1995. [Google Scholar] [CrossRef]
- Saha, S.; Sarkar, R.; Thapa, G.; Roy, J. Modeling gully erosion susceptibility in Phuentsholing, Bhutan using deep learning and basic machine learning algorithms. Environ. Earth Sci. 2021, 80, 295. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses from cropland east of the rocky mountains: Guide for selection of practices for soil and water conservation. In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1965; Volume 282, p. 58. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses: A guide to conservation planning. In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1978; Volume 537. [Google Scholar]
- Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Junior, J.M.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Hudson, N.W. Instrumentation for studies of the erosive power of rainfall. In Erosion and Sediment Transport Measurement (Proceedings of the Florence Symposium); IAHS Publication: Florence, Italy, 1981; pp. 383–390. [Google Scholar]
- Gayen, A.; Saha, S. Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: A study on Pathro river basin, Jharkhand, India. Model. Earth Syst. Environ. 2017, 3, 1123–1139. [Google Scholar] [CrossRef]
- Gayen, A.; Pourghasemi, H.R.; Saha, S.; Keesstra, S.; Bai, S. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci. Total Environ. 2019, 668, 124–138. [Google Scholar] [CrossRef]
- Cama, M.; Schillaci, C.; Kropáček, J.; Hochschild, V.; Bosino, A.; Märker, M. A probabilistic assessment of soil erosion susceptibility in a head catchment of the Jemma Basin, Ethiopian Highlands. Geosciences 2020, 10, 248. [Google Scholar] [CrossRef]
- Zakerinejad, R.; Märker, M. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: A case study in the Mazayejan Plain, Southwest Iran. Geogr. Fis. Din. Quat. 2014, 37, 67–76. [Google Scholar]
- Conoscenti, C.; Agnesi, V.; Cama, M.; Caraballo-Arias, N.A.; Rotigliano, E. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land Degrad. Dev. 2018, 29, 724–736. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- Zabihi, M.; Mirchooli, F.; Motevalli, A.; Darvishan, A.K.; Pourghasemi, H.R.; Zakeri, M.A.; Sadighi, F. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena 2018, 161, 1–13. [Google Scholar] [CrossRef]
- Chaplot, V.; Le Brozec, E.C.; Silvera, N.; Valentin, C. Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos. Catena 2005, 63, 167–184. [Google Scholar] [CrossRef]
- Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Hembram, T.K.; Saha, S. Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environ. Dev. Sustain. 2020, 22, 1241–1268. [Google Scholar] [CrossRef]
- Bouamrane, A.; Bouamrane, A.; Abida, H. Water erosion hazard distribution under a Semi-arid climate Condition: Case of Mellah Watershed, North-eastern Algeria. Geoderma 2021, 403, 115381. [Google Scholar] [CrossRef]
- Avand, M.; Janizadeh, S.; Naghibi, S.A.; Pourghasemi, H.R.; KhosrobeigiBozchaloei, S.; Blaschke, T. A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water 2019, 11, 2076. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; TienBui, D. Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India. Sensors 2020, 20, 1313. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; ChandraPal, S.; Costache, R.; Saha, A.; Rezaie, F.; Seyed Danesh, A.; Pradhan, B.; Lee, S.; Hoang, N.D. Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. Geomat. Nat. Hazards Risk 2021, 12, 469–498. [Google Scholar] [CrossRef]
- Yang, A.; Wang, C.; Pang, G.; Long, Y.; Wang, L.; Cruse, R.M.; Yang, Q. Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS Int. J. Geo-Inf. 2021, 10, 680. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Jebari, S.; Berndtsson, R.; Bahri, A.; Boufaroua, M. Spatial soil loss risk and reservoir siltation in semi-arid Tunisia. Hydrol. Sci. J.–J. Sci. Hydrol. 2010, 55, 121–137. [Google Scholar] [CrossRef]
- Balasubramani, K.; Veena, M.; Kumaraswamy, K.; Saravanabavan, V. Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (rusle) model through GIS. Model. Earth Syst. Environ. 2015, 1, 10. [Google Scholar] [CrossRef]
- Mohapatra, R. Application of revised universal soil loss equation model for assessment of soil erosion and prioritization of ravine infested sub basins of a semi-arid river system in India. Model. Earth Syst. Environ. 2022, 8, 4883–4896. [Google Scholar] [CrossRef]
- Falcão, C.J.L.M.; Duarte, S.M.D.A.; Da Silva Veloso, A. Estimating potential soil sheet Erosion in a Brazilian semiarid county using USLE, GIS, and remote sensing data. Environ. Monit. Assess. 2020, 192, 47. [Google Scholar] [CrossRef]
- Bouzeria, H.; Tachi, S.E.; Bouguerra, H.; Derdous, O.; Benmamar, S. Evaluating the Effect of Land Use Land Cover Changes on Soil Loss Distribution in the Seybouse Basin, Northeastern Algeria. Dokl. Earth Sci. 2023, 510, 335–348. [Google Scholar] [CrossRef]
- Derdous, O.; Tachi, S.E.; Bouguerra, H. Spatial distribution and evaluation of aridity indices in Northern Algeria. Arid Land Res. Manag. 2021, 35, 1–14. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Mathanker, S.K.; Weckler, P.R.; Bowser, T.J.; Wang, N.; Maness, N.O. AdaBoost classifiers for pecan defect classification. Comput. Electron. Agric. 2011, 77, 60–68. [Google Scholar] [CrossRef]
- Solomatine, D.P.; Shrestha, D.L. AdaBoost. RT: A boosting algorithm for regression problems. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 1163–1168. [Google Scholar]
- Margineantu, D.D.; Dietterich, T.G. Pruning adaptive boosting. ICML 1997, 97, 211–218. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11. Available online: https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf (accessed on 4 May 2023).
- Jabeur, S.B.; Gharib, C.; Mefteh-Wali, S.; Arfi, W.B. CatBoost model and artificial intelligence techniques for corporate failure prediction. Technol. Forecast. Soc. Change 2021, 166, 120658. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology, Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Nguyen, K.A.; Chen, W.; Lin, B.S.; Seeboonruang, U. Comparison of ensemble machine learning methods for soil erosion pin measurements. ISPRS Int. J. Geo-Inf. 2021, 10, 42. [Google Scholar] [CrossRef]
- Williams, B.K. Adaptive management of natural resources—Framework and issues. J. Environ. Manag. 2011, 92, 1346–1353. [Google Scholar] [CrossRef]
- Visa, S.; Ramsay, B.; Ralescu, A.L.; Van Der Knaap, E. Confusion matrix-based feature selection. MAICS 2011, 710, 120–127. [Google Scholar]
- Lasko, T.A.; Bhagwat, J.G.; Zou, K.H.; Ohno-Machado, L. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 2005, 38, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Akgün, A.; Türk, N. Mapping erosion susceptibility by a multivariate statistical method: A case study from the Ayvalık region, NW Turkey. Comput. Geosci. 2011, 37, 1515–1524. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat.-Theory Methods 1980, 9, 1043–1069. [Google Scholar] [CrossRef]
- Mitchell, J.F.B.; Manabe, S.; Meleshko, V.; Tokioka, T. Equilibrium climate change and its implications for the future. Clim. Chang. IPCC Sci. Assess. 1990, 131, 172. [Google Scholar]
- Nunes, A.N.; De Almeida, A.C.; Coelho, C.O. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Abdelsamie, E.A.; Abdellatif, M.A.; Hassan, F.O.; El Baroudy, A.A.; Mohamed, E.S.; Kucher, D.E.; Shokr, M.S. Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones. Agriculture 2022, 13, 35. [Google Scholar] [CrossRef]
- Arnoldus, J.M.J. Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. Food Agric. Organ. Soils Bull. 1977, 34, 39–51. [Google Scholar]
- Krishnamurthy, J.; Venkatesa Kumar, N.; Jayaraman, V.; Manivel, M. An approach to demarcate ground water potential zones through remote sensing and a geographical information system. Int. J. Remote Sens. 1996, 17, 1867–1884. [Google Scholar] [CrossRef]
- Krishnamurthy, J.; Mani, A.; Jayaraman, V.; Manivel, M. Groundwater resources development in hard rock terrain-an approach using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 204–215. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Flügel, W.A. Modelling of ground water recharge-potential in the hard-rock Aravalli terrain, India: A GIS approach. Environ. Earth Sci. 2009, 59, 929–938. [Google Scholar] [CrossRef]
- Maizi, D.; Boufekane, A.; AitOuali, K.; Aoudia, M. Identification of potential area of recharge using geospatial and multi-criteria decision analysis in the Macta watershed (Western Algeria). Arab. J. Geosci. 2020, 13, 127. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; Van der Werff, H.M.; Van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Van Der Meijde, M.; Carranza, E.J.M.; De Smeth, J.B.; Woldai, T. Multi-and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Wesemael, B.V.; Vanmaercke, M.; Teka, D.; Deckers, J.; Goosse, T.; Maetens, W.; Nyssen, J.; Hallet, V.; et al. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Phys. Geogr. 2013, 34, 236–259. [Google Scholar] [CrossRef] [Green Version]
Area | Method | Erosion Rate | Reference |
---|---|---|---|
Tunisian Dorsal, Tunisia | Reservoir siltation measurement | Average rate 14.5 t ha−1 year−1 Maximum rate 36.4 t ha−1 year−1 | [45] |
AndipattiTaluk, India | RUSLE | Average rate 5.26 t ha−1 year−1 Maximum rate 95.54 t ha−1 year−1 | [46] |
Madhya Pradesh, India | RUSLE | Average rate 6.42 t ha−1 year−1 Maximum rate 179.9 t ha−1 year−1 | [47] |
Machados County, Brazil | USLE | Average rate 8.11 t ha−1 year−1 Maximum rate above 20 t ha−1 year−1 | [48] |
Seybouse basin, Algeria | RUSLE | Average rate (20 y): 13 t ha−1 year−1 Maximum rate:over 50 t ha−1 year−1 | [49] |
LULC Class | Area (km2) | Area (%) |
---|---|---|
Grasslands | 8749 | 60.51 |
Croplands | 4376 | 30.27 |
Forest | 607 | 4.20 |
Urbanization | 432 | 2.99 |
Bare lands | 280 | 1.94 |
Water Bodies | 13 | 0.09 |
Total | 14,458 | 100 |
Soil Types | Area (km2) | Area (%) |
---|---|---|
Calcisols | 6116.75 | 42.307 |
Luvisols | 4047.23 | 27.993 |
Vertisols | 2062.43 | 14.265 |
Leptosols | 1623.92 | 11.232 |
Cambisols | 325.16 | 2.249 |
Kastanozems | 149.21 | 1.032 |
Phaeozems | 51.76 | 0.358 |
Regosols | 50.89 | 0.352 |
Fluvisols | 15.61 | 0.108 |
Acrisols | 14.46 | 0.100 |
Solonchaks | 0.58 | 0.004 |
Total | 14,458 | 100 |
Parameter | Source | Link | Spatial Resolution | Temporal Periods |
---|---|---|---|---|
MFI | National Agency for Hydraulic Resources (ANRH) | - | - | 1980–2015 |
Soil Class | Soil Grids | https://soilgrids.org/ (accessed on 4 May 2022) | 190 m | 2016 |
LULC | Esri Sentinel-2 | https://livingatlas.arcgis.com/landcover/ (accessed on 4 May 2022) | 10 m | 2022 |
DEM | USGS Earth Explorer | https://earthexplorer.usgs.gov/ (accessed on 4 May 2022) | 1 Arc-Second | 2014 |
Satellite Imagery | Landsat 8 OLI/TIRS | https://earthexplorer.usgs.gov/ (accessed on 4 May 2022) | 30 m | 05/2022 |
Topographic and Geologic Maps | National Institute of Cartography | - | 1/50,000 | - |
Predicted Negative | Predicted Positive | |
---|---|---|
Actual negative | a | b |
Actual positive | c | d |
Ranking | Features | Correlation | Importance (%) |
---|---|---|---|
1 | Slope | 59.65 | |
2 | LULC | 5.31 | |
3 | Lithology | 4.36 | |
4 | TWI | 3.68 | |
5 | MFI | 3.55 | |
6 | Geology | 3.00 | |
7 | D_F_Roads | 2.49 | |
8 | CMR | 2.25 | |
9 | D_F_Rivers | 1.94 | |
10 | Elevation | 1.89 | |
11 | Aspect | 1.87 | |
12 | Stream_Den | 1.64 | |
13 | HillShade | 1.63 | |
14 | Soil_Type | 1.59 | |
15 | NDVI | CMR = 76% | 1.44 |
16 | TRI | 1.40 | |
17 | Curvature | 1.07 | |
18 | SPI | STI = 82% | 0.81 |
19 | STI | 0.43 |
Statistics | CatBoost | AdaBoost | CNN | Stacking |
---|---|---|---|---|
TP | 82 | 79 | 69 | 78 |
TN | 64 | 62 | 72 | 78 |
FP | 4 | 9 | 4 | 2 |
FN | 10 | 10 | 15 | 2 |
Sensitivity | 0.89 | 0.89 | 0.82 | 0.98 |
Specificity | 0.94 | 0.87 | 0.95 | 0.98 |
F1 score | 0.92 | 0.89 | 0.88 | 0.98 |
Recall | 0.89 | 0.89 | 0.82 | 0.98 |
Precision | 0.95 | 0.90 | 0.95 | 0.98 |
Model | LULC Class | Grasslands | Croplands | Forest | Urbanization | Bare Lands | Water Bodies | Total |
---|---|---|---|---|---|---|---|---|
AdaBoost | Very Low Risk | 5.93 | 11.48 | 0.39 | 1.24 | 0.60 | 0.05 | 19.69 |
Low Risk | 10.65 | 7.90 | 0.74 | 0.90 | 0.47 | 0.01 | 20.66 | |
Moderate Risk | 13.33 | 5.26 | 0.95 | 0.48 | 0.37 | 0.01 | 20.41 | |
High Risk | 14.83 | 3.60 | 1.05 | 0.23 | 0.30 | 0.00 | 20.01 | |
Very High Risk | 15.87 | 2.00 | 1.05 | 0.12 | 0.19 | 0.00 | 19.23 | |
CatBoost | Very Low Risk | 2.86 | 14.57 | 0.33 | 1.24 | 0.29 | 0.03 | 19.31 |
Low Risk | 9.45 | 9.14 | 0.78 | 1.01 | 0.60 | 0.02 | 20.99 | |
Moderate Risk | 14.42 | 3.53 | 0.91 | 0.38 | 0.46 | 0.01 | 19.71 | |
High Risk | 16.73 | 2.13 | 1.10 | 0.21 | 0.27 | 0.01 | 20.44 | |
Very High Risk | 17.15 | 0.88 | 1.07 | 0.12 | 0.33 | 0.00 | 19.55 | |
CNN | Very Low Risk | 2.62 | 15.19 | 0.28 | 1.29 | 0.24 | 0.03 | 19.66 |
Low Risk | 8.94 | 8.57 | 0.99 | 0.95 | 0.61 | 0.02 | 20.09 | |
Moderate Risk | 14.53 | 3.89 | 1.08 | 0.42 | 0.48 | 0.01 | 20.42 | |
High Risk | 17.00 | 1.80 | 0.93 | 0.20 | 0.29 | 0.01 | 20.23 | |
Very High Risk | 17.50 | 0.79 | 0.89 | 0.10 | 0.32 | 0.01 | 19.60 | |
Staking | Very Low Risk | 3.17 | 14.17 | 0.28 | 1.32 | 0.40 | 0.04 | 19.38 |
Low Risk | 8.96 | 8.67 | 0.77 | 0.95 | 0.50 | 0.02 | 19.86 | |
Moderate Risk | 14.37 | 4.41 | 1.10 | 0.41 | 0.45 | 0.01 | 20.74 | |
High Risk | 16.40 | 2.11 | 1.05 | 0.19 | 0.29 | 0.01 | 20.04 | |
Very High Risk | 17.70 | 0.90 | 0.98 | 0.10 | 0.29 | 0.00 | 19.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouguerra, H.; Tachi, S.E.; Bouchehed, H.; Gilja, G.; Aloui, N.; Hasnaoui, Y.; Aliche, A.; Benmamar, S.; Navarro-Pedreño, J. Integration of High-Accuracy Geospatial Data and Machine Learning Approaches for Soil Erosion Susceptibility Mapping in the Mediterranean Region: A Case Study of the Macta Basin, Algeria. Sustainability 2023, 15, 10388. https://doi.org/10.3390/su151310388
Bouguerra H, Tachi SE, Bouchehed H, Gilja G, Aloui N, Hasnaoui Y, Aliche A, Benmamar S, Navarro-Pedreño J. Integration of High-Accuracy Geospatial Data and Machine Learning Approaches for Soil Erosion Susceptibility Mapping in the Mediterranean Region: A Case Study of the Macta Basin, Algeria. Sustainability. 2023; 15(13):10388. https://doi.org/10.3390/su151310388
Chicago/Turabian StyleBouguerra, Hamza, Salah Eddine Tachi, Hamza Bouchehed, Gordon Gilja, Nadir Aloui, Yacine Hasnaoui, Abdelmalek Aliche, Saâdia Benmamar, and Jose Navarro-Pedreño. 2023. "Integration of High-Accuracy Geospatial Data and Machine Learning Approaches for Soil Erosion Susceptibility Mapping in the Mediterranean Region: A Case Study of the Macta Basin, Algeria" Sustainability 15, no. 13: 10388. https://doi.org/10.3390/su151310388
APA StyleBouguerra, H., Tachi, S. E., Bouchehed, H., Gilja, G., Aloui, N., Hasnaoui, Y., Aliche, A., Benmamar, S., & Navarro-Pedreño, J. (2023). Integration of High-Accuracy Geospatial Data and Machine Learning Approaches for Soil Erosion Susceptibility Mapping in the Mediterranean Region: A Case Study of the Macta Basin, Algeria. Sustainability, 15(13), 10388. https://doi.org/10.3390/su151310388