Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review
Abstract
:1. Introduction
1.1. Agroforestry Residual Biomass
1.2. Agroforestry Residual Biomass Supply Chain Management
1.3. Simulation as a Supply Chain Management Tool
- What set of KPIs (Key Performance Indicators) should be considered for the decision support in the dynamic evaluation of decision levels of the agroforestry residual biomass supply chain?
- How can efficiency be achieved in an agroforestry residual biomass supply chain through simulation techniques?
- What are the factors that make for a resilient residual biomass supply chain?
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Study Selection
3. Results
3.1. Publication over Time
3.2. Geographical Application Area
3.3. Journal Distribution
3.4. Keywords Analysis
3.5. KPI Definition According to Biomass Supply Chain
4. Discussion
4.1. Results Analysis and Interpretations
4.2. Technical and Scientific Barriers Associated with Biomass Supply Chain Simulation
4.3. Recent Trends in the Simulation of Residual Biomass Supply Chain
4.4. Limitations of the Study
5. Conclusions
- An agroforestry residual biomass supply chain can be made more efficient with the use of simulation approaches.
- The most efficient supply chain processes can be found and put into place by clearly determining the scope of the supply chain as this will inform the choice of KPIs to be considered.
- The data to be collected and evaluated is a function of the KPI identified. The data retrieved is used to develop a simulation framework and should include all the relevant components of the supply chain, including but not limited to collection of residues, biomass production, transportation, processing, and distribution.
- To obtain an optimal supply chain, it is pertinent to run different scenarios to determine the best supply chain processes to improve efficiency. The supply chain operations can be put into practice in the real world following their optimization to accomplish the required degree of efficiency.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Author, Year & Reference | Country | Study Design | End User |
---|---|---|---|
Nunes L J et al. (2023) [33] | Portugal | Qualitative study | Bioenergy industry |
Dominguez & Carnella (2020) [56] | Spain | Literature review | Bioenergy policy makers and researchers |
Balaman & Selim (2015) [49] | Turkey | Quantitative analysis | Policy makers and researchers |
Santibañez-Aguilar J E et al. (2019) [43] | Mexico | Qualitative study | Bioenergy industry policy maker |
Moretti L et al. (2021) [60] | Italy | Conceptual and Quantitative design | Italian bioenergy sector |
Sarkar B et al. (2021) [64] | South korea | Qualitative study | Biofuel and biogas policy makers |
Guzman-Bello H et al. (2022) [45] | Dominican Republic | Literature review | Bioenergy policy makers and researchers |
Sun & Fan (2020) [67] | Singapore | Literature review | Policy makers and researchers |
Piqueiro G H et al. (2022) [18] | Portugal | Case study | Industry policy makers and researchers |
Mobini M et al. (2013) [42] | Canada | Conceptual and case study | Canadian bioenergy industry |
Wu J et al. (2022) [2] | China | Qualitative study | Agric-biomass policy makers and researchers |
Ahmadvand S et al. (2021) [51] | Canada | Qualitative study | Bioenergy policy makers |
Salehi S et al. (2022) [7] | Iran | Conceptual and case study analysis | Policy makers SATBA Iranian bioenergy |
Zahraee S M et al. (2021) [29] | Malaysia | Quantitative and case study | Malaysian bioenergy company |
Peter B & Niquidel K (2016) [13] | Canada | Quantitative study | Bioenergy sector |
Santibañez-Aguilar et al. (2018) [70] | Mexico | Case study analysis | Bioenergy industry policy makers |
Grip C E et al. (2015) [65] | Sweden | Quantitative studies | Forestry an steel industry |
Akhtari S et al. (2015) [47] | British Colombia | Quantitative analysis | Bioenergy policy makers |
Acuna M et al. (2019) [46] | Australia | Literature review | Researchers and bioenergy policy makers |
Zandi N et al. (2016) [1] | France | Literature review | Bioenergy policy makers and researchers |
Ba B et al. (2016) [26] | France | Operations research study | Bioenergy policy makers and researchers |
Torreiro Y et al. (2020) [16] | Portugal | Conceptual study | Bioenergy & Agroforestry industry |
Natarajan K et al. (2014) [72] | Finland | Quantitative study | Bioenergy decision makers in Finland |
De Menna F et al. (2018) [71] | Italy | Quantitative study | Agri-biomass policy makers |
Hong B H et al. (2016) [44] | Malaysia | Conceptual and quantitative analysis | Bioenergy policy makers and researchers |
Basile F et al. (2022) [3] | Sweden | Quantitative study | Forestry and bioenergy industry |
Paulo H et al. (2015) [52] | Portugal | Quantitative and case study analysis | Researchers and bioenergy policy makers |
Den Herder M et al. (2012) [50] | Finland | Qualitative and case study analysis | Bioenergy policy makers |
Jazinaninejad M et al. (2022) [63] | Canada | Literature review of quantitative analysis and study | Bioenergy policy makers and researchers |
Enes T et al. (2019) [5] | Portugal | Quantitative | Bioenergy policy makers and researchers |
Kraft et al. (2021) [62] | Germany | Review | Policy makers |
Schuenemann F et al. (2018) [41] | Malawi | Qualitative | Policy makers |
Manolis E N et al. (2016) [39] | Greece | Qualitative design | Bioenergy policy makers |
Al Mashalah H et al. (2022) [61] | Canada | Literature review and conceptual study | Policy makers and researchers in the industry |
Sileshi G W (2014) [40] | Zambia | Review | Forestry policy makers |
Králík T et al. (2023) [27] | Czech Republic | Case study | Agroforestry policy makers and researchers |
Kang K et al. (2021) [17] | Canada | Conceptual and qualitative study | Policy makers |
Casau M et al. (2022) [4] | Portugal | Case study | Bioenergy policy makers and researchers |
Bascietto M et al. (2020) [9] | Italy | Quantitative study | Ecosystem services and policy makers |
Zhou X Y et al. (2020) [37] | China | Hybrid research studies | Policy makers |
Wu Y et al. (2019) [36] | China | Case study analysis | Bioenergy generation policy makers and researchers |
Nunes L J R et al. (2020) [57] | Portugal | Review | Policy makers and researchers |
Panwar P et al. (2014) [25] | India | Quantitative study | Agroforestry plantations |
Noeldeke B et al. (2020) [68] | Rwanda | Quantitative study | Agroforestry sector |
Viet N Q et al. (2018) [69] | Netherland | Quantitative study | Agrofood industrial sector |
Chen Q et al. (2015) [38] | Brazil | Quantitative study | Agroforestry industry |
Negash & Kanninen (2015) [35] | Ethopia | Quantitative study | Agroforestry industry |
References
- Zandi, A.N.; Labadie, N.; Prins, C. Modeling and optimization of biomass supply chains: A review and a critical look. IFAC-Pap. 2016, 49, 604–615. [Google Scholar]
- Wu, J.; Zhang, J.; Yi, W.; Cai, H.; Li, Y.; Su, Z. Agri-biomass supply chain optimization in north China: Model development and application. Energy 2022, 239, 122374. [Google Scholar] [CrossRef]
- Basile, F.; Pilotti, L.; Marco, U.; Lozza, G.; Manzolini, G. Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden. Renew. Energy 2022, 196, 405–421. [Google Scholar] [CrossRef]
- Casau, M.; Dias, M.F.; Matias, J.C.O.; Nunes, L.J.R. Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach. Resources 2022, 11, 35. [Google Scholar] [CrossRef]
- Enes, T.; Aranha, J.; Fonseca, T.; Matos, C.; Barros, A.; Lousada, J. Residual Agroforestry Biomass–Thermochemical Properties. Forests 2019, 10, 1072. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Poczai, P. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Salehi, S.; Mehrjerdi, Y.Z.; Sadegheih, A.; Hosseini-Nasab, H. Designing a resilient and sustainable biomass supply chain network through the optimization approach under uncertainty and the disruption. J. Clean. Prod. 2022, 359, 131741. [Google Scholar] [CrossRef]
- Tohamy, N. Combine Simulation and Optimization for More Effective Supply Chain Modeling; Gartner Report; Gartner: Stamford, CT, USA, 2014. [Google Scholar]
- Bascietto, M.; Sperandio, G.; Bajocco, S. Efficient estimation of biomass from residual agroforestry. ISPRS Int. J. Geo-Inf. 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Kuyah, S.; Sileshi, G.W.; Luedeling, E.; Akinnifesi, F.K.; Whitney, C.W.; Bayala, J.; Mafongoya, P.L. Potential of agroforestry to enhance livelihood security in Africa. Agrofor. Degrad. Landsc. Recent Adv. Emerg. Chall. 2020, 1, 135–167. [Google Scholar]
- Enes, T.; Aranha, J.; Fonseca, T.; Lopes, D.; Alves, A.; Lousada, J. Thermal Properties of Residual Agroforestry Biomass of Northern Portugal. Energies 2019, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Martínez, I.; Callen, M.S.; Grasa, G.; López, J.M.; Murillo, R. Sorption-enhanced gasification (SEG) of agroforestry residues: Influence of feedstock and main operating variables on product gas quality. Fuel Process. Technol. 2022, 226, 107074. [Google Scholar] [CrossRef]
- Peter, B.; Niquidet, K. Estimates of residual fibre supply and the impacts of new bioenergy capacity from a forest sector transportation model of the Canadian Prairie Provinces. For. Policy Econ. 2016, 69, 62–72. [Google Scholar] [CrossRef]
- Parthiban, K.T.; Fernandaz, C.C.; Vishnu, M.J. Agroforestry for sustaining industrial raw materials: Experience from a value chain leveraged consortium model. In Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa; Springer: Singapore, 2023; pp. 759–778. [Google Scholar]
- Rijal, P.; Carvalho, H.; Matias, J.; Garrido, S.; Pimentel, C. Towards a Conceptual Framework for Agroforestry Residual Biomass Sustainable Business Models. In Quality Innovation and Sustainability: 3rd ICQIS, Aveiro University, Portugal, May 3–4, 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 211–221. [Google Scholar]
- Torreiro, Y.; Pérez, L.; Piñeiro, G.; Pedras, F.; Rodríguez-Abalde, A. The role of energy valuation of agroforestry biomass on the circular economy. Energies 2020, 13, 2516. [Google Scholar] [CrossRef]
- Kang, K.; Klinghoffer, N.B.; El Ghamrawy, I.; Berruti, F. Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products. Renew. Sustain. Energy Rev. 2021, 149, 111372. [Google Scholar] [CrossRef]
- Piqueiro, H.; de Sousa, J.P.; Santos, R.; Gomes, R. Mitigating Biomass Supply Chain Uncertainty through Discrete Event Simulation. In Proceedings of the 5th European International Conference on Industrial Engineering and Operations Management, Rome, Italy, 26–28 July 2022. [Google Scholar]
- Costa, M.; Piazzullo, D.; Di Battista, D.; De Vita, A. Sustainability assessment of the whole biomass-to-energy chain of a combined heat and power plant based on biomass gasification: Biomass supply chain management and life cycle assessment. J. Environ. Manag. 2022, 317, 115434. [Google Scholar] [CrossRef]
- Blair, M.J.; Gagnon, B.; Klain, A.; Kulišic, B. Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land 2021, 10, 181. [Google Scholar] [CrossRef]
- Toka, A.; Iakovou, E.; Vlachos, D. Biomass supply chain management for energy polygeneration systems. In Proceedings of the 1st Olympus International Conference on Supply Chains, Katerini, Greece, 1–2 October 2010. [Google Scholar]
- Hu, H.; Lin, T.; Wang, S.; Rodriguez, L.F. A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization. Appl. Energy 2017, 203, 26–40. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Vance, J.; Wang, Y.; Wu, J.; Hartley, D. Data analytics for enhancement of forest and biomass supply chain management. Curr. For. Rep. 2020, 6, 129–142. [Google Scholar] [CrossRef]
- Sharma, B.; Ingalls, R.G.; Jones, C.L.; Khanchi, A. Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renew. Sustain. Energy Rev. 2013, 24, 608–627. [Google Scholar] [CrossRef]
- Panwar, P.; Pal, S.; Bhatt, V.K.; Prasad, R.; Kaushal, R.; Alam, N.M. Fractal branching model for non-destructive biomass estimation in Terminalia chebula and Emblica officinalis agroforestry plantations. Int. J. Bio-Resour. Stress Manag. 2014, 5, 326–332. [Google Scholar] [CrossRef]
- Ba, B.H.; Prins, C.; Prodhon, C. Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renew. Energy 2016, 87, 977–989. [Google Scholar] [CrossRef]
- Králík, T.; Knápek, J.; Vávrová, K.; Outrata, D.; Romportl, D.; Horák, M.; Jandera, J. Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential–A case study of the Czech Republic. Renew. Sustain. Energy Rev. 2023, 173, 113120. [Google Scholar] [CrossRef]
- Ahmadvand, S.; Sowlati, T. A robust optimization model for tactical planning of the forest-based biomass supply chain for syngas production. Comput. Chem. Eng. 2022, 159, 107693. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Golroudbary, S.R.; Shiwakoti, N.; Stasinopoulos, P.; Kraslawski, A. Economic and environmental assessment of biomass supply chain for design of transportation modes: Strategic and tactical decisions point of view. Procedia CIRP 2021, 100, 780–785. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Revs. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Maffini, A.; Morando, M.; Saba, A.; Bonvicini, G.; Fabiano, B. Valorization of Biomass from Dairy Wastes: Integrated Resources and Energy Recovery. Chem. Eng. Trans. 2023, 98, 99–104. [Google Scholar] [CrossRef]
- Nunes, L.J.; Casau, M.; Dias, M.F.; Matias, J.C.O.; Teixeira, L.C. Agroforest woody residual biomass-to-energy supply chain analysis: Feasible and sustainable renewable resource exploitation for an alternative to fossil fuels. Results Eng. 2023, 17, 101010. [Google Scholar] [CrossRef]
- Duarte, G.B.; Guimarães, C.S.; Molin, J.P.; Rabelo, G.F.; Carvalho, A.M.; Pinto, F.A. Identifying key performance indicators to evaluate the feasibility of agroforestry systems in Brazil. J. Clean. Prod. 2021, 288, 125523. [Google Scholar]
- Negash, M.; Kanninen, M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agric. Ecosyst. Environ. 2015, 203, 147–155. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, Y.; Wang, S.; Liu, F.; Xu, C.; Zhang, T. Study on location decision framework of agroforestry biomass cogeneration project: A case of China. Biomass Bioenergy 2019, 127, 105289. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.K.; Wang, J.Q.; Li, J.B.; Li, L. Decision support framework for the risk ranking of agroforestry biomass power generation projects with picture fuzzy information. J. Intell. Fuzzy Syst. 2020, 39, 4631–4650. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, D.; Keller, M.; Dos-Santos, M.N.; Bolfe, E.L.; Feng, Y.; Wang, C. Modeling and mapping agroforestry aboveground biomass in the Brazilian Amazon using airborne lidar data. Remote Sens. 2015, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Manolis, E.N.; Zagas, T.D.; Poravou, C.A.; Zagas, D.T. Biomass assessment for sustainable bioenergy utilization in a Mediterranean forest ecosystem in northwest Greece. Ecol. Eng. 2016, 91, 537–544. [Google Scholar] [CrossRef]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Schuenemann, F.; Msangi, S.; Zeller, M. Policies for a sustainable biomass energy sector in Malawi: Enhancing energy and food security simultaneously. World Dev. 2018, 103, 14–26. [Google Scholar] [CrossRef]
- Mobini, M.; Sowlati, T.; Sokhansanj, S. A simulation model for the design and analysis of wood pellet supply chains. Appl. Energy 2013, 111, 1239–1249. [Google Scholar] [CrossRef]
- Santibañez-Aguilar, J.E.; Lozano-García, D.F.; Lozano, F.J.; Flores-Tlacuahuac, A. Sequential use of geographic information system and mathematical programming for optimal planning for energy production systems from residual biomass. Ind. Eng. Chem. Res. 2019, 58, 15818–15837. [Google Scholar] [CrossRef]
- Hong, B.H.; How, B.S.; Lam, H.L. Overview of sustainable biomass supply chain: From concept to modelling. Clean Technol. Environ. Policy 2016, 18, 2173–2194. [Google Scholar] [CrossRef]
- Guzmán-Bello, H.; López-Díaz, I.; Aybar-Mejía, M.; de Frias, J.A. A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic. Sustainability 2022, 14, 3868. [Google Scholar] [CrossRef]
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to manage and optimize forest biomass supply chains: A review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- Akhtari, S.; Sowlati, T.; Griess, V.C. Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations. Appl. Energy 2018, 213, 626–638. [Google Scholar] [CrossRef]
- Lo, S.L.Y.; How, B.S.; Leong, W.D.; Teng, S.Y.; Rhamdhani, M.A.; Sunarso, J. Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 135, 110164. [Google Scholar] [CrossRef]
- Balaman, Ş.Y.; Selim, H. A decision model for cost effective design of biomass based green energy supply chains. Bioresour. Technol. 2015, 191, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Den Herder, M.; Kolström, M.; Lindner, M.; Suominen, T.; Tuomasjukka, D.; Pekkanen, M. Sustainability Impact Assessment on the Production and Use of Different Wood and Fossil Fuels Employed for Energy Production in North Karelia, Finland. Energies 2012, 5, 4870–4891. [Google Scholar] [CrossRef]
- Ahmadvand, S.; Khadivi, M.; Arora, R.; Sowlati, T. Bi-objective optimization of forest-based biomass supply chains for minimization of costs and deviations from safety stock. Energy Convers. Manag. X 2021, 11, 10010. [Google Scholar] [CrossRef]
- Paulo, H.; Azcue, X.; Barbosa-Póvoa, A.P.; Relvas, S. Supply chain optimization of residual forestry biomass for bioenergy production: The case study of Portugal. Biomass Bioenergy 2015, 83, 245–256. [Google Scholar] [CrossRef]
- Albashabsheh, N.T.; Stamm, J.L.H. Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: Literature review. Biomass Bioenergy 2021, 144, 105888. [Google Scholar] [CrossRef]
- Wolfsmayr, U.J.; Rauch, P. The primary forest fuel supply chain: A literature review. Biomass Bioenergy 2014, 60, 203–221. [Google Scholar] [CrossRef]
- Ji, L.; Zheng, Z.; Huang, Y.; Xie, Y.; Sun, L.; Huang, G. An integrated decision support method for strategic planning and tactical management of regional biomass power plants under uncertainties. J. Clean. Prod. 2023, 388, 135968. [Google Scholar] [CrossRef]
- Dominguez, R.; Cannella, S. Insights on multi-agent systems applications for supply chain management. Sustainability 2020, 12, 1935. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Dashtpeyma, M.; Ghodsi, R. Forest biomass and bioenergy supply chain resilience: A systematic literature review on the barriers and enablers. Sustainability 2021, 13, 6964. [Google Scholar] [CrossRef]
- Moretti, L.; Milani, M.; Lozza, G.G.; Manzolini, G. A detailed MILP formulation for the optimal design of advanced biofuel supply chains. Renew. Energy 2021, 171, 159–175. [Google Scholar] [CrossRef]
- Al Mashalah, H.; Hassini, E.; Gunasekaran, A.; Bhatt, D. The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework. Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102837. [Google Scholar] [CrossRef]
- 62 Kraft, P.; Rezaei, E.E.; Breuer, L.; Ewert, F.; Große-Stoltenberg, A.; Kleinebecker, T.; Nendel, C. Modelling Agroforestry’s contributions to people—A review of available models. Agronomy 2021, 11, 2106. [Google Scholar] [CrossRef]
- Jazinaninejad, M.; Nematollahi, M.; Zamenjani, A.S.; Tajbakhsh, A. Sustainable operations, managerial decisions, and quantitative analytics of biomass supply chains: A systematic literature review. J. Clean. Prod. 2022, 374, 133889. [Google Scholar] [CrossRef]
- Sarkar, B.; Mridha, B.; Pareek, S.; Sarkar, M.; Thangavelu, L. A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. J. Clean. Prod. 2021, 317, 128079. [Google Scholar] [CrossRef]
- Grip, C.E.; Toffolo, A.; Östman, M.; Sandberg, E.; Orre, J. Forestry meets Steel: A system study of the possibility to produce DRI (directly Reduced Iron) using gasified biomass. In Proceedings of the International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Pau, France, 29 June–3 July 2015. [Google Scholar]
- Guo, J.X.; Tan, X.; Gu, B.; Zhu, K. Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation. Renew. Energy 2022, 190, 1055–1065. [Google Scholar] [CrossRef]
- Sun, O.; Fan, N. A review on optimization methods for biomass supply chain: Models and algorithms, sustainable issues, and challenges and opportunities. Process Integr. Optim. Sustain. 2020, 4, 203–226. [Google Scholar] [CrossRef]
- Noeldeke, B.; Winter, E.; Ntawuhiganayo, E.B. Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda. Ecol. Econ. 2022, 200, 107529. [Google Scholar] [CrossRef]
- Viet, N.Q.; Behdani, B.; Bloemhof, J. Value of information to improve daily operations in high-density logistics. Int. J. Food Syst. Dyn. 2018, 9, 1012–2018-4106. [Google Scholar]
- Santibañez-Aguilar, J.E.; Flores-Tlacuahuac, A.; Betancourt-Galvan, F.; Lozano-García, D.F.; Lozano, F.J. Facilities location for residual biomass production system using geographic information system under uncertainty. ACS Sustain. Chem. Eng. 2018, 6, 3331–3348. [Google Scholar] [CrossRef]
- De Menna, F.; Malagnino, R.A.; Vittuari, M.; Segrè, A.; Molari, G.; Deligios, P.A.; Ledda, L. Optimization of agricultural biogas supply chains using artichoke byproducts in existing plants. Agric. Syst. 2018, 165, 137–146. [Google Scholar] [CrossRef]
- Natarajan, K.; Leduc, S.; Pelkonen, P.; Tomppo, E.; Dotzauer, E. Optimal locations for second generation Fischer Tropsch biodiesel production in Finland. Renew. Energy 2014, 62, 319–330. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Smith, W.A.; Wahlen, B.D.; Wendt, L.M. Total and sustainable utilization of biomass resources: A perspective. Front. Bioeng. Biotechnol. 2020, 8, 546. [Google Scholar] [CrossRef]
- Kain, R.; Verma, A. Logistics management in supply chain–an overview. Mater. Today Proc. 2018, 5, 3811–3816. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, F.; Wu, Y.R. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. Sci. Total Environ. 2021, 784, 147024. [Google Scholar] [CrossRef]
- Jahani, H.; Gholizadeh, H.; Hayati, Z.; Fazlollahtabar, H. Investment risk assessment of the biomass-to-energy supply chain using system dynamics. Renew. Energy 2023, 203, 554–567. [Google Scholar] [CrossRef]
- Al-Bawwat, A.A.K.; Jurado, F.; Gomaa, M.R.; Cano, A. Availability and the possibility of employing wastes and biomass materials energy in Jordan. Sustainability 2023, 15, 5879. [Google Scholar] [CrossRef]
- Korpinen, O.J.; Aalto, M.; Kc, R.; Tokola, T.; Ranta, T. Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review. Energies 2023, 16, 893. [Google Scholar] [CrossRef]
- Sahoo, S.; van Stralen, J.N.; Zuidema, C.; Sijm, J.; Faaij, A. Regionally integrated energy system detailed spatial analysis: Groningen Province case study in the northern Netherlands. Energy Convers. Manag. 2023, 277, 116599. [Google Scholar] [CrossRef]
- Wolff, M.; Becker, T.; Walther, G. Long-term design and analysis of renewable fuel supply chains–An integrated approach considering seasonal resource availability. Eur. J. Oper. Res. 2023, 304, 745–762. [Google Scholar] [CrossRef]
- Fattahi, M.; Govindan, K.; Farhadkhani, M. Sustainable supply chain planning for biomass-based power generation with environmental risk and supply uncertainty considerations: A real-life case study. Int. J. Prod. Res. 2021, 59, 3084–3108. [Google Scholar] [CrossRef]
- Lo, S.L.Y.; How, B.S.; Teng, S.Y.; Lam, H.L.; Lim, C.H.; Rhamdhani, M.A.; Sunarso, J. Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties. Renew. Sustain. Energy Rev. 2021, 152, 111644. [Google Scholar] [CrossRef]
- Durmaz, Y.G.; Bilgen, B. Multi-objective optimization of sustainable biomass supply chain network design. Appl. Energy 2020, 272, 115259. [Google Scholar] [CrossRef]
- Muerza, V.; Urciuoli, L.; Habas, S.Z. Enabling the circular economy of bio-supply chains employing integrated biomass logistics centers-A multi-stage approach integrating supply and production activities. J. Clean. Prod. 2023, 384, 135628. [Google Scholar] [CrossRef]
- Gheewala, S.H. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biofuel Res. J. 2023, 10, 1810–1815. [Google Scholar] [CrossRef]
- Spinti, J.P.; Smith, P.J.; Smith, S.T.; Díaz-Ibarra, O.H. Atikokan Digital Twin, Part B: Bayesian decision theory for process optimization in a biomass energy system. Appl. Energy 2023, 334, 120625. [Google Scholar] [CrossRef]
- Liu, Z.; Hansen, D.W.; Chen, Z. Leveraging Digital Twins to Support Industrial Symbiosis Networks: A Case Study in the Norwegian Wood Supply Chain Collaboration. Sustainability 2023, 15, 2647. [Google Scholar] [CrossRef]
- Hemdan, E.E.D.; El-Shafai, W.; Sayed, A. Integrating Digital Twins with IoT-Based Blockchain: Concept, Architecture, Challenges, and Future Scope. Wirel. Pers. Commun. 2023, 023-10538-6, 1–24. [Google Scholar] [CrossRef]
Journal | SJR | Number of Articles |
---|---|---|
Energies | Q1 | 4 |
Renewable Energy | Q1 | 4 |
Biomass & Bioenergy | Q1 | 3 |
IFAC online | Q3 | 3 |
Journal of Clean Technology | Q1 | 2 |
Applied Energy | Q1 | 2 |
Forest Policy & Economics | Q1 | 2 |
Renewable and Sustainable Energy | Q1 | 2 |
Agricultural Systems | Q1 | 2 |
Sustainability | Q1 | 1 |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster_5 |
---|---|---|---|---|
Biofuel | Biomass | Advanced biofuels | Agroforestry | Bioenergy |
Biomass supply chain | Decision support systems | Biomass energy | Allometry | Sensitivity analysis |
Energy | Logistics | Optimization | Modeling | Supply chain optimization |
Gasification | Modelling | Residual biomass | Simulation | |
Sustainability | Supply chain | Supply chain design | Supply chain management | |
Uncertainty | ||||
Sustainability | Supply chain | Supply chain design | Supply chain management | |
Uncertainty |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chidozie, B.C.; Ramos, A.L.; Ferreira, J.V.; Ferreira, L.P. Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review. Sustainability 2023, 15, 9992. https://doi.org/10.3390/su15139992
Chidozie BC, Ramos AL, Ferreira JV, Ferreira LP. Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review. Sustainability. 2023; 15(13):9992. https://doi.org/10.3390/su15139992
Chicago/Turabian StyleChidozie, Bernardine Chigozie, Ana Luísa Ramos, José Vasconcelos Ferreira, and Luís Pinto Ferreira. 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review" Sustainability 15, no. 13: 9992. https://doi.org/10.3390/su15139992
APA StyleChidozie, B. C., Ramos, A. L., Ferreira, J. V., & Ferreira, L. P. (2023). Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review. Sustainability, 15(13), 9992. https://doi.org/10.3390/su15139992