Insights on the Performance of Nickel Foam and Stainless Steel Foam Electrodes for Alkaline Water Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the Redox Behavior of the Electrodes
3.2. Study of the HER/OER from the Tafel Analysis
3.2.1. HER
3.2.2. OER
3.3. Stability Tests
3.4. Determination of the ECSA
3.5. Overall Water Electrolysis Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, M.; Ocampo-Martínez, C.; Sánchez-Peña, R. Advances in alkaline water electrolyzers: A review. J. Energy Storage 2019, 23, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Communication COM/2020/301: A Hydrogen Strategy for a Climate-Neutral Europe. Available online: https://knowledge4policy.ec.europa.eu/publication/communication-com2020301-hydrogen-strategy-climate-neutral-eulrope_en (accessed on 27 May 2021).
- Rashid, M.M.; Al Mesfer, M.K.; Naseem, H.; Danish, M. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 2249–8958. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.673.5912&rep=rep1&type=pdf (accessed on 2 May 2021).
- Da Silva Veras, T.; Mozer, T.S.; dos Santos, D.d.C.R.M.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. Int. J. Hydrogen Energy 2017, 42, 2018–2033. [Google Scholar] [CrossRef]
- IEA: Hydrogen—Tracking Energy Integration. Available online: https://www.iea.org/reports/hydrogen (accessed on 3 August 2021).
- IRENA, Hydrogen from Renewable Power: Technology Outlook for the Energy Transition, International Renewable Energy Agency 2018. Available online: https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power (accessed on 10 June 2021).
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Alahmer, A.; Sayed, E.T. Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization. J. Mar. Sci. Eng. 2023, 11, 617. [Google Scholar] [CrossRef]
- Arcos, J.M.M.; Santos, D.M.F. The hydrogen color spectrum: Techno-economic analysis of the available technologies for hydrogen production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Ferreira, A.P.R.A.; Oliveira, R.C.P.; Mateus, M.M.; Santos, D.M.F. A review of the use of electrolytic cells for energy and environmental applications. Energies 2023, 16, 1593. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite-based electrocatalysts for cost-effective ultrahigh-current-density water splitting in anion exchange membrane electrolyzer cell. Small Methods 2022, 6, 2201099. [Google Scholar] [CrossRef]
- Xu, X.; Shao, Z.; Jiang, S.P. High-entropy materials for water electrolysis. Energy Technol. 2022, 10, 2200573. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 2023, e12441. [Google Scholar] [CrossRef]
- Sengupta, D.; Privitera, S.M.S.; Milazzo, R.G.; Bongiorno, C.; Scalese, S.; Lombardo, S. Ni foam electrode solution impregnated with Ni-FeX(OH)Y catalysts for efficient oxygen evolution reaction in alkaline electrolyzers. RSC Adv. 2020, 10, 25426–25434. [Google Scholar] [CrossRef]
- Kjartansdóttir, C.K.; Moller, P. Development of Hydrogen Electrodes for Alkaline Water Electrolysis. Doctoral Thesis, Technical University of Denmark, Lyngby, Denmark, 2014. [Google Scholar]
- Pletcher, D.; Li, X. Prospects for alkaline zero gap water electrolysers for hydrogen production. Int. J. Hydrogen Energy 2011, 36, 15089–15104. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Wang, D.Y.; Chen, C.C.; Hwang, B.J.; Dai, H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46. [Google Scholar] [CrossRef]
- Santos, A.L.; Cebola, M.-J.; Santos, D.M.F. Towards the hydrogen economy—A review of the parameters that influence the efficiency of alkaline water electrolyzers. Energies 2021, 14, 3193. [Google Scholar] [CrossRef]
- Milazzo, R.G.; Privitera, S.M.S.; D’Angelo, D.; Scalese, S.; Di Franco, S.; Maita, F.; Lombardo, S. Spontaneous galvanic displacement of Pt nanostructures on nickel foam: Synthesis, characterization and use for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 7903–7910. [Google Scholar] [CrossRef]
- Milazzo, R.G.; Privitera, S.M.S.; Scalese, S.; Monforte, F.; Bongiorno, C.; Condorelli, G.G.; Lombardo, S.A. Ultralow loading electroless deposition of IrOx on nickel foam for efficient and stable water oxidation catalysis. Int. J. Hydrogen Energy 2020, 45, 26583–26594. [Google Scholar] [CrossRef]
- Hu, X.; Tian, X.; Lin, Y.W.; Wang, Z. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Adv. 2019, 9, 31563–31571. [Google Scholar] [CrossRef]
- Yu, F.; Li, F.; Sun, L. Stainless steel as an efficient electrocatalyst for water oxidation in alkaline solution. Int. J. Hydrogen Energy 2016, 41, 5230–5233. [Google Scholar] [CrossRef]
- Sadaf, S.; Walder, L.; Kuepper, K.; Dinklage, S.; Wollschläger, J.; Schneider, L.; Hardege, J.; Daum, D.; Schäfer, H.; Steinhart, M. Stainless steel made to rust: A robust water-splitting catalyst with benchmark characteristics. Energy Environ. Sci. 2015, 8, 2685–2697. [Google Scholar]
- Colli, A.N.; Girault, H.H.; Battistel, A. Non-Precious Electrodes for Practical Alkaline Water Electrolysis. Materials 2019, 12, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekspong, J.; Wågberg. Stainless Steel as A Bi-Functional Electrocatalyst—A Top-Down Approach. Materials 2019, 12, 2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, R.; Dunnill, C.W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas. RSC Adv. 2016, 6, 100643–100651. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.J.; Wang, Z.L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Sequeira, C.A.C.; Santos, D.M.F.; Šljukić, B.; Amaral, L. Physics of electrolytic gas evolution. Braz. J. Phys. 2013, 43, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- An Electrochemistry Resource for Reference Electrodes, Electrochemical Impedance Instrumentation. Available online: http://www.consultrsr.net/resources/ref/calomelpotl.htm (accessed on 20 May 2021).
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 2016, 128, 6814–6819. [Google Scholar] [CrossRef]
- Cossar, E.; Houache, M.S.E.; Zhang, Z.; Baranova, E.A. Comparison of electrochemical active surface area methods for various nickel nanostructures. J. Electroanal. Chem. 2020, 870, 114246. [Google Scholar] [CrossRef]
- Ohmic Drop Part 2—Measurements, Metrohm Autolab B.V. Available online: http://www.autolabj.com/appl.files/appl%20note2015/Autolab_Application_Note_EC04.pdf (accessed on 25 January 2023).
- Woo, A.L.-W. Conductance Studies of Concentrated Solutions of Sodium Hydroxide and Potassium Hydroxide Electrolytes. Master Thesis, South Dakota State University, Brookings, SD, USA, 1968. Available online: https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=4547&context=etd (accessed on 3 August 2021).
- Hall, D.S. An Electrochemical and Spectroscopic Investigation of Nickel Electrodes in Alkaline Media for Applications in Electrocatalysis. Doctoral Thesis, Cambridge University, Cambridge, UK, 2015. Available online: https://www.researchgate.net/publication/272786543_An_Electrochemical_and_Spectroscopic_Investigation_of_Nickel_Electrodes_in_Alkaline_Media_for_Applications_in_Electro-Catalysis (accessed on 20 May 2021).
- Zouhri, K.; Lee, S.-Y. Evaluation and optimization of the alkaline water electrolysis ohmic polarization: Exergy study. Int. J. Hydrogen Energy 2016, 41, 7253–7263. [Google Scholar] [CrossRef]
- Díaz, B.; Freire, L.; Montemor, M.F.; Nóvoa, X.R. Oxide film growth by CSV on AISI 316L: A combined electrochemical and analytical characterization. J. Braz. Chem. Soc. 2013, 24, 1246–1258. [Google Scholar] [CrossRef]
- Pierozynski, B.; Mikolajczyk, T. On the temperature dependence of hydrogen evolution reaction at nickel foam and Pd-modified nickel foam catalysts. Electrocatalysis 2014, 6, 51–59. [Google Scholar] [CrossRef]
- Siwek, K.I.; Eugénio, S.; Santos, D.M.F.; Silva, M.T.; Montemor, M.F. 3D nickel foams with controlled morphologies for hy-drogen evolution reaction in highly alkaline media. Int. J. Hydrogen Energy 2019, 44, 1701–1709. [Google Scholar] [CrossRef]
- Jamesh, M.I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalysts for overall water splitting in alkaline media. J. Power Sources 2016, 333, 213–236. [Google Scholar] [CrossRef]
- Cardoso, D.S.P.; Amaral, L.; Santos, D.M.F.; Šljukić, B.; Sequeira, C.A.C.; Macciò, D.; Saccone, A. Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. Int. J. Hydrogen Energy 2015, 40, 4295–4302. [Google Scholar] [CrossRef]
- Zhang, G.R.; Shen, L.L.; Schmatz, P.; Krois, K.; Etzold, B.J.M. Cathodic activated stainless steel mesh as a highly active electrocatalyst for the oxygen evolution reaction with self-healing possibility. J. Energy Chem. 2020, 49, 153–160. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Singh, A.K.-L.; Singh, R.N. Studies on the electrocatalytic properties of some austenitic stainless steels for oxygen evolution in an alkaline medium. J. Electroanal. Chem. Interfacial Electrochem. 1991, 319, 263–274. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, Y.; Sun, J.; He, R.; Chen, S.; Chu, C.-W.; Ren, Z. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 2017, 114, 5607–5611. [Google Scholar] [CrossRef]
T/°C | ĸ/S cm−1 [36] | RNF/Ω | RSSF/Ω |
---|---|---|---|
25 | 0.2646 | 0.3784 | 0.8234 |
35 | 0.3592 | 0.2788 | 0.6066 |
45 | 0.4992 | 0.2006 | 0.4364 |
55 | 0.6373 | 0.1571 | 0.3419 |
65 | 0.8008 | 0.1251 | 0.2721 |
80 | 0.9845 | 0.1017 | 0.2213 |
T/°C | 35 | 45 | 55 | 65 | 80 |
---|---|---|---|---|---|
b/mV dec−1 | 118 | 128 | 152 | 165 | 225 |
αc/V | 0.52 | 0.49 | 0.41 | 0.38 | 0.28 |
j0/mA cm−2 | 0.041 | 0.081 | 0.342 | 0.717 | 6.058 |
R2 | 0.997 | 1.00 | 1.00 | 0.999 | 1.00 |
ηonset/mV | 205 | 200 | 190 | 160 | 75 |
Electrode | Electrolyte | T/°C | j/ mA cm−2 | ηHER/mV | b/ mV dec−1 | Stability | Source |
---|---|---|---|---|---|---|---|
NF | 10 M NaOH | 35 | onset | 205 | 118 | stable E of ca. −700 mV at −50 mA cm−2 for 16 h | this work |
NF | 10 M NaOH | 80 | onset | 75 | 225 | - | this work |
NF | 1 M KOH | RT | −10 | 217 | 130 | stable E of ca. −400 mV at −50 mA cm−2 for 20 h | [23] |
NF | 0.1 M NaOH | 20 | - | - | 137 | - | [40] |
NF | 0.1 M NaOH | 60 | - | - | 222 | - | [40] |
Ni | 8 M KOH | RT | onset | 210 | 98 | stable j of ca. −17.5 mA cm−2 at −350 mV for ca. 4 h | [41] |
Aged Ni | 6 M KOH | 30 | −10 | 170 | - | - | [26] |
Aged Ni | 6 M KOH | 75 | −10 | 150 | - | - | [26] |
Ni mesh | 1 M KOH | RT | −10 | 275 | 143 | - | [23] |
NF@SS3 | 8 M KOH | RT | onset | 130 | 160 | stable j of ca. −130 mA cm−2 at −350 mV for ca. 4 h | [41] |
Pt/C | 1 M KOH | RT | −10 | 33 | 30 | - | [42] |
T/°C | 35 | 45 | 55 | 65 | 80 |
---|---|---|---|---|---|
b/mV dec−1 | 101 | 51 | 44 | 41 | 34 |
αa/V | 0.30 | 0.62 | 0.74 | 0.79 | 0.94 |
j0/mA cm−2 | 1.021 × 10−1 | 1.943 × 10−4 | 2.263 × 10−5 | 5.850 × 10−6 | 2.088 × 10−7 |
R2 | 0.998 | 0.989 | 0.993 | 0.997 | 0.993 |
ηonset/mV | 240 | 260 | 270 | 280 | 290 |
Electrode | Electrolyte | T/°C | j/ mA cm−2 | b/ mV dec−1 | Stability | Source | |
---|---|---|---|---|---|---|---|
SSF | 10 M NaOH | 35 | onset | 230 | 101 | variation of ca. 60 mV at 50 mA cm−2 for 16 h | this work |
SSF | 10 M NaOH | 80 | onset | 290 | 34 | - | this work |
316L SS | 1 M KOH | RT | 10 | 370 | 30 | stable ηOER during 25 h and stable j of ca. 17 mA cm−2 at 1.63 V for 25 h | [24] |
Polished 316L SS | 6 M KOH | 30 | 10 | 295 | - | - | [26] |
Polished 316L SS | 6 M KOH | 75 | 10 | 260 | - | - | [26] |
Cathodic activated SSM | 1 M KOH | RT | 10 | 275 | 70 | roughly stable E of 1.6 V at 10 mA cm−2 for 15 h | [43] |
SSM | 1 M KOH | RT | 10 | 277 | 51 | stable E of 1.6 V at 50 mA cm−2 for 20 h | [23] |
302 SS | 1 M KOH | 25 | 6.3 | 400 | 33 | stable E of 1.67 V at 25 mA cm−2 for over 40 h | [45] |
IrO2 | 1 M KOH | RT | 10 | 330 | 76 | - | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.L.; Cebola, M.J.; Antunes, J.; Santos, D.M.F. Insights on the Performance of Nickel Foam and Stainless Steel Foam Electrodes for Alkaline Water Electrolysis. Sustainability 2023, 15, 11011. https://doi.org/10.3390/su151411011
Santos AL, Cebola MJ, Antunes J, Santos DMF. Insights on the Performance of Nickel Foam and Stainless Steel Foam Electrodes for Alkaline Water Electrolysis. Sustainability. 2023; 15(14):11011. https://doi.org/10.3390/su151411011
Chicago/Turabian StyleSantos, Ana L., Maria João Cebola, Jorge Antunes, and Diogo M. F. Santos. 2023. "Insights on the Performance of Nickel Foam and Stainless Steel Foam Electrodes for Alkaline Water Electrolysis" Sustainability 15, no. 14: 11011. https://doi.org/10.3390/su151411011
APA StyleSantos, A. L., Cebola, M. J., Antunes, J., & Santos, D. M. F. (2023). Insights on the Performance of Nickel Foam and Stainless Steel Foam Electrodes for Alkaline Water Electrolysis. Sustainability, 15(14), 11011. https://doi.org/10.3390/su151411011