Correlation between the Experimental and Theoretical Photoelectrochemical Response of a WO3 Electrode for Efficient Water Splitting through the Implementation of an Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of WO3 Thin Films
2.2. Sample Characterization
2.3. Artificial Neural Network (ANN) Model Development
3. Results and Discussion
3.1. Electrochemical Study of WO3 Thin Films
3.2. Morphological Analysis
3.2.1. Thickness Measurement
3.2.2. Microscopic Surface Assessment
3.3. XRD Analysis
3.4. Optical Properties
3.5. Electrochemical Performance
3.5.1. Electrochemical Impedance Spectroscopy (EIS)
3.5.2. Photoelectrochemical Study
3.6. ANN Modeling of the Photocurrent
3.6.1. LMANN
3.6.2. SCGANN
3.6.3. Comparative Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Josny, J.; Jinu, M.; Soney, C.G. Nanomaterials for photoelectrochemical water splitting review. Int. J. Hydrogen Energy 2018, 43, 4804–4817. [Google Scholar]
- Eidsvag, H.; Bentouba, S.; Vajeeston, P.; Yohi, S.; Velauthapillai, D. TiO2 as a photocatalyst for water splitting-an experimental and theoretical review. Molecules 2021, 26, 1687. [Google Scholar] [CrossRef]
- Ma, M.; Huang, Y.; Liu, J.; Liu, K.; Wang, Z.; Zhao, C.; Qu, S.; Wang, Z. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. J. Semicond. 2020, 41, 091702. [Google Scholar] [CrossRef]
- Najaf, Z.; Nguyen, D.L.T.; Chae, S.Y.; Joo, O.S.; Shah, A.U.H.A.; Vo, D.V.N.; Nguyen, V.H.; Le, Q.V.; Rahman, G. Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. Int. J. Hydrogen Energy 2021, 46, 23334–23357. [Google Scholar] [CrossRef]
- Jian, J.; Xu, Y.; Yang, X.; Liu, W.; Fu, M.; Yu, H.; Xu, F.; Feng, F.; Jia, L.; Friedrich, D.; et al. Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 2019, 10, 2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondolini, A.; Sangiorgi, N.; Sangiorgi, A.; Sanson, A. Photoelectrochemical Hydrogen Production by Screen-Printed Copper Oxide Electrodes. Energies 2021, 14, 2942. [Google Scholar] [CrossRef]
- Kalanur, S.; Duy, L.T.; Seo, H. Recent Progress in Photoelectrochemical Water Splitting Activity of WO3 Photoanodes. Top. Catal. 2018, 61, 1043–1076. [Google Scholar] [CrossRef]
- Kalanur, S.S. Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped WO3. Catalysts 2019, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Kalanoor, B.S.; Seo, H.; Kalanur, S.S. Recent developments in photoelectrochemical water-splitting using WO3/BiVO4 heterojunction photoanode: A review. Mater. Sci. Energy Technol. 2018, 1, 49–62. [Google Scholar]
- Zhu, T.; Chong, M.N.; Chan, S. Nanostructured Tungsten Trioxide Thin Films Synthesized for Photoelectrocatalytic Water Oxidation: A review. ChemSusChem 2014, 7, 2974–2997. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.S.; Go, G.H.; Lee, W.J. Multilayered large-area WO3 films on sheet and mesh-type stainless steel substrates for photoelectrochemical hydrogen generation. Int. J. Energy Res. 2011, 37, 323–330. [Google Scholar] [CrossRef]
- Lamouchi, A.; Ben Assaker, I.; Chtourou, R. Enhanced photoelectrochemical activity of MoS2-decorated ZnO nanowires electrodeposited onto stainless steel mesh for hydrogen production. Appl. Surf. Sci. 2019, 478, 937–945. [Google Scholar] [CrossRef]
- Lamouchi, A.; Slimi, B.; Ben Assaker, I.; Gannouni, M.; Chtourou, R. Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications. Eur. Phy. J. Plus 2016, 131, 201. [Google Scholar] [CrossRef]
- Snežana, D. Artificial neural network modeling in environmental radioactivity studies—A review. Sci. Total Environ. 2022, 847, 157526. [Google Scholar]
- Ameer, K.; Ameer, S.; Kim, Y.M.; Nadeem, M.; Park, M.K.; Murtaza, M.A.; Khan, M.A.; Nasir, M.A.; Din, G.M.; Mahmood, S.; et al. A Hybrid RSM-ANN-GA Approach on Optimization of Ultrasound-Assisted Extraction Conditions for Bioactive Component-Rich Stevia rebaudiana (Bertoni) Leaves Extract. Foods 2022, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Talwar, S.; Verma, A.K.; Sangal, V.K. Modeling and optimization of fixed mode dual effect (photocatalysis and photo-Fenton) assisted Metronidazole degradation using ANN coupled with genetic algorithm. J. Environ. Manag. 2019, 250, 109428. [Google Scholar] [CrossRef]
- Alsaffar, M.A.; Ayodele, B.V.; Mustapa, S.I. Scavenging carbon deposition on alumina supported cobalt catalyst during renewable hydrogen-rich syngas production by methane dry reforming using artificial intelligence modeling technique. J. Clean. Prod. 2020, 247, 119168. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Vasseghian, Y.; Bahadori, A. Evaluate the performance of Fenton Process for the Removal of Methylene Blue from Aqueous solution: Experimental, Neural Network Modeling and Optimization. Environ. Prog. Sustain. 2020, 39, 1–7. [Google Scholar] [CrossRef]
- Luna, M.D.G.; Sablas, M.M.; Hung, C.M.; Chen, C.W.; Segura, S.G.; Dong, C.D. Modeling and optimization of imidacloprid degradation by catalytic percarbonate oxidation using artificial neural network and Box-Behnken experimental design. Chemosphere 2020, 251, 126254. [Google Scholar] [CrossRef]
- Xinyua, L.; Peng, L.; Krishna, B.; Yue, C.; Xuemin, D.; Yangping, W.; Yifu, Z.; Liangmei, R.; Quan, X.; Jingkun, X. An emerging machine learning strategy for electrochemical sensor and supercapacitor using carbonized metal–organic framework. J. Electroanal. Chem. 2022, 920, 116634. [Google Scholar]
- Rahimi, M.; Abbaspour-Fard, M.H.; Rohani, A. A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique. Renew. Energy 2021, 180, 980–992. [Google Scholar] [CrossRef]
- Alimi, A.; Ben Assaker, I.; Mozaryn, J.; Avila-Brande, D.; Castilli-Martinez, E.; Chtourou, R. Electrochemical synthesis of MnO2/NiO/ZnO trijunction coated stainless steel substrate as a supercapacitor electrode and cyclic voltammetry behavior modeling using artificial neural network. Int. J. Energy Res. 2022, 46, 17163–17179. [Google Scholar] [CrossRef]
- Pascal, F.; Gabriel, D.P.G.; Riccardo, D.B.; Alán, A.G.; David, B. Machine learning dihydrogen activation in the chemical space surrounding Vaska’s complex. Chem. Sci. 2020, 11, 4584–4601. [Google Scholar]
- Tao, Q.; Lu, T.; Sheng, Y.; Li, L.; Lu, W.; Li, M. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting. J. Energy Chem. 2021, 60, 351–359. [Google Scholar] [CrossRef]
- Oral, B.; Can, E.; Yildirim, R. Analysis of photoelectrochemical water splitting using machine learning. Int. J. Hydrogen Energy 2022, 47, 19633–19654. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Y.; Zheng, L.; Hou, J.; Zheng, H.; Sun, S.; Wang, L. Machine Learning Guided Dopant Selection for Metal Oxide-Based Photoelectrochemical Water Splitting: The Case Study of Fe2O3 and CuO. Adv. Mater. 2022, 34, 2106776. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Gil, K.R.; Robinson, D.B. WO3-Enhanced TiO2 Nanotube Photoanodes for Solar Water Splitting with Simultaneous Wastewater Treatment. ACS Appl. Mater. Interfaces. 2013, 5, 12400–12410. [Google Scholar] [CrossRef]
- Saidi, H.; Boujmil, M.F.; Bouicha, M. Effect of the electrodeposition potential on the physical properties of rapid thermal processing annealed CuInSe2 films. Phys. Status Solidi A 2023, 220, 2200808. [Google Scholar] [CrossRef]
- Pauporté, T. A Simplified method for WO3 electrodeposition. J. Electrochem. Soc. 2002, 149, C545. [Google Scholar] [CrossRef]
- Meulenkamp, E.A. Mechanism of WO3 Electrodeposition from Peroxy-Tungstate Solution. J. Electrochem. Soc. 1997, 144, 1664. [Google Scholar] [CrossRef]
- Landolsi, Z.; Ben Assaker, I.; Chtourou, R.; Ammar, S. Photoelectrochemical impedance spectroscopy of electrodeposited hematite α-Fe2O3 thin films: Effect of cycle numbers. J. Mater. Sci. Mater. 2018, 29, 81787–88187. [Google Scholar] [CrossRef]
- Biswal, A.; Panda, P.K.; Acharya, A.N.; Mohapatra, S.; Swain, N.; Tripathy, B.C.; Jiang, Z.T.; Sundaram, M.M. Role of Additives in Electrochemical Deposition of Ternary Metal Oxide Microspheres for Supercapacitor Applications. ACS Omega 2020, 5, 3405–3417. [Google Scholar] [CrossRef]
- Braiek, Z.; Gannouni, M.; Ben Assaker, I.; Bardaoui, A.; Lamouchi, A.; Brayek, A.; Chtourou, R. Correlation between physical properties and growth mechanism of In2S3 thin films fabricated by electrodeposition technique with different deposition times. Eur. Phys. J. Appl. Phys. 2015, 72, 10. [Google Scholar] [CrossRef]
- Tamboli, S.H.; Rahman, G.; Joo, O.S. Influence of potential, deposition time and annealing temperature on photoelectrochemical properties of electrodeposited iron oxide thin film. J. Alloys Compd. 2012, 520, 232–237. [Google Scholar] [CrossRef]
- Gannouni, M.; Ben Assaker, I.; Chtourou, R. Role of deposition time on structural, optical and electrical properties of In-rich Cu-In-S spinel films grown by electrodeposition technique. Superlattices Microstruct. 2013, 61, 22–32. [Google Scholar] [CrossRef]
- Mineo, G.; Ruffino, F.; Mirabella, S.; Bruno, E. Investigation of WO3 electrodeposition leading to nanostructured thin films. J. Nanomater. 2020, 10, 1493. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction; Dover: New York, NY, USA, 1990; p. 253. [Google Scholar]
- Kwong, W.L.; Savvides, N.; Sorrell, C.C. Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochem. Acta 2012, 75, 371–380. [Google Scholar] [CrossRef]
- Habazaki, H.; Hayashi, Y.; Konno, H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment. Electrochem. Acta 2002, 47, 4181–4188. [Google Scholar] [CrossRef]
- Kwong, W.L.; Qiu, H.; Nakaruk, A.; Koshy, P.; Sorrell, C.C. Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition. Energy Procedia 2013, 34, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Zayim, E.O. Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films. Sol. Energy Mater Sol. Cells 2005, 87, 695–703. [Google Scholar] [CrossRef]
- Bourezgui, A.; Kacem, I.; Ben Assaker, I.; Gannouni, M.; Ben Naceur, J.; Karyaoui, M.; Chtourou, R. Synthesis of porous TiO2 thin films prepared with templating technique to improve the photoelectrochemical properties. J. Porous Mater. 2016, 23, 1085–1094. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, Y.; Gao, W.; Wang, S.; Li, J. Enhanced photoelectrochemical water splitting on novel nanoflake WO3 electrodes by dealloying of amorphous Fe-W alloys. J. Mater. Chem. A 2013, 1, 10677–10685. [Google Scholar] [CrossRef]
- Wadhene, R.; Lamouchi, A.; Ben Assaker, I.; Ben Naceur, J.; Martínez-Huerta, M.V.; Chtourou, R. Electrodeposition of Cu2ZnSnS4 thin films onto TiO2 nanorods for photocatalytic application: Effect of deposition time. Inorg. Chem. Commun. 2020, 122, 108298. [Google Scholar] [CrossRef]
- Braiek, Z.; Ben Assaker, I.; Gannouni, M.; Alem, H.; Roques-Carmes, T.; Chtourou, R. Impact of In2S3 shells thickness on the electrochemical and optical properties of oriented ZnO/In2S3 core/shell nanowires. Int. J. Hydrogen Energy 2017, 42, 5694–5707. [Google Scholar] [CrossRef]
- Gannouni, M.; Ben Assaker, I.; Chtourou, R. Experimental investigation of the effect of indium content on the CuIn5S8 electrodes using electrochemical impedance spectroscopy. Mater. Res. Bull. 2014, 61, 519–527. [Google Scholar] [CrossRef]
- Ben Naceur, J.; Jrad, F.; Souiwa, F.; Ben Rhouma, F.; Chtourou, R. Hydrothermal reaction time effect in wettability and photoelectrochemical properties of TiO2 nanorods arrays films. Optik 2021, 239, 1666794. [Google Scholar] [CrossRef]
- Fan, X.; Gao, B.; Wang, T.; Huang, X.; Gong, H.; Xue, H.; Guo, H.; Song, L.; Xia, W.; He, J. Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting. Appl Catal. A Gen. 2016, 528, 52–58. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Hwang, Y.J.; Chae, S.Y.; Joo, O.S. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 2013, 1, 3479–3488. [Google Scholar] [CrossRef]
- Zhu, T.; Chong, M.N.; Phuan, Y.W.; Chan, E.S. Electrochemically synthesized tungsten trioxide nanostructures for photoelectrochemical water splitting: Influence of heat treatment on physicochemical properties, photocurrent densities and electron shuttling. Colloids Surf. A Physicochem. Eng. 2015, 484, 297–303. [Google Scholar] [CrossRef]
- Supanantin, F.; Ponchio, C. Improvement ITO/WO3 photo anode electrode fabrication using electrodeposition technique for highly efficient photoelectrocatalytic insecticide degradation. Mater. Sci. Semicond. Process. 2020, 118, 105212. [Google Scholar] [CrossRef]
- Hilliard, S.; Baldinozzi, G.; Friedrich, D. Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: A sol-gel dip coating approach. Sustain. Energy Fuels 2017, 1, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhao, X.; Pan, D.; Li, G. Nanotube array-like WO3/W photoanode fabricated by electrochemical anodization for photoelectrocatalytic overall water splitting. Chin. J. Catal. 2017, 38, 2132–2140. [Google Scholar] [CrossRef]
- Ma, Z.; Hou, H.; Song, K. Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting. Chem. Eng. J. 2020, 379, 122266. [Google Scholar] [CrossRef]
ANN Model Parameters | Value/Type |
---|---|
Number of input neurons | 2 |
Number of output neurons | 1 |
Number of hidden layer neurons | 5, 10, 15, 20, 25, 30, and 35 |
The initial weights and biases | Nguyen–Widrow initialization |
Activation function | Sigmoid activation function |
Learning rule | Levenberg–Marquardt back propagation algorithm Scaled conjugate gradient algorithm |
Parameters | WO3/SS-5 min | WO3/SS-10 min | WO3/SS-15 min | WO3/SS-30 min |
---|---|---|---|---|
Deposited material (10−3 g) | 0.15–0.18 | 0.44–0.46 | 0.54–0.57 | 1.33–1.36 |
Thickness (µm) | - | 0.52–0.55 | 0.71–0.73 | 3.20–3.26 |
roughness (μm) | - | 0.18 ± 0.02 | 0.33 ± 0.03 | 0.83 ± 0.05 |
Eg (eV) | - | 1.78 ± 0.04 | 1.68 ± 0.01 | 1.36 ± 0.04 |
D (nm) | - | 4.80 ± 0.05 | 5.10 ± 0.06 | 4.2 ± 0.1 |
δ (10−2 nm−2) | - | 4.33 ± 1 | 3.91 ± 0.9 | 0.05 ± 0.02 |
Parameters | SS0 | WO3/SS-5 min | WO3/SS-10 min | WO3/SS-15 min | WO3/SS-30 min |
---|---|---|---|---|---|
Rs (Ω) | 4.61 ± 0.14 | 3.22 ± 0.20 | 2.13 ± 0.45 | 3.57 ± 0.78 | 2.41 ± 0.80 |
Rct (KΩ) | 181.04 ± 12 | 6.12 × 103 ± 10 | 101.15 ± 18 | 150.92 ± 23 | 578.38 ± 19 |
CPE (µF) | 12 ± 5 | 86.90 ± 17 | 980.46 ± 25 | 890.46 ± 33 | 274.63 ± 45 |
τe (ms) | 0 | 0.06 ± 0.01 | 0.20 ± 0.2 | 0.12 ± 0.4 | 0.05 ± 0.02 |
Photoanode Morphology | Substrate | Synthesis Method | Photocurrent Value | Source |
---|---|---|---|---|
WO3 thin films | FTO | ED | 28 µA cm−2 at 0.7 V (vs. Ag/AgCl) | [41] |
WO3 nanoflake arrays | Fe-W | ED | 2.25 mA cm−2 at 1.5 V (vs. SCE) | [44] |
WO3 nanorods arrays | FTO | Hydrothermal | 0.68 mA cm−2 at 1.20 V (vs. SCE) | [49] |
WO3 nanorods arrays | FTO | Hydrothermal | 2.26 mA cm−2 at 1.23 V (vs. RHE) | [50] |
WO3 nanoflake arrays | FTO | ED | 35 µA cm−2 at 1 V (vs. Ag/AgCl) | [51] |
WO3 thin films | ITO | ED | 120 µA cm−2 at 1.2 V (vs. Ag/AgCl) | [52] |
WO3 mesoporous | FTO | Sol-gel | 0.4 µA cm−2 at 1.23 V (vs. RHE) | [53] |
WO3 nanotube arrays | Tungsten | Anodization | 0.38 mA cm−2 at 0.6 V (vs. SCE) | [54] |
WO3 micropillar | Silicon | RF Sputtering | 0.17 mA cm−2 at 1.23 V (vs. RHE) | [55] |
WO3 thin films | Stainless steel | ED | 0.7 mA cm−2 at 0.5 V (vs. Ag/AgCl) | This work |
Hidden Neurons | Dataset | |||||
---|---|---|---|---|---|---|
Training | Validation | Testing | ||||
MSE | R | MSE | R | MSE | R | |
5 | 1.51798 × 10−5 | 9.90084 × 10−1 | 6.22345 × 10−6 | 9.61814 × 10−1 | 5.46756 × 10−5 | 9.60216 × 10−1 |
10 | 2.28893 × 10−5 | 9.83986× 10−1 | 8.08182 × 10−6 | 9.60209 × 10−1 | 1.81560 × 10−5 | 9.90318 × 10−1 |
15 | 1.29248 × 10−5 | 9.90882 × 10−1 | 4.83037 × 10−6 | 9.66038 × 10−1 | 9.84514 × 10−6 | 9.92895 × 10−1 |
20 | 1.49216 × 10−5 | 9.89644 × 10−1 | 5.72285 × 10−6 | 9.50457 × 10−1 | 4.63701 × 10−5 | 9.66178 × 10−1 |
25 | 6.90622 × 10−5 | 9.75232 × 10−1 | 7.19680 × 10−6 | 9.44054 × 10−1 | 1.46054 × 10−5 | 9.49777 × 10−1 |
30 | 1.42880 × 10−5 | 9.89281 × 10−1 | 8.58562 × 10−6 | 9.12202× 10−1 | 2.55363 × 10−5 | 9.82304 × 10−1 |
35 | 1.75055 × 10−5 | 9.87949 × 10−1 | 8.02173 × 10−6 | 9.30256× 10−1 | 4.75258 × 10−5 | 9.65551 × 10−1 |
Neurons of Hidden Layer | Weights and Biases between Input and Hidden Layers | Weights and Biases between Hidden and Output Layers | ||
---|---|---|---|---|
Weights | Biases | Weights | Biases | |
1 | 0.50374 | 7.56191 | 0.15813 | 0.06109 |
2 | 0.11915 | 7.08987 | 0.18263 | − |
3 | 0.08399 | 6.71948 | 0.14357 | − |
4 | 0.46015 | 6.13313 | 0.57780 | − |
5 | 0.10553 | 5.59429 | 0.12425 | − |
6 | 0.21582 | 5.05640 | 0.14771 | − |
7 | 0.02201 | 4.61054 | 0.20201 | − |
8 | 0.29611 | 4.06112 | 0.20989 | − |
9 | 0.45039 | 3.49363 | 0.11544 | − |
10 | 0.13273 | 2.90904 | 0.13174 | − |
11 | 0.12743 | 2.40968 | 0.19723 | − |
12 | 0.62963 | 1.77409 | 0.18377 | − |
13 | 0.20454 | 1.26648 | 0.06732 | − |
14 | 0.44321 | 0.75640 | 0.18374 | − |
15 | 0.03607 | 0.26407 | 0.20426 | − |
Hidden Neurons | Dataset | |||||
---|---|---|---|---|---|---|
Training | Validation | Testing | ||||
MSE | R | MSE | R | MSE | R | |
5 | 1.88298 × 10−5 | 9.93141 × 10−1 | 1.21009 × 10−5 | 9.54742 × 10−1 | 2.73978 × 10−5 | 9.60216 × 10−1 |
10 | 2.34844 × 10−5 | 9.90470 × 10−1 | 2.53547 × 10−5 | 9.21420 × 10−1 | 3.78117 × 10−5 | 9.90318 × 10−1 |
15 | 1.93844 × 10−5 | 9.90253 × 10−1 | 2.01135 × 10−5 | 9.36134 × 10−1 | 5.15968 × 10−6 | 9.92895 × 10−1 |
20 | 2.08783 × 10−5 | 9.85180 × 10−1 | 1.79432 × 10−5 | 9.46426 × 10−1 | 5.02013 × 10−5 | 9.66178 × 10−1 |
25 | 2.70227 × 10−5 | 9.80829 × 10−1 | 1.26449 × 10−5 | 9.11456 × 10−1 | 1.46054 × 10−5 | 9.49777 × 10−1 |
30 | 2.51954 × 10−5 | 9.82224 × 10−1 | 1.39684 × 10−5 | 9.31993 × 10−1 | 2.55363 × 10−5 | 9.82304 × 10−1 |
35 | 1.93152 × 10−5 | 9.90561 × 10−1 | 6.95676 × 10−6 | 9.49690 × 10−1 | 4.75258 × 10−5 | 9.65551 × 10−1 |
Neurons of Hidden Layer | Weights and Biases between the Input and Hidden Layers | Weights and Biases between the Hidden and Output Layers | ||
---|---|---|---|---|
Weights | Biases | Weights | Biases | |
1 | 0.26611 | 0.03047 | 0.01318 | 0.25050 |
2 | 0.51964 | 0.64265 | 0.09532 | − |
3 | 0.28150 | 0.71359 | 0.42412 | − |
4 | 0.13356 | 0.62248 | 0.87066 | − |
5 | 0.23825 | 0.02422 | 0.49236 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaby, M.; Alimi, A.; Bardaoui, A.; Santos, D.M.F.; Chtourou, R.; Ben Assaker, I. Correlation between the Experimental and Theoretical Photoelectrochemical Response of a WO3 Electrode for Efficient Water Splitting through the Implementation of an Artificial Neural Network. Sustainability 2023, 15, 11751. https://doi.org/10.3390/su151511751
Diaby M, Alimi A, Bardaoui A, Santos DMF, Chtourou R, Ben Assaker I. Correlation between the Experimental and Theoretical Photoelectrochemical Response of a WO3 Electrode for Efficient Water Splitting through the Implementation of an Artificial Neural Network. Sustainability. 2023; 15(15):11751. https://doi.org/10.3390/su151511751
Chicago/Turabian StyleDiaby, Mamy, Asma Alimi, Afrah Bardaoui, Diogo M. F. Santos, Radhaoune Chtourou, and Ibtissem Ben Assaker. 2023. "Correlation between the Experimental and Theoretical Photoelectrochemical Response of a WO3 Electrode for Efficient Water Splitting through the Implementation of an Artificial Neural Network" Sustainability 15, no. 15: 11751. https://doi.org/10.3390/su151511751
APA StyleDiaby, M., Alimi, A., Bardaoui, A., Santos, D. M. F., Chtourou, R., & Ben Assaker, I. (2023). Correlation between the Experimental and Theoretical Photoelectrochemical Response of a WO3 Electrode for Efficient Water Splitting through the Implementation of an Artificial Neural Network. Sustainability, 15(15), 11751. https://doi.org/10.3390/su151511751